
S1 File. Derivation of MSQ theory. 

A. Q-factor estimator for stationary signals 

We rewrite the estimators of the first two photon count moments of the m-th segment, 
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instantaneous fluctuation around the mean mk  and inserting it into the definition of the Q-

estimator of the m-th segment given by Eq. 6 of the manuscript. Because the estimators mk  and 

2
mk  are unbiased by the mean ergodic theorem [1], their expectation values are equal to the 

population moments of the photon counts, m mEk k  and 2 2
m mEk k . The estimator mk  in the 
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   . As N  increases,   must 

vanish to satisfy the mean ergodicity theorem, which implies 1mk  . Taking the Taylor 

expansion of the denominator up to the second order of mk leads to   
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The expectation value of this estimator is its ensemble average or population mean given by 
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where we used 2 2
,m i mk k    and introduced the Q-factor of the m-th segment by applying the 

same definition as used in traditional FFS theory (see Eq. 3 of the manuscript), 
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Because the signal is stationary, mQ  has to have the same value Q for all segments.  

We next rewrite the summation in Eq. (SI.2) as a sum of variances and covariances 
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Each of the two sums is expressed as factorial cumulants of the photon counts as detailed in [2],  
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The first two factorial cumulant of the m-th segments are given by     01 .m T TN   and 

     2
2 0 22 , , Dm t N B t    . 2B  is called the second-order binning function [2,3]. The first 

moment mk  is equal to the first factorial cumulant  1 ,m  [2,3]. We insert the above relations 

into Eq, (SI.2) to express the expectation value of the Q-estimator  
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where we used Eq. (SI.2) and the absence of undersampling as assumed throughout the 

manuscript, 

    
   

 2 , 2
2 2

1 ,

,m D
m

m

T B T
Q T

T T

 
   


   . (SI.5) 



The binning function reduces to   2
2 , DB T T   in the absence of undersampling [2]. Finally, we 

take the average of Eq. (SI.5) over all segments to derive the expectation value of the MSQ-

function due to estimator bias       1
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the same value Q for all segments for a stationary signal, Eq. (SI.5) is independent of the 

segment number, which results in  
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B. Time-averaged Q-estimator for a non-stationary signal  

We consider the data segment defined by the time interval  1 ,S Sm T mT   . For 

simplicity, we assume a long enough segment so that estimator bias is negligible. Estimators for 

the mean and variance of the photon counts over a segment are defined by 
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The sum is converted into an integration since the sampling time T is much smaller than the 

segment time ST . A bar over a variable defines the time-average over the segment period as 

defined in Eq. 9 of the manuscript. Thus, mk  denotes the time-average of the photon counts (see 

Eq. (SI.5)). The variance is estimated by subtracting the time-averaged mean from the 

instantaneous photon count  mk t . The expectation values of the above estimators are  
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Next, we express the time-average of the first two photon count moments in terms of time-

averaged factorial cumulants,  
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The above relations are based on known relations between raw moments and factorial cumulants 

[3]. Specifically, the mean of the photon counts equals the first factorial cumulant of the photon 

counts,      1' 'k t t , while the second moment is given by      
2 2

2 1 1k      . Applying 

Eq. 9 of the manuscript to these relations results in Eq. (SI.5). Finally, evaluating the expectation 

value of the Q-estimator (Eq. 6) with the help of Eqs. (SI.5) and (SI.5) leads to  
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C. MSQ function in the presence of photodepletion 

Before deriving the MSQ function we must evaluate Eq. (SI.5) for a monomeric or n-meric 

protein sample. Let us assume a fluorescently-labeled protein F that associates to form an n-mer 

Fn with a brightness n , where   is the brightness of the monomer. We postulate that a 

chromophore in the fluorescent state F converts irreversibly and independently to a non-

fluorescent dark state D  as a result of photobleaching. Thus, photobleaching of exactly one 



chromophore leads to the state Fn-1D1 with brightness  1n  . The probability for a fluorophore 

to be photobelached is given by  1 exp Dp k t   . The n-mer’s brightness state Fn changes into 

the state Fn–s Ds  of brightness  n s   with the probability  1
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. The initial 

state at 0t   is the n-mer Fn with the number of molecules equal to 0N . The number of 

molecules of each state at time t is given by the number 0 n sN p  . The factorial cumulants for an 

n-meric protein in the presence of photodepletion (Eq. 21 of the manuscript) were previously 

derived assuming the absence of undersampling [4]. These two cumulants simplify to 
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Next we calculated time-integrated cumulant values of Eq. (SI.6) for the m-th segment as 

defined by Eq. 9 of the manuscript, 
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where  1 m  and  
2
1 m  are affected by the overall intensity drop due to photodepletion, while 

 2 m  is sensitive to the variation in brightness states caused by photodepletion. We inserted the 

expressions of Eq. (SI.7) into Eq. 10 of the manuscript to evaluate the expectation value of the 

Q-estimator of the m-th segment, 



       

 
1 1

1 0

2 2
1 1

2 2 ln 1
D S D SD D D

D

k m T k m T
m

f
T

f f
EQ Q n e F e

f
                    


, (SI.8) 

where we used 1 2Q T   for the monomeric Q-factor and the photodepletion fraction 

1 D Sk T
Df e   . For the special case n = 1 and m = 1, Eq. (SI.8) reduces to a previously derived 

equation [4]. From here on we have to distinguish carefully between the Q-factor 1Q of a 

monomer and the Q-factor 1Q nQ of an n-mer. 

We determine a function describing the MSQ-curve in the presence of photodepletion by 

averaging Eq. (SI.8) over all segments,     1
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which corresponds to Eq. 12 of the manuscript. The term  1A ,Q n  is defined by  
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which reduces to 1Q  for the case of a monomeric protein (n = 1). 

 

D. MSQ function in the presence of photodepletion and estimator bias 



To combine estimator and photodepletion bias we start with the Q-estimator for the m-th 
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outlined in section A an equation for the expectation value of Q-estimator is found,  
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where the second term represents the estimator bias. This equation is equivalent to Eq. (SI.2), 

except that it also includes photodepletion. The sum of the second term can be expressed as  
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Following the procedure used for the derivation of Eq. (SI.4), we can  rewrite both sums as  
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Inserting Eqs. (SI.5), (SI.12), and (SI.13) into Eq. (SI.11) results in an expectation value of the 

Q-estimator given by,  
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We calculate the mean segmented Q-value from this equation by  
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Because the first term equals the MSQ function for photodepletion only (Eq. (SI.9)), we rewrite 

this equation in its final form,  
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with the function  1A ,Q n  is given by     1
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Eq. 14 of the manuscript.  
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