Supplementary Data

Alu-mediated diverse and complex pathogenic copy-number variants within human chromosome 17 at p13.3

Shen Gu¹, Bo Yuan¹, Ian M. Campbell¹, Christine R. Beck¹, Claudia M.B. Carvalho¹, Sandesh C.S. Nagamani^{1,2}, Ayelet Erez^{1,5}, Ankita Patel¹, Carlos A. Bacino^{1,2}, Chad A. Shaw¹, Paweł Stankiewicz¹, Sau Wai Cheung¹, Weimin Bi¹ and James R. Lupski^{1,2,3,4,*}

¹Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.

²Texas Children's Hospital, Houston, TX 77030, USA.

³Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.

⁴Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.

⁵Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.

* To whom correspondence should be addressed.

Tel: 1-713-798-6530

Fax: 1-713-798-5073

E-mail: jlupski@bcm.edu

chr17:2010026

Figure S1. Array plots and breakpoint sequences of remaining interstitial deletions (refer to Figure

1). Breakpoint junction sequence is aligned to the proximal and distal genomic references and color-

matched. Microhomology at the breakpoint is indicated in red.

Figure S2. Array plots and breakpoint sequences of remaining tandem duplications (refer to Figure 2). Breakpoint junction sequence is aligned to the proximal and distal genomic references and colormatched. Microhomology at the breakpoint is indicated in red. The 4 bp small insertion at the breakpoint of 9M (S2A) is indicated by a black box, and may be copied from the proximal reference sequence as indicated by a red box.

Α,	i					
2 (DUP-NML-DUP)						
Prop	osed mechan	ism 1	Junctio	n 1		\$ \$ \$ \$
					Junction 2	•
Prop	osed mechan	ism 2				
				•	Junction 1– del	on one allele
		d d				
					Junction 2 – dup) on the other allele
Junction 1	chr17:1287744 2_1 chr17:2311717 chr17:1287804 2_1 chr17:2311777	*re77; GGGAGGCCAAGGCGGGCGAATC GGGAGGCCAAGGCGGGCGGAATC GGGAGGCCCAAGGCGGGCGGAATC TGAAACCCTGTCTCACTAAAAA HIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	376275 PACAACGTCAGGAGATCAP IIIIIIIIII ACCAACGTCAGGAGATCAP IIIIIIIII ACGAGGTCAGGAGATCGP IATACAAAAAAAATTAGCC IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	AGACCATCCTGGCTAACA JOINT CONTRACT AGACCATCCTGGCTAACA CAGCATCCTGGCTAGCA CAGCATCGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA SCACCATCGTGGCAGGCA CAGCATGGTGGCAGGCA SCACCATCCTGGCAGGCA CAGCATGGTGGCAGGCA SCACCATCCTGGCAGGCA CAGCATGGTGGCAGGCA SCACCATCCTGGCAGGCA CAGCATCGTGGCAGGCA SCACCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGGCA CAGCATCCTGGCAGCA CAGCATCCTGGCAGCA CAGCATCCTGGCAGCA CAGCATCCTGGCAGCA CAGCATCCTGGCAGCA CAGCATCGTGGCAGCA CAGCATCGTGGCAGCA CAGCATGGCAGCA CAGCATGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGCAGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGCAGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGTGGCAGGCA CAGCATGGCAGGCAGGCA CAGCATGGCAGGCAGGCA CAGCATGGCAGGCAGGCAGGCA CAGCATGGCAGGCAGGCAGGCAGGCAGGCA CAGCATGGCAGGCAGGCAGGCAGGCAGGCAGGCAGGCAGG	CGG 1287803 111 CGG 2311776 CGG 2311776 CGG 2311776 111 CGCT 1287863 111 CGCT 2311033 Trs12450250	
Junction 2	chr17:1108955 2_2 chr17:2426932	AACCGGTCCGCGCC IIIIIIIIIIIIIII AATTTTTTTATCCGGTCCGCGCC IIIIIIIIIIIIIIIIIIIIIIIIII	CCCCAGTGCGGACATTAG	GGTCGTGAGACCCTCCG	GGT 1109006 GGT GTT 2426991	

