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SI Methods
Participants and Procedure. Our initial sample consisted of 75
adults, 12 of whom were removed from the final sample due to
various data artifacts in the functional images [e.g., ghosting,
excessive motion (>4-mm displacement)] or due to incomplete
behavioral data.
Blood pressure and pulse were taken immediately before and

30 min after pill ingestion, and immediately before and after the
scanning session. Before AMPH ingestion, anyone with blood
pressure exceeding 140/90 was not allowed to continue with the
study. Following AMPH ingestion, participants whose blood
pressure was less than 80/60, exceeded 180/110, or whose pulse
exceeded 100 beats per min, would have been precluded from
entering the scanner; none in the current sample met any of these
exclusionary criteria.

Data Preparation. Due to a technical problem with our response
box during collection of behavioral data in the scanner, trials were
missing at random for some subjects. In such cases, because we
could not distinguish between missingness due to this technical
problem and due to valid missing responses, we chose to only
examine blocks of trials with complete behavioral and corre-
sponding brain data. Subjects in the final sample had to have
a minimum of 15 complete behavioral trials within-condition
(fixation, 1-, 2-, and 3-back) and within-session (when they re-
ceived either placebo or AMPH).

Cognition. N-back performance in the scanner was initially as-
sessed by accuracy (percentage of correct responses, including
both hits and correct rejections), and by reaction time means
(RTmean) and SDs (RTSD). However, an initial examination of
behavioral distributions by age group, drug condition, and task
load revealed normal distributions for RTmean and RTSD, but
extremely left-skewed distributions for 1- and 2-back Accuracy in
younger adults, and 1-back Accuracy in older adults (one-sample
Kolmogorov–Smirnov “tests for normality,” P < 0.05 for all),
representing ceiling effects (average young adult, 1-back = 99%,
2-back = 98%; older adult, 1-back = 97%). For this reason, and
to maintain an equivalent amount of data for each behavioral
measure in our models, all analyses throughout the current study
focused only on RTmean and RTSD. Notably, targeted subsequent
examinations of possible links between 3-back–only Accuracy
and SDBOLD revealed no reliable effects, thus further supporting
the focus on RTmean and RTSD in the current study.

Extended fMRI Preprocessing.Beyond standard preprocessing steps
(Methods), we subsequently examined all functional volumes for
artifacts via independent component analysis (ICA) within-run,
within-person, as implemented in FSL/MELODIC (1). Noise com-
ponents were targeted according to several key criteria: (i) Spiking
(components dominated by abrupt time series spikes ≥6 SDs);
(ii) motion [prominent edge or “ringing” effects, sometimes (but not
always) accompanied by large time series spikes]; (iii) suscepti-
bility and flow artifacts (prominent air–tissue boundary or
sinus activation; typically represents cardio/respiratory effects);
(iv) white matter (WM) and ventricle activation (2); (v) low-
frequency signal drift (3); (vi) high power in high-frequency
ranges unlikely to represent neural activity (≥75% of total
spectral power present above 0.13 Hz;); and (vii) spatial distri-
bution [“spotty” or “speckled” spatial pattern that appears
scattered randomly across ≥25% of the brain, with few if any
clusters with ≥10 contiguous voxels (at 4-mm3 voxel size)]. Ex-

amples of these various components we typically deem to be
noise can be found in the supplementary materials of the study
by Garrett et al. (4). By default, we use a conservative set of
rejection criteria; if manual classification decisions are difficult
due to the co-occurrence of apparent “signal” and “noise” in a
single component, we typically elect to keep such components.
Two independent raters of noise components were used (D.D.G.
and J.M.); >90% interrater reliability was required on separate
data before denoising decisions were made on the current data.
Components identified as artifacts were then regressed from
corresponding fMRI runs using the FSL regfilt command. The
use of ICA denoising had dramatic effects in our past research,
effectively removing 50% of the variance still present after tra-
ditional preprocessing steps, while simultaneously doubling the
predictive power of BOLD signal variability (5). Thus, calculat-
ing BOLD signal variance from relatively artifact-free BOLD
time series permits the examination of what is more likely
meaningful neural variability.
As a final step to control for the possibility that AMPH may

impact BOLD signal variability only by boosting the general
physiological responsiveness of the participants, we applied the
latest version of single-subject level PHYsiological correction
using Canonical Autocorrelation Analysis (PHYCAA+; ref. 6).
PHYCAA+ is an automated algorithm that (i) down-weights
voxel variance in probable nonneuronal tissue, and (ii) identifies
the multivariate physiological noise subspace in gray matter that
is linked to nonneuronal tissue. PHYCAA+ thus estimates
physiological noise directly from BOLD time series (precluding
the need for external measures of heartbeat and respiration)
and has recently been shown to outperform various alternative
physiological denoising techniques, such as RETROICOR (7),
RVHR (8), and COMPCOR (9), at improving both the pre-
diction and reproducibility of resulting activation maps.

