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Supplementary Movie 1 
This movie shows the results of the bootstrap analysis for a variable number of replicas of the HSP90 series 
from 1 to 27 
 
Supplementary Movie 2 
This movie shows the results of the bootstrap analysis for a variable number of replicas of the Grp78 series 
from 1 to 20 
 
Supplementary Movie 3 
This movie shows the results of the bootstrap analysis for a variable number of replicas of the A2A series 
from 1 to 20 
 
Supplementary Movie 4 
This movie shows an example of the unbinding of BS1 from HSP90 (total simulated time: 34ns) 
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Supplementary Figure 1a: Distribution of residence times for HSP90. 
 
Residence time distributions of ligands in their binding pocket have been mapped after binning them with a 
width of 2000 ps: a total number of 108 simulations have been taken into account for HSP901 (1a.), 84 for 
Grp782 (1b.) and 80 for A2A

3
 (1c.). Residence times have been identified with occurrence times of unbinding 

events, i.e. configurations where no longer interactions between the ligand and the binding site are present. 
The distributions are reported in terms of normalized populations. More details are provided in the 
Supplementary Methods section.  
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Supplementary Figure 1b: Distribution of residence times for Grp78. 
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Supplementary Figure 1c: Distribution of residence times for A2A. 
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Supplementary Figure 2: Backbone RMSD examples. 
 
Example of backbone RMSDs measured along the simulation (HSP90-BS2). The reported curves represent 
the three types of behavior observed in all the simulations, whereas the vertical lines correspond to the 
unbinding events. Behavior a) the protein keeps its RMSD stable and low, then suddenly the RMSD 
increases when the ligand leaves the site (black); b) the RMSD has significant fluctuations, which reduce 
down to a range between 1 and 2 Å after the ligand detaches (red); c) the RMSD fluctuates up to 2 Å but the 
ligand is not released for a long time, then the release happens with the RMSD increasing suddenly and 
eventually coming back rapidly to low values (green). 
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Supplementary table on the computing performance and execution time  
 
For each system considered in the present work the (average) number of atoms has been reported, the 
calculation performance (expressed in ns/day) on a in house machine equipped with 2GPUs and 2 Intel 
esacore CPUs, the minimum and maximum time required for running a single simulation on each system. 
 
 

System Number of atoms CPU performance Min. time / simulation Max. time / simulation 
     

HSP90 33500 52 ns/day 4h 42h 
Grp78 72200 27 ns/day 2h 35h 
A2A 90000 22 ns/day 2h 70h 
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Supplementary note on the observed variance and the statistical analysis method of the residence 
times 
 
Microscopic unbinding events with different underlying mechanisms, such as reactive paths, cannot be 
experimentally distinguished due to the average nature of macroscopic observables. Conversely, in silico 
MD runs inherently simulate individual events. Statistically speaking, the variance of the physical 
experiment is associated to a huge number of unbinding events that unavoidably mix the different 
mechanisms that might occur, whereas the variance of the computationally obtained residence time relates to 
a number of single unbinding events. The outcome of one physical experiment hence corresponds to the 
ensemble average of the observed quantity over many replicas of the same system and the experimental 
variance is the variance of a mean value. In contrast, the variance of the residence time coming from an MD 
simulation campaign is the variance of a microscopic quantity before any ensemble averaging process 
occurs. Moreover, irrespective of the individual mechanism followed, one is however considering a complex 
multifactorial process occurring at finite temperature; hence possibly significant fluctuations in microscopic 
observables have to be expected. Moreover, having lowered the energetic barriers between nearby local 
minima also induces an increase of the fluctuations amplitude. This explains why a direct comparison 
between computed (microscopic) and experimental (macroscopic) residence time variances is not 
straightforward and why microscopic standard deviation is not a direct measure of error and it is not 
expected to tend to zero as the number of MD runs increases.  
In order to partially account for these aspects, we did a statistical treatment of the data (all reported in the 
Table 1), namely we computed the standard error of the mean and applied the bootstrap method to the 
estimated means. 
The standard error of the mean quantifies the uncertainty characterizing the estimate of the mean residence 
time, which is the observable of our interest here. It takes the form: σe = σ / √N, where N is the number of 
collected samples and  σ is the standard deviation of the simulated residence time. 
The bootstrap method has been developed in the 80s4 for inferentially assigning measures of accuracy to 
sample estimates: it is based upon random iterative drawings with replacement of the elements of a dataset 
with elements from the same dataset. In this case the samples are the unbinding times; practically one 
generates several virtual samples set (of the size equal to the original one) and from of each of them 
estimates the mean; upon those means estimation one can estimate the standard deviation of the mean itself. 
As one can note in Table 1, the standard error of the mean and the deviation provided by the bootstrap 
method provide very similar figures, as expected.  
Not only we performed the bootstrap analysis of the full dataset but also on artificially reduced samples sets 
to assess the change of the rankings with varying samples set size. We did this kind of analysis trying to 
estimate the probability of each outcomes (i.e. ranking) that could have been obtained having a different 
number of replicas for each system, in the 1 to 20 range. The results are summarized in the Supplementary 
Movies 1, 2 and 3, for HSP90, GRP78 and A2A, respectively. In the case of 20 replicas, the probability to 
get the experimental ranking for HSP90 was 39% and for GRP78 83%. For A2A there are two possible 
rankings which prevail over the others, namely the experimental one, with a 29%, and the one obtained by 
swapping the first two ligands, with 25%, indicating that probably a larger number of replicas is needed if a 
better discrimination is desired.  
Overall, those results confirm that this method is able to rapidly (small samples size) show which are the 
feasible rankings and to exclude most of them because their probability is less than the flat a priori 
probability (in this case its value is 1/24 and in the movies is represented by a red line).  
In conclusion, the method seems to be effective on quite diverse bio-molecular systems, with a robustness 
that can be system dependent and require a different number of replicated simulations to achieve similar 
reproducibility values. The ranking probabilities are expected to converge with a rate proportional to the root 
square of the number of replicas as usual in this kind of estimation problems. 
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Supplementary Methods 
  