B 4 (DUP-NML-INV/DUP)	chr17:745201 4 _1 chr17:1321273	ATCTGTCTCTACCAAAAAGGCAAAAATGAGCCGGGTGTGGTGGCGCCATGTCTGTAACCCC 745260
	chr17:275841 4:_2 chr17:924883	*rs183806377 AAAATACAAAAATTAGCCCGGCGTGGTGGCGGCGCCCTGTAATCCCAGCTACTTGGGAGG 275782 AAAATACAAAAATTAGCCCGGCGTGGTGGCGGGCGCCCTGTAATCCCAGCTACTGGGGAGG AAAATACAAAAATTAGCCAGGCGGGGGGGGGG
С		
6 (DUP-NML-INV/DUP)	chr7:633651 6 _2:1 chr7:1050476	ACAACCGATGTTTCATGTATAGAAAATAGCAAGTAAAGGCCGGGCCAGTGGCTCATGCC 633592
	chr7:1050536 6 _2:61 chr7:1048314	CAGTGGCACAATCTCGGCTCACTGCAACCTCTGCCTCCTGAGTGAG
	chr7:774293 6 _1 chr7:1287812 chr7:774353	GGGTTTCACTGTGTTGGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCCACCTC 774352 GGGTTTCACTGTGTTGGCCAGGATGGTCTCGATCTCCTGACCTCGTGATCCGCCCACCTC GGGTTTCACCGTGTTAGCCAGGATGGTCTTGATCTCCTGACGTTGTGATCTGCCCGCCTT 1287752 GGCCTCCCAAAGTGCTGGGATTACAGGCCGTGAGCCACCGTGCCCGGCTATGCTTTTAT-T 774411
	61 chr7:1287751	GCCTTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCCCCGGTCGAGCATAAATCT
D BAB3886 (DUP-NML-INV/DUP)	chr17:1273668 BAB3886_1 chr17:2642436	GCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACAGGCGTGAGCCACCGCGACTGGCCAGA 1273727 GCCCGCCTTGGCCTCCCAAAGTGCTGGGATTACATGTGTGCGCCCATGCGCCCGCC
	chr17:996949 BAB3886_2:1 chr17:2385555	TGGAGCTGGTGGTCGTCGTTCAGAGGGAGCTGGCGCTGGCTTTGGTGTTCCCTTCAGTG 996891
	chr17:2385614 BAB3886_2:60 chr17:2379814	GTCGCAGTTTCCAAGAATCTACTGGCAACACTAACTGAGGACTTACTGTATAGCAAAACA 2385673

Figure S3. Array plots and breakpoint sequences of complex rearrangements with DUP-NML-DUP pattern (refer to Figure 3). Breakpoint junction sequence is aligned to the proximal and distal genomic references and color-matched. Microhomology at the breakpoint is indicated in red. Sequence in purple indicates inserted sequences at the breakpoint junction.

Figure S4. (*A*). Two possible rearrangements to generate the DUP-NML-INV/DUP pattern in samples 4F, 6M and BAB3886. (*B*). Long-range PCR detected "breakpoint junction 1" as shown in Figure S4A only existed in proband 4F, 6M and BAB3886, but not in any of the available parental samples (BAB3887 and BAB3888 as mother and father of BAB3886, respectively) or normal individuals ("Normal controls").

Β

K2	chr17:1118797	CTCGGGAGGCCGAGGCTGGCAGATCACTCGCGGCTAGGA-GCTGGAGACCAGCCCGGCCA	1118739
(DUP-TRP-DUP)	K2_1 chr17:1439677	CTCGGGAGATGGAG-CTTGCAG-TGAGCCGAGATCGCGCTACTGCACTCCAGCCTGGCCA	1439620

chr17:1121165	AATACAA-AAATTAGCTGAGCATGGTGGCACGTGCCTGTAATCCCAGCTACTCAGGAGGC	1121107
K2_2	AATACAA-AAATTAGCTGAGCATGGTGGCACGTGCCTGTAATCCCAGCTACTCAGGAGGC	
chr17:1440535	AATACAACAGATTAGCCAGGCGTGGTGGCAGGTGCCTGTAATCCCAGCTACTTAGGAGAC	1440476
chr1/:1121106	TGAGGCAGGAGAATCGCTTGAACCTGGGAGGTGGAGGTTGCAGTGAACTGAGATTGCACC	1121047
K2_2	TGAGGCAGGAGAATCGCTTGAACCCAGGAGGCGGAGGTTGCAGTGAGCCGAGATCATGCC	
chr17:1440475	TGAGGCAGGAGAATCGCTTGAACCCAGGAGGCGGAGGTTGCAGTGAGCCGAGATCATGCC	1440416