Partial Least-Squares Modeling Details: Analysis of Relations Between
Brain Signal Variability (SDBOLD) and AMPH (Pre/Post), Age Group
(Younger/Older Adults), and Task Condition (Fixation/1/2/3-Back). To
examine multivariate relations between SDBOLD, AMPH, age
group, and task condition during n-back, we used a Task partial
least-squares (PLS) analysis (10, 11). Task PLS begins by cal-
culating a between-subject covariance matrix (COV) between
experimental conditions/groups and each voxel’s SDBOLD. COV
is then decomposed using singular value decomposition (SVD):

SVDCOV =USV ’. [S1]

This decomposition produces a left singular vector of experimen-
tal condition/group weights (U), a right singular vector of brain
voxel weights (V), and a diagonal matrix of singular values (S).
This analysis produces orthogonal latent variables (LVs) that
optimally represent relations between experimental conditions/
groups and voxelwise SDBOLD values. Each LV contains a spatial
activity pattern depicting the brain regions that show the stron-
gest relation to condition/group contrasts identified by the LV.
Each voxel weight (in V) is proportional to the covariance be-
tween voxel SDBOLD and the condition/group contrast. In the
current study, we had a 2 (AMPH) × 2 (Age Group) × 4 (Task
Condition) design, yielding a total of 16 possible latent dimens-
ions (i.e., singular values in S) that could be estimated.
To obtain a summary measure of each participant’s expression

of a particular LV’s spatial pattern, we calculated within-person
“brain scores” by multiplying each voxel (i)’s weight (V) from
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each LV (j) (produced from the SVD in Eq. S1) by voxel (i)’s
SDBOLD value, for each condition/group (k) within person (l),
and summing over all (n) brain voxels:

Xn

i=1

VijSDBOLDikl. [S2]

This is exactly equivalent to the multiplication of V by a subject’s
vector of SDBOLD values for all voxels. Significance of detected
relations between multivariate spatial patterns and conditions/
groups was assessed using 1,000 permutation tests of the singular
value corresponding to each LV. A subsequent bootstrapping
procedure revealed the robustness of voxel saliences across
1,000 bootstrapped resamples of the data (12). By dividing each
voxel’s mean salience by its bootstrapped SE, we obtained “boot-
strap ratios” (BSRs) as normalized estimates of robustness. We
thresholded BSRs at a conservative value of ±4.25, which ex-
ceeds a 99.99% confidence interval.
To restrict all multivariate analyses to gray matter (GM), we

masked our functional data with the GM tissue prior provided in
FSL, thresholded at probability >0.37. We localized thresholded
regions from all PLS model output by submitting resulting
Montreal Neurological Institute (MNI) coordinates to the
Anatomy Toolbox (version 1.8) in SPM8, which applies proba-
bilistic algorithms to determine the cytoarchitectonic labeling of
MNI coordinates (13, 14).

Mixed Model Details.
Modeling unique relations between SDBOLD, AMPH, Age Group, and Task.
The PLS models we specified in the current paper resulted in
multivariate, latent-level relations between BOLD, AMPH, Age
Group, and Task. Due to their multivariate nature, these models
do not explicitly specify the unique importance of each effect in
the solution. Subsequent mixed models can help parse these
various effects, while flexibly and properly accounting for degrees
of freedom and model covariances at within- (i.e., AMPH, Task)
and between-subject (i.e., Age Group) levels (15). The PLS
model above produced eight brain scores per person [AMPH
(placebo vs. drug) × Task (fixation, 1/2/3-back)], and these scores
became the dependent variables of interest in the mixed models.
We then fit a model of the following form:

SDBOLDBrainScoreijk = β0 + β
�
AMPHjk

�
+ β

�
Taskijk

�

+ βðAge  groupkÞ+ β
�
AMPHjk   ×   Taskijk

�

+ β
�
AMPHjk   ×  Age  groupk

�

+ β
�
Taskijk   ×   Age  groupk

�

+ β
�
AMPHjk   ×   Taskijk   ×   Age  groupk

�

+ e0ijk.

[S3]

Here, the PLS brain score for each task condition (i), AMPH
condition (j), and participant (k) is modeled as a function of a
model intercept (β0), main effects for AMPH, Task, and Age
group, all interactions, and a residual error term (e0ijk). We did
not include random intercepts and slopes in the final model;
when included, model convergence was typically not achieved,
likely as a result of modest sample size. All mixed models were
run using the Mixed Models module in SPSS 22 (IBM).
Modeling relations between SDBOLD and cognitive performance. Another
goal in the current study was to link AMPH-related changes in
SDBOLD to AMPH-related changes in behavior during n-back
(i.e., “change–change” relations). However, average levels of
SDBOLD and behavior may also be uniquely linked (i.e., “level–
level” relations). In the current study, key “within” effects rep-
resent AMPH-placebo differences, and “between” effects rep-

resent the average of AMPH and placebo. Initially, for behavior
(each for RTmean and RTSD) and SDBOLD (from our PLS brain
scores noted above), a total of six scores were available per
subject [AMPH (placebo, drug) × Task (1/2/3-back)]. These
scores permitted the creation of three change scores (AMPH-
placebo) and three average scores [(AMPH+placebo)/2], one for
each n-back condition, per variable of interest (RTmean, RTSD,
and SDBOLD) and subject. We could then fit separate change–
change and level–level models.
For the AMPH-related change–change model, we built upon a

general model of the following form:

Performance withinij = β0 + β
�
SDBOLD withinij

�
+ βn . . . e0ij.

[S4]

Here, we model within-person AMPH-related cognitive perfor-
mance for each n-back task condition (i) and participant (j) as
a function of a model intercept (β0), the AMPH-related SDBOLD
brain score (SDBOLD_withinij), other variables of interest, and
residual error, e0ij.
Subsequently, our level–level models were run as follows:

Performance betweenij = β0 + β
�
SDBOLD betweenij

�
+ βn . . . e0ij.

[S5]

Between-person cognitive performance for each n-back task con-
dition (i) and participant (j) was modeled as a function of a
model intercept (β0), the average SDBOLD brain score across
placebo and AMPH conditions (SDBOLD_betweenij), other vari-
ables of interest, and residual error, e0ij.
Various specific models used in the current study are outlined in

Results, and full model results are contained in Table S2. Random
intercepts and slopes were again not modeled due to lack of model
convergence. For all mixed models outlined above, we chose
compound symmetry (CS) as the covariance structure given that
Akaike information criteria fits were typically significantly better
than for the default diagonal covariance structure, and required
fewer parameters to estimate. We also compared CS to the most
bias-free available covariance structure (i.e., “unstructured” co-
variance), and due to a greatly increased number of estimated
parameters (e.g., in Table S2, model 1, estimated parameters
would have ballooned from 18 to 53) and our modest sample size,
we elected to keep CS as our covariance structure. All models were
fit using full-information maximum-likelihood estimation.
Model outliers were determined by calculating Cook’s distance,

which reflects the extent to which model residuals would change if
a particular data point (in multivariate space) were excluded from
the model. Larger Cook’s distance values indicate more influential
data points. Single observations exceeding a threshold of 2.5 SDs
from the distribution of all multivariate observations were deemed
overly influential on model parameters. In our sample, out of 496
total observations (62 subjects × 4 task conditions × 2 drug con-
ditions), only two observations were outliers according to Cook’s
distance. However, mixed models permit missingness without
subject-level listwise deletion, maximizing remaining available
explanatory power and parameter robustness from the remaining
494 observations.

MeanBOLD Effects.We sought also to compare SDBOLD results to a
typical mean-based measure of BOLD activity (meanBOLD). To
calculate meanBOLD for each experimental condition, we first
expressed each signal value as a percent change from the average
of the last four scans from the previous block, and then calcu-
lated a mean percent change within each block and averaged
across all blocks for a given condition (a typical method in the
PLS data analysis framework). This effectively acts as an explicit
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high-pass filter over the data. We then reran relevant PLS and
mixed models described above, while using meanBOLD measures.