Details of the scaled MD and the restraining procedure 
 
Scaled MD has been described in several publications5,6,7 and consists of the following modification with 

respect to a plain MD simulation: 

- replacing the original potential energy function U(x), where x is the set of atomic positions, with a 

scaled version, λU(x), where λ is a positive constant between 0 and 1. The lower the λ value, the 

higher the acceleration but also the bigger is the loss of detail. 

As described in the main text, a restraining is performed over the degrees of freedom of the system that do 

not play a major role to the unbinding process but preserve, for instance, the correct fold of the protein. The 

overall potential energy adopted V(x) is thus: 

V(x) = λU(x)+B(y) 

where B(y) represents a set of positional harmonic restraints acting over the set { y } of the restrained atoms.  

 
Mathematical derivation of the koff and residence time scaling  
 
Potential-scaled molecular dynamics (or, simply, scaled molecular dynamics, SMD) is a simulation 
technique introduced in 1993 by Hirono and coworkers8 and recently reconsidered and implemented by 
McCammon and coworkers9 that facilitates a more efficient sampling of molecular conformations.  
According to Statistical Mechanics, the probability of any configuration is given by:  
 

         (Eq. 1) 

 
where β = (kBT)-1, with kB the Boltzmann constant and T the system absolute temperature. The evaluation of 
the partition function Z, i.e. the denominator of Eq.1, can hardly be performed analytically and also 
computationally it is rather costly due to the difficulty in estimating each microstate probability. In 
Molecular Dynamics, it is possible to estimate the non-normalized probability  of the  
microstates that can be easily accessed from the initial configuration. However, to accurately estimate the 
partition function Z, the probability of all the microstates should be estimated. This is practically impossible, 
since it would require infinitely long simulations, in order to fulfill the ergodic hypothesis. Among the many 
modifications that can be introduced in the MD protocols in order to facilitate the exploration of the 
configurational space there are those that attempt to flatten or smoothen the potential energy surface. For 
instance, SMD simply introduces a linear scaling of the system potential energy  that hence affects the 
potential energy surface, altering the probabilities of each microstate as follows: 
 

         (Eq. 2) 
 

and resulting in an easy way of getting the canonical distribution by a suitable reweighting procedure: 
 

.         (Eq. 3) 
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The applied scaling includes the potential that governs the interaction between the protein and the ligand. 
Assuming that the dissociation process obeys an Arrhenius-like relationship and that the entropic 
contributions of the binding processes is similar for all the ligands of the same series, a very simple 
preprocessing model can be used to infer actual residence times given one or more experimental reference 
figures in the dataset.  
Let us consider the standard form of an unbinding rate following Arrhenius law: 
 

         (Eq. 4) 
 

with R the universal gas constant, T the system temperature and A an empirically derived pre-exponential 
factor that slightly depends on T and it is basically influenced by the collision frequency of the considered 
event. Considering the unbinding rates k1 and k2 of two ligands, namely 1 and 2, their relationship can be 
expressed as follows: 
 

         (Eq. 5) 

 
Considering protein-ligand systems in similar conditions (e.g., same collision rate) like the cases treated in 
the presented work, the terms presented in Eq. 4 can be approximated and simplified as follows: 
 

     (Eq. 6) 

 
If we consider the effect of scaling: 
 

    (Eq. 7) 

 
Hence, under our assumptions, the relationship between unscaled and scaled koff can be written as follows:  
 

                 (Eq. 8) 

 
and, converting the rate constants to residence times: 
 

         (Eq. 9) 

 
If experimental binding data are available for more than one sample in a series, a linear regression can be 
performed and this simplified model can be improved by incorporating the slope of the regression line. 
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