Figure S5. Array plots and breakpoint sequences of complex rearrangements with triplication (refer to Figure 4). Breakpoint junction sequence is aligned to the proximal and distal genomic references and color-matched. Microhomology at the breakpoint is indicated in red. Small inserted sequence is indicated by a black box in individual 27F (Figure S5D).

Α

Junction 1	chr17:4334048	AGTTCAAGACCAGCCTGGCGAAGACAGTGAAACCCTGTCTCTACTAAAACTACAAAAAAATTA 4333986
ounouon i	23 _1	AGTTCAAGACACATTTGCCTGTGTTTTGGATCAGTGTGTCGCGATGATCACAATGCCTTTTTT
	chr17:99539	GCAGCGATGGAGCTTGGTTTAACCTAGTGCTTTTCAAGAGTATGTGATTAGAAACCTTTTTTT 99477
Junction 2	chr17:4359046	CCCAGGGTCCATTCTCCCCGAATGCCAGATGACATGCATCTGAGTGTCCTAAAGAC 4359101
	23 _2	CCCAGGGTCCATTCTGACCAGCAGCCTCCCAAAGCGCTAGGATTACAGGCGTGAGC
	chr17:5986795	GTGACCTTTATAACTGACCAGCAGCCTCCCAAAGCGCTAGGATTACAGGCGTGAGC 5986850
Junction 3	chr17:6000851	TCTCACGTCGCGACACAAAGTGCTTTCTCATTCTTTTTTACCATTGCACGGAGGTCCTAT 6000910
	23: _3	TCTCACGTCGCGACACAAACCAGCAACCTGTTTGTGTCCCTGGAACCACACTTCCCAACAAG
	chr17:1966846	AAAGAAAGTTCTGAGGCTGGGGTGGGGCCCAGCAGTCCTGGAACCACACTTCCCAACAAG 1966905
	-117-0451754	
Junction 4	CHT17:6451754	
	23 _4	
	cnr1/:/69/5/3/	AAATGTICUTGATGGCTGCCATGGGCCCCCCTGGGGGTGGACGGACTGTATCTCCCCAA /69/632
	<u> </u>	GGGCCCACCGAGAGGCTCAGG : Chrl/:89580/8-895805/
	17.005.007	*rs142763445
Junction 5	chr1/:985628/	TTCGACCCAGCAATCCCATTACTGGGTATATACCCAAAGGAATATAAATCTTTCCACATA 9856346
	23 _5	TTCGACCCAGCAAGCCCATTACTGGGTATATACCCAAAGGAATATAAATATAAAAGAAAA
	chr1/:9845519	CAAGACTGCGCAACTACACTCCAGCCTGGATGACAGAGCGAGACTCTGTCTAAAAGAAAA 9845578
	chr17.10091012	<u>₩СССФСФФФССА ХАХАХХФСАХФССАССССФСАХАХСАСТФФФССФСФФФАС</u> 10001070
Junction 6	22 6.1	
	236:1	
	cnr1/:1512390	ICGIIIIICAIAGGATCAGAGTGGCTATGITTTAAAGAGGAATGACATGGCACTGGAA 1512447
	23 _6:59	GGGACATGGAGGAAAAGACACTC <u>TGTACACGTACTC</u> GTGTACGTGCTGGTGGGC 99
	chr17:1512448	GGGACATGGAGGAAAAGACACTCGTGTACGTGCTGGTGGGC 1512488

Figure S6. Array plots and breakpoint sequences of additional cases with complex rearrangements. Breakpoint junction sequence is aligned to the proximal and distal genomic references and color-matched. Microhomology at the breakpoint is indicated in red. Inserted sequences at the breakpoint junctions are

underlined.

Figure S7. Array plots and breakpoint sequences of additional cases with terminal deletion (refer to Figure 6). Breakpoint junction sequence is aligned to the proximal and distal genomic references and color-matched. Microhomology at the breakpoint is indicated in red.