Physiological Component Derivation. Due to high covariance be-
tween pulse and systolic and diastolic blood pressure (BP)
measurements, we used principal-component analysis (PCA) to
derive a physiological component structure. BP and pulse were
collected immediately before and immediately after each scan-
ning session, allowing us to derive within-person (i.e., AMPH-
related changes) and between-person (i.e., average across ses-
sion) levels of these measures (see above for logic). In turn, we ran
separate PCAs to create a separate component structure at each
level. We found a single component representing the within-
person level (eigenvalue, 1.88; systolic BP loading, 0.91; diastolic
BP loading, 0.86; pulse loading, 0.56), and a single component
representing the between-person level (eigenvalue, 1.88; systolic
BP loading, 0.85; diastolic BP loading, 0.90; pulse loading, 0.58).
Resulting components were then entered into our mixed models to
test whether physiological measures would account for our primary
model effects (Results in main text and Table S2, model 2).

SI Results
Multivariate Model Linking SDBOLD to Age Group and Task Within the
Placebo Condition Only. The current BOLD signal variability litera-
ture often finds higher cortical signal variability in younger, higher
performers (16). However, sometimes (17, 18), but not always (19),
subcortical regions exhibit the inverse effect such that SDBOLD is
higher in older, poorer performers. Our PLS model of SDBOLD in
the current study (clearly dominated by the AMPH effect on
SDBOLD in older adults; Fig. 1 and Fig. S2) showed no evidence of
inverse effects; all regions were red/yellow, showing higher SDBOLD
in younger compared with older adults at placebo, and a large
increase in SDBOLD in older adults on AMPH. To verify that the
dominant AMPH effect in older adults was not skewing our results
away from possible inverse cortical–subcortical age effects off drug,
we reran our PLS model with only placebo data. This ensures the
model is more similar in form to previous BOLD signal variability
studies (especially to ref. 19, which focused on SDBOLD modulations
across age groups and task conditions) and ensures that AMPH
cannot impact the derivation of any latent dimensions via PLS.
These placebo-based results corresponded with the overall model
shown in Fig. 1. We found a single robust LV (cross-block co-
variance, 49.66%; permuted P = 0.007) showing that younger adults
were again more variable than older adults on every experimental
condition (red/yellow regions in Fig. S1), and we found no regions in
which older adults were more variable than younger adults. As in our
current Fig. 1 and Fig. S2, several cortical and DA-typical subcortical
regions (putamen, caudate) remained present. Table S1, model 3,
includes peak locations, bootstrap ratio values, and cluster sizes.

Mixed Models of SDBOLD Are Not Driven by Physiological Artifacts.We
took several precautions at the level of image preprocessing to
ensure that the present SDBOLD results are unlikely to be ac-
counted for by physiological noise (see SI Methods for details).
First, our ICA denoising procedure explicitly targets and re-
moves cardiac and respiratory components from the fMRI data.
Second, we subsequently applied PHYCAA+ (6) as an iterative

procedure to further classify and remove nonneural signal
sources remaining after ICA denoising. Finally, we estimated
within- and between-person physiological components (derived
from systolic/diastolic blood pressure and pulse measures collected
immediately before and immediately after each scanning session;
see SI Methods for details) and added these components (and
relevant interactions) to the terms in our initial mixed model
(Table S2, model 1). Results revealed no reliable effects of phys-
iological components (Table S2, model 2), and critically, our key
AMPH and AMPH × Age Group effects noted above were pre-
served. Thus, in combination with our use of ICA denoising and
PHYCAA+, we find no evidence that our primary SDBOLD results
(Table S2, model 1) are attributable to blood pressure or pulse-
related artifacts at within- or between-person levels.

Behavior-Only Models. For RTmean, we noted significant effects of
AMPH, Age Group, AMPH × Session Order, Task × Age
Group, Task × Session Order, and a key AMPH × Age Group ×
Session Order effect (see Table S2, model 7, for full model re-
sults, and Table S3 for descriptive statistics). The three-way in-
teraction is plotted in Fig. S5, Left. Inverse placebo-AMPH
slopes exists for different session orders in both younger and
older adults. Although slope inversion is common to both age
groups, the inversion is much more pronounced for YA [AMPH ×
Session Order interaction, F(1,200) = 223.08, P = 2.23 × 10−34] than
for OA [AMPH × Session Order interaction, F(1,106.15) = 9.62, P =
0.002]. Although Task × Age Group and Task × Session Order
effects were also present, Task did not interact with AMPH. In
combination with a lack of Task effects on SDBOLD (independent of,
or when interacting with, AMPH; Table S2, model 1), this supports
the focus on AMPH as the primary within-person dimension linking
SDBOLD and WM performance in the current study.
For RTSD, we found robust effects of Task, Age Group,

AMPH × Session Order, Task × Age Group, and AMPH × Age
Group × Session Order. This three-way interaction is plotted in
Fig. S5, Right. Here, a strong placebo-AMPH inversion effect
existed for different session orders in YA [AMPH × Session
Order interaction, F(1,200) = 63.18, P = 1.36 × 10−13], but
far more subtly for OA [AMPH × Session Order interaction,
F(1,110) = 1.27, P = 0.26]. Similarly to RTmean, we found no in-
teraction between Task and AMPH. See Table S2, model 8, for
full model results, and Table S3 for descriptive results.

Mixed Models of SDBOLD Are Not Affected by Session Order Effects. In
our mixed model of SDBOLD (AMPH × Task × Age Group;
Table S2, model 1), we showed significant effects of AMPH and
AMPH × Age Group. Subsequent models predicting reaction
time (RTmean and RTSD) also showed significant effects of Ses-
sion Order (Table S2, models 3 and 4). To assuage concerns that
our original SDBOLD model results may also reflect Session
Order, we reran model 1 in Table S2 as an AMPH × Task × Age
Group × Session Order mixed factorial model predicting
SDBOLD. We found no effects of Session Order (or any in-
teraction including Session Order) on SDBOLD (all values of P >
0.53; Table S2, model 10). Notably, our key AMPH and AMPH ×
Age Group effects in the original Table S2, model 1, were fully
maintained, with nearly identical F statistics as before.

1. Beckmann CF, Smith SM (2004) Probabilistic independent component analysis for
functional magnetic resonance imaging. IEEE Trans Med Imaging 23(2):137–152.

2. Birn RM (2012) The role of physiological noise in resting-state functional connectivity.
Neuroimage 62(2):864–870.

3. Smith AM, et al. (1999) Investigation of low frequency drift in fMRI signal. Neuro-
image 9(5):526–533.

4. Garrett DD, McIntosh AR, Grady CL (2014) Brain signal variability is parametrically
modifiable. Cereb Cortex 24(11):2931–2940.

5. Garrett DD, Kovacevic N, McIntosh AR, Grady CL (2010) Blood oxygen level-dependent
signal variability is more than just noise. J Neurosci 30(14):4914–4921.

6. Churchill NW, Strother SC (2013) PHYCAA+: An optimized, adaptive procedure for
measuring and controlling physiological noise in BOLD fMRI. Neuroimage 82:306–325.

7. Glover GH, Li T-Q, Ress D (2000) Image-based method for retrospective correction of
physiological motion effects in fMRI: RETROICOR. Magn Reson Med 44(1):162–167.

8. Chang C, Glover GH (2009) Effects of model-based physiological noise correction on de-
fault mode network anti-correlations and correlations. Neuroimage 47(4):1448–1459.

9. Behzadi Y, Restom K, Liau J, Liu TT (2007) A component based noise correction
method (CompCor) for BOLD and perfusion based fMRI. Neuroimage 37(1):90–101.

10. McIntosh AR, Bookstein FL, Haxby JV, Grady CL (1996) Spatial pattern analysis of
functional brain images using partial least squares. Neuroimage 3(3 Pt 1):143–157.

11. Krishnan A, Williams LJ, McIntosh AR, Abdi H (2011) Partial least squares (PLS)
methods for neuroimaging: A tutorial and review. Neuroimage 56(2):455–475.

12. Efron B, Tibshirani R (1993) An Introduction to the Bootstrap (Chapman & Hall/CRC,
Boca Raton, FL).

Garrett et al. www.pnas.org/cgi/content/short/1504090112 3 of 10

www.pnas.org/cgi/content/short/1504090112


13. Eickhoff SB, et al. (2005) A new SPM toolbox for combining probabilistic cytoarchi-
tectonic maps and functional imaging data. Neuroimage 25(4):1325–1335.

14. Eickhoff SB, et al. (2007) Assignment of functional activations to probabilistic cy-
toarchitectonic areas revisited. Neuroimage 36(3):511–521.

15. Singer JD, Willett JB (2003) Applied Longitudinal Data Analysis: Modeling Change
and Event Occurrence (Oxford Univ Press, New York).

16. Garrett DD, et al. (2013) Moment-to-moment brain signal variability: A next frontier
in human brain mapping? Neurosci Biobehav Rev 37(4):610–624.

