Supplementary Data For Publication.

Broadening the versatility of lentiviral vectors as a tool in nucleic acid research via genetic code expansion

Yongxiang Zheng¹, Fei Yu¹, Yiming Wu¹, Longlong Si¹, Huan Xu¹, Chuanling Zhang¹, Qing Xia¹, Sulong Xiao¹, Qi Wang^{1,2}, Qiuchen He¹, Peng Chen³, Jiangyun Wang⁴, Lihe Zhang¹, Kazunari Taira¹ and Demin Zhou ^{1*}

¹State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

²Department of Molecular and Cellular Pharmacology, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China

³Department of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

⁴Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China

* To Demin Zhou correspondence should be addressed. Tel: 86-10-8280-5857; Fax: 86-10-8280-5857 ; Email: <u>deminzhou@bjmu.edu.cn</u>

Present Address: [Demin Zhou], School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China.

CONTENT

Supplementary Movie S1

Supplementary Table S1

Supplementary Figure S1-8

Supplementary Movie S1. Dynamic Tracking of an Alexa 488 labeled lentiviral vector in three dimensions. Lentiviral vectors were conjugated with Alexa 488 (green) via NAEK and then detected at 488 nm. The cell membrane was stained with Dil (red) and detected with 555-nm laser. The process of viral particles traveling from the cell membrane to the endoplasm was recorded using a spinning-disk confocal microscope equipped with a CO₂ online culture system (Perkin Elmer).

Supplementary Tables and Figures

Table S1. The primers for mutagenesis. The sequence of pCMV-VSVg plasmid is
available at http://www.ncbi.nlm.nih.gov/nuccore/AJ318514.1.

Mutation	Primer	Sequence		
Site				
N20	Forward	CTGGAAAAATGTTCCTTCTTAGTACCATTATTGCCCGTCAAGC		
N20	Rearward	GCTTGACGGGCAATAATGGTACTAAGAAGGAACATTTTTCCAG		
D35	Forward	GCTCAGATTTAAATTGGCATAATTAGTTAATAGGCACAGC		
D35	Rearward	GCTGTGCCTATTAACTAATTATGCCAATTTAAATCTGAGC		
137	Forward	CAGATTTAAATTGGCATAATGACTTATAGGGCACAGCCTTACAAG		
137	Rearward	CTTGTAAGGCTGTGCCCTATAAGTCATTATGCCAATTTAAATCTG		
Q42	Forward	GACTTAATAGGCACAGCCTTA TAG GTCAAAATGCCCAAGAG		
Q42	Rearward	CTCTTGGGCATTTTGACCTATAAGGCTGTGCCTATTAAGTC		
Y116	Forward	CTTCCCTCCTCAAAGTTGTGGATAGGCAACTGTGACGGATGCC		
Y116	Rearward	GGCATCCGTCACA GTTGCