
[Supplementary Figures] 
 

 

Supplementary Figure 1 |  Fabrication of epoxy microchannels.  (a) PDMS replica is 
generated from SU-8 master via soft lithography. (b) PDMS master is peeled away from PDMS 
replica and treated via vapor deposition with (tridecafluoro-1,1,2,2-tetrahydroocttyl) 
trichlorosilane. (c) Epoxy replica is generated from the PDMS master and fitted with Teflon 
plugs (black) and PEEK or Tygon tubing (red). (d) Epoxy replica (with Teflon plugs removed) is 
bonded to epoxy-coated glass slide. (e) Bright-field image of 35-mm long straight channel with 
80-μm square cross-section.  PEEK tubing is connected to the channel inlet (high-pressure end), 
and Tygon tubing is connected to the channel outlet (low-pressure end). 
  



 

Supplementary Figure 2 | Rheological measurements of HA solutions. Flow curve of HA 
solution before use (“native”) and after use (“used”) at flow rates up to Q = 20 ml.min-1. Carreau 
model fit to unused HA solution, η0 = 230 mPa.s, η∞ = 0.9 mPa.s,  = 0.36 s-1, n = 0.48. 
Water viscosity (µw = 0.9 mPa.s) is shown by blue dashed line. 
  



 
Supplementary Figure 3 | Particle migration behavior in water and HA solution.  Long-
exposure fluorescence (LEF) characterizes particle focusing behavior based on aggregate signal 
intensity of particle populations.  Particle trajectory analysis (PTA) characterizes particle 
focusing behavior based on individual particle statistics.  The hashed lines indicate the position 
of the channel walls. At Q = 0.6 ml.min-1, Re = 140 in water, and Re = 105 and Wi = 17 in HA. 
At Q = 6.0 ml.min-1, Re = 1400 in water, and Re = 1270 and Wi = 170 in HA. At Q = 20.0 
ml.min-1, Re = 4360 in water, and Re = 4422 and Wi = 566 in HA. 
  



 
Supplementary Figure 4 | Particle migration dynamics in HA solution.  (a) Lateral migration 
velocity of 8-µm particles along the channel length at Q = 0.6, 6 and 20 ml.min-1 (U = 1.6, 16 
and 52 m.s-1). (b) Dimensionless particle equilibrium position zeq/H as a function of the effective 
elasticity number, calculated using creeping flow theory. The equilibrium migration behavior is 
increasingly dominated by elasticity for particles of smaller diameter ap. 

 



  

Supplementary Figure 5 | Secondary flow effects in HA solution.  Particle distributions across 
the channel width over a range of flow rates in; (a) a borosilicate glass microchannel with square 
(inner dimension = 50 μm) cross-section, and (b) a borosilicate glass microchannel with 
cylindrical (inner diameter = 50 μm) cross-section. Inset figures show bright-field images of the 
borosilicate glass microchannels. 
  



 
Supplementary Figure 6 | Design parameters for microchannel dimensions. (a) Plot of 
channel Reynolds number normalized for a constant ratio of Q/D, and friction factor normalized 
for a constant value of Rec as a function of channel aspect ratio α = W/H. (b) Hydrodynamic 
entrance length as a function of channel Reynolds number. 
  



 

Supplementary Figure 7 | Relaxation time measurement of HA solution.  Diameter D(t) of a 
thinning HA (Mw = 1650 kDa) liquid filament bridge as a function of time t. The dashed line in 
the figure indicates the initial slope from jetting experiments used to calculate the effective 
relaxation time. The solid line indicates the visco-capillary break up profile that would be 
expected if the fluid was a Newtonian fluid. The relaxation time was determined to be λ = 8.7 x 
10-4 s. 
  



 

Supplementary Figure 8 | Friction factor in microchannel for Newtonian and viscoelastic 
fluids.  Friction factor f as a function of channel Reynolds number Rec based on a shear rate-
dependent viscosity evaluated at the characteristic shear rate at the wall of a microchannel with 
square cross-section. The gray line indicates the theoretical friction factor for a Newtonian fluid. 
  



 

Supplementary Figure 9 | Velocimetry measurements of polystyrene beads in Newtonian 
and viscoelastic fluids.  (a) Representative particle tracking velocimetry (PTV) image pair for 
determining the velocity of individual 8-μm beads in the microchannel. The exposure time of 
each frame is δt = 10 ns, and the time interval between Image A and Image B is Δt = 50 µs.  (b) 
Representative full-field map of the fluid velocity profile in the microchannel determined from 
correlative micro particle image velocimetry (µ-PIV) analysis of individual 1-µm beads seeded 
throughout the fluid sample. 
  



[Supplementary Notes] 

Supplementary Note 1 | Lateral Particle Migration and Equilibrium Position. We estimated 

the lateral particle migration based on the change in the full width at half max (FWHM) of the 

LEF images captured at ∆x = 5-mm intervals along the channel length at Q = 0.6, 6.0 and 20 

ml.min-1.  The migration velocity is approximately given by umig ≈ ∆(FWHM)/2∆t, where ∆t = 

∆x/U and the factor of two in the denominator results from the fact that particles migrate towards 

the channel centerline from both sides of the channel.  The values of umig decreased along the 

channel length (Supplementary Fig. 4a) as the particles asymptotically approach the channel 

centerline (y,z) = (0,0).  The ratio of umig/U also increased with Q, indicating that at higher Q the 

particles can reach their equilibrium position using a shorter channel length.  Inertial migration in 

a Newtonian liquid in two-dimensional Poiseuille flow has been treated analytically [1] using the 

method of reflections. The inertial lift force at the position z in the channel is defined as 
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where G1 and G2 are functions of z/H that are determined using the Lorentz reciprocal theorem 

and must be evaluated numerically to solve for the resulting lift force. When the net inertial lift 

force on the particle is zero, the particle equilibrates to a position zeq/H = 0.3, which is similar to 

the dimensionless radial equilibrium position for flow in a pipe found experimentally [2].  Elastic 

migration in a second order fluid has been studied analytically [3], and the viscoelastic lift force 

on a particle is defined as 
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where Ψ1 and Ψ2 are the first and second normal stress coefficients of the fluid, respectively. For 

most viscoelastic liquids Ψ1 > –Ψ2  > 0, hence the viscoelastic lift force tends to drive a particle 

towards the channel centerline (i.e., zeq = 0).  We simplified this equation by setting Ψ1 ~ 2ηλ and 



Ψ2 = 0 in the main text as expected for a dilute solution from Hookean dumbbell theory [4].  

Considerable insight can be gained from these equations to determine the competing effects of 

inertia and viscoelasticity acting simultaneously on the particle equilibrium position. Equating 

the two forces to determine the equilibrium position of the particle across the channel width, one 

obtains the implicit equation 
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The dimensionless parameter on the right hand side of this equation is a hybrid or effective 

elasticity number that depends on both the channel dimension H and the particle diameter ap.  

For values of the elasticity number much less than one, inertia dominates and there are multiple 

equilibrium positions, whereas particles equilibrate along the channel centerline as the elasticity 

number is increased above O(1) (Supplementary Fig. 4b).  

 

Supplementary Note 2 | Secondary Flow Effects. For microchannels with non-axisymmetric 

cross-section, normal stress differences in a viscoelastic fluid can drive secondary recirculating 

flows [5-7].  To observe the effect of secondary flows on particle migration in a viscoelastic 

fluid, we used borosilicate glass microchannels with round (axisymmetric) or square (non-

axisymmetric) cross-section.  Particle distributions of 8-μm polystyrene beads in HA solution 

were obtained using PTA for both microchannels (Supplementary Fig. 5).  For a range of 

channel Reynolds number Rec corresponding to those studied in the epoxy microchannels, 

particle focusing toward the channel centerline was observed in both axisymmetric and non-

axisymmetric microchannels.  At x = 35 mm (which was beyond the equilibrium focusing length 

Lf), Gaussian fits to the LEF intensity profiles were indistinguishable to within one particle 

diameter, indicating that secondary flows did not play a significant role.  



            

 

[Supplementary References] 
 
1.   Ho, B. P. & Leal, L. G. Inertial migration of rigid spheres in two-dimensional unidirectional 

flows. J. Fluid Mech. 65, 365-400 (1974). 
2.   Segré, G. & Silberberg, A. Radial particle displacements in Poiseuille flow of suspensions. 

Nature 189, 209-210 (1961). 
3.   Ho, B. P. & Leal, L. G. Migration of rigid spheres in a two-dimensional unidirectional shear 

flow of a second-order fluid. J. Fluid Mech. 76, 783-799 (1976). 
4.   Bird, R. B., Armstrong, R. C. & Hassager, O. Dynamics of Polymeric Systems: Fluid 

Mechanics (John-Wiley & Sons, 1987). 
5.   Xue, S. C., Phan-Thien, N. & Tanner, R. I. Numerical study of secondary flows of 

viscoelastic fluid in straight pipes by an implicit finite volume method. J. Non-Newtonian 
Fluid Mech. 59, 191-213 (1995). 

6.   Zrehen, A. & Ramachandran, A. Demonstration of secondary currents in the pressure-driven 
flow of a concentrated suspension through a square conduit. Phys. Rev. Lett. 110, 018306 
(2013). 

7.   Villone, M. M., D'Avino, G., Hulsen, M. A., Greco, E. F. & Maffettone, P. L. Particle motion 
in square channel flow of a viscoelastic liquid: migration vs. secondary flows. J. Non-
Newtonian Fluid Mech. 195, 1-8 (2013). 