17. Garrett DD, Kovacevic N, McIntosh AR, Grady CL (2011) The importance of being
variable. J Neurosci 31(12):4496–4503.

18. Samanez-Larkin GR, Kuhnen CM, Yoo DJ, Knutson B (2010) Variability in nucleus
accumbens activity mediates age-related suboptimal financial risk taking. J Neurosci
30(4):1426–1434.

19. Garrett DD, Kovacevic N, McIntosh AR, Grady CL (2013) The modulation of BOLD
variability between cognitive states varies by age and processing speed. Cereb Cortex
23(3):684–693.

Fig. S1. Brain scores and spatial pattern from PLS model of relation between SDBOLD, Age Group, and Task Condition at placebo only. Higher brain scores
reflect higher SDBOLD in red/yellow regions. Error bars represent bootstrapped 95% confidence intervals (1,000× with replacement). Every other 2-mm slice in Z
direction is plotted, from Z = −24 to Z = 68. Images are plotted in neurological orientation (left is Left). BSR, bootstrap ratio. BSR level set to ±3.00 due to
reduced data (i.e., only placebo data) compared with the model noted in Fig. 1.

Fig. S2. Full axial view of SDBOLD PLS spatial pattern (first latent variable). Every other 2-mm slice in Z direction is plotted, from Z = −24 to Z = 68. Images are
plotted in neurological orientation (left is Left). BSR, bootstrap ratio.

Garrett et al. www.pnas.org/cgi/content/short/1504090112 4 of 10

www.pnas.org/cgi/content/short/1504090112


Fig. S3. Individual slopes representing placebo-AMPH shifts in SDBOLD for young and older adults from an example n-back condition (2-back).

Fig. S4. Baseline (placebo) SDBOLD negatively correlates with AMPH-related change in SDBOLD. SDBOLD_within (AMPH SDBOLD − placebo SDBOLD). No reliable
task condition or session order differences in slope existed for either age group.

Fig. S5. Average n-back RTmean (Left) and RTSD (Right), by age group and drug session order. Plotted values represent estimated marginal means from the
AMPH × Age Group × Session Order interaction noted in Table S2 (models 7 and 8 for RTmean and RTSD, respectively). Error bars represent ±1 SE.
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Fig. S6. Brain scores and spatial pattern from PLS model of relation between MeanBOLD, Age Group, AMPH, and Task Condition. Higher brain scores reflect
higher meanBOLD in red/yellow regions and lower meanBOLD in blue regions. Error bars represent bootstrapped 95% confidence intervals (1,000× with re-
placement). Every other 2-mm slice in Z direction is plotted, from Z = −24 to Z = 68. Images are plotted in neurological orientation (left is Left). AMPH,
amphetamine; BSR, bootstrap ratio.
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Table S1. PLS model peak activations, bootstrap ratios, and cluster sizes

MNI coordinates

Cluster size, voxelsModel Region Hem X Y Z BSR

1 SMA L −2 −8 74 7.18 4,783
SDBOLD Middle temporal gyrus R 68 −32 −2 6.15 2,235
(Placebo and AMPH) Superior temporal gyrus L −56 −30 12 6.11 3,935

Temporal pole L −24 6 −28 6.06 165
Middle frontal gyrus R 40 34 34 5.84 751
Calcarine gyrus L −8 −98 −8 5.83 273
Inferior occipital gyrus L −42 −76 −14 5.8 1,182
Superior frontal gyrus R 24 54 8 5.8 90
Parahippocampal gyrus R 32 −44 −6 5.77 2,014
Middle temporal gyrus L −56 −4 −22 5.65 301
Postcentral gyrus R 48 −28 44 5.48 678
Fusiform gyrus L −28 −32 −24 5.45 169
Angular gyrus L −48 −66 24 5.43 312
Putamen L −22 10 10 5.32 133
Superior frontal gyrus R 28 6 62 5.27 121
Calcarine gyrus R 8 −76 16 5.21 110
Insula lobe R 46 16 −4 5.17 515
Calcarine gyrus L −22 −60 6 5.15 108
Middle cingulate cortex L −6 −14 44 5.04 494
Middle frontal gyrus L −44 32 34 5.02 194
Anterior cingulate cortex R 4 30 28 4.92 425
Insula lobe R 40 −8 12 4.72 95

2 Angular gyrus L −54 −66 30 10.9 711
MeanBOLD Posterior cingulate cortex L −2 −54 24 10.41 4,572
(Placebo and AMPH) Superior medial gyrus L 0 60 0 10.39 2,480

Superior frontal gyrus L −14 52 42 7.43 993
Parahippocampal gyrus L −24 −14 −26 6.45 141
Middle temporal gyrus L −64 −12 −20 6.08 396
Middle occipital gyrus R 52 −70 28 5.77 93
Parahippocampal gyrus R 22 −16 −26 5.48 328
Middle temporal gyrus R 62 −10 −16 5.11 110
Superior temporal gyrus R 66 −18 6 4.87 166
Precentral gyrus L −42 −18 62 −18.69 25,253
Inferior occipital gyrus L −38 −84 −8 −17.32 4,274
Inferior occipital gyrus R 34 −90 −10 −17.17 4,293
Precentral gyrus R 46 6 30 −11.74 3,498
Superior parietal lobule R 36 −56 54 −10.46 3,772
Insula lobe R 34 22 0 −9.33 2,428

3 Precuneus L −8 −48 76 −7.29 9,426
SDBOLD Cerebellar vermis R 6 −48 2 −5.21 2,135
(Placebo only) Thalamus L −6 −6 −2 −4.97 175

Superior temporal gyrus L −62 −38 20 −4.9 1,678
Superior temporal gyrus R 64 −16 8 −4.78 671
Middle temporal gyrus R 54 −66 22 −4.63 512
Thalamus L −4 −14 14 −4.33 373
Calcarine gyrus L −2 −84 −12 −4.11 615
Temporal pole L −42 16 −22 −4.04 149
Posterior cingulate L −2 −46 24 −4 137
Fusiform gyrus R 34 −42 −12 −3.96 136
Postcentral gyrus R 58 −10 40 −3.62 114
Supplementary motor area L 0 0 48 −3.6 83
Inferior frontal gyrus L −42 12 18 −3.52 90

Note: BOLD, blood oxygen level dependent; BSR, bootstrap ratio (model salience/bootstrapped SE); Hem, hemisphere; MNI, Mon-
treal Neurological Institute.
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Table S2. Mixed-model results

Model Dependent variable Predictor df1 df2 F P

1 SDBOLD AMPH 1 429.97 52.80 1.75 × 10−12

Task 3 430.46 1.08 0.36
Age Group 1 62.06 0.08 0.79
AMPH × Task 3 429.97 0.16 0.92
AMPH × Age Group 1 429.97 42.15 2.33 × 10−10

Task × Age Group 3 430.46 0.29 0.83
AMPH × Task × Age Group 3 429.97 0.19 0.91

2 SDBOLD AMPH 1 429.99 30.80 5.00 × 10−08

Task 3 430.47 1.09 0.35
Age Group 1 61.94 3.14 0.08
AMPH × Task 3 429.99 0.14 0.94
AMPH × Age Group 1 429.99 12.31 4.98 × 10−04

Task × Age Group 3 430.47 0.30 0.83
AMPH × Task × Age Group 3 429.99 0.19 0.91
AMPH × Physio_within 2 107.31 2.44 0.09
AMPH × Age Group × Physio_within 2 107.31 1.85 0.16
Physio_between 1 62.24 2.84 0.10
AMPH × Physio_between 1 429.99 0.01 0.95
Age Group × Physio_between 1 62.24 0.41 0.53
AMPH × Age Group × Physio_between 1 429.99 1.26 0.26

3 RTmean_within Age Group 1 70.03 2.24 0.14
Session Order 1 70.03 109.60 5.71 × 10−16

SDBOLD_within 1 95.57 0.39 0.54
Age Group × Session Order 1 70.03 7.89 0.01
Age Group × SDBOLD_within 1 95.57 1.80 0.18
Session Order × SDBOLD_within 1 95.57 11.22 0.001
Age Group × Session Order × SDBOLD_within 1 95.57 4.72 0.03

4 RTSD_within Age Group 1 67.36 5.01 0.03
Session Order 1 67.36 40.61 1.94 × 10−08

SDBOLD_within 1 81.97 2.08 0.15
Age Group × Session Order 1 67.36 1.38 0.25
Age Group × SDBOLD_within 1 81.97 4.57 0.04
Session Order × SDBOLD_within 1 81.97 5.96 0.02
Age Group × Session Order × SDBOLD_within 1 81.97 7.31 0.01

5 RTmean_between Age Group 1 93.67 9.52 0.003
Session Order 1 93.67 0.07 0.79
SDBOLD_between 1 93.67 1.76 0.19
Age Group × Session Order 1 93.67 2.74 0.10
Age Group × SDBOLD_between 1 93.67 2.87 0.09
Session Order × SDBOLD_between 1 93.67 0.00 1.00
Age Group × Session Order × SDBOLD_between 1 93.67 1.70 0.20

6 RTSD_between Age Group 1 78.04 4.99 0.03
Session Order 1 78.04 0.18 0.67
SDBOLD_between 1 76.16 0.61 0.44
Age Group × Session Order 1 78.04 0.01 0.92
Age Group × SDBOLD_between 1 76.16 2.15 0.15
Session Order × SDBOLD_between 1 76.16 0.34 0.57
Age Group × Session Order × SDBOLD_between 1 76.16 0.03 0.85

7 RTmean AMPH 1 306.11 11.74 0.001
Task 2 306.67 223.20 1.90 × 10−60

Age Group 1 62.23 33.67 2.37 × 10−7

Session Order 1 62.23 0.81 0.37
AMPH × Task 2 306.11 0.49 0.61
AMPH × Age Group 1 306.11 2.50 0.12
AMPH × Session Order 1 306.11 125.19 1.36 × 10−24

Task × Age Group 2 306.67 13.03 4.00 × 10−6

Task × Session Order 2 306.67 4.65 0.01
Age Group × Session Order 1 62.23 2.66 0.11
AMPH × Task × Age Group 2 306.11 0.68 0.51
AMPH × Task × Session Order 2 306.11 0.21 0.81
AMPH × Age Group × Session Order 1 306.11 34.96 9.00 × 10−9

Task × Age Group × Session Order 2 306.67 1.26 0.29
AMPH × Task × Age Group × Session Order 2 306.11 1.26 0.28
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Table S2. Cont.

Model Dependent variable Predictor df1 df2 F P

8 RTSD AMPH 1 310.00 1.19 0.28
Task 2 310.00 334.67 3.69 × 10−78

Age Group 1 62.00 17.69 8.50 × 10−5

Session Order 1 62.00 0.47 0.50
AMPH × Task 2 310.00 0.01 0.99
AMPH × Age Group 1 310.00 1.56 0.21
AMPH × Session Order 1 310.00 30.61 6.73 × 10−8

Task × Age Group 2 310.00 20.40 4.74 × 10−9

Task × Session Order 2 310.00 0.32 0.73
Age Group × Session Order 1 62.00 0.39 0.54
AMPH × Task × Age Group 2 310.00 0.69 0.50
AMPH × Task × Session Order 2 310.00 1.37 0.26
AMPH × Age Group × Session Order 1 310.00 13.05 3.54 × 10−4

Task × Age Group × Session Order 2 310.00 0.83 0.44
AMPH × Task × Age Group × Session Order 2 310.00 0.58 0.56

9 MeanBOLD AMPH 1 434.00 0.24 0.63
Task 3 434.00 104.69 5.32 × 10−51

Age Group 1 62.00 0.41 0.53
AMPH × Task 3 434.00 1.08 0.36
AMPH × Age Group 1 434.00 0.04 0.84
Task × Age Group 3 434.00 0.93 0.43
AMPH × Task × Age Group 3 434.00 0.72 0.54

10 SDBOLD AMPH 1 429.96 53.46 1.30 × 10–12

Task 3 430.46 1.10 0.35
Age Group 1 62.07 0.09 0.77
Session Order 1 62.07 0.02 0.90
AMPH × Task 3 429.96 0.14 0.94
AMPH × Age Group 1 429.96 41.90 2.63 × 10–10

AMPH × Session Order 1 429.96 0.39 0.53
Task × Age Group 3 430.46 0.30 0.83
Task × Session Order 3 430.46 0.30 0.83
Age Group × Session Order 1 62.07 0.32 0.57
AMPH × Task × Age Group 3 429.96 0.20 0.90
AMPH × Task × Session Order 3 429.96 0.29 0.83
AMPH × Age Group × Session Order 1 429.96 0.35 0.55
Task × Age Group × Session Order 3 430.46 0.03 0.99
AMPH × Task × Age Group × Session Order 3 429.96 0.38 0.77

Note: AMPH, amphetamine; RTmean_within, (AMPH RTmean – placebo RTmean); RTSD_within, (AMPH RTSD – placebo RTSD); SDBOLD_within,
(AMPH SDBOLD – placebo SDBOLD). Significant effects are highlighted in bold.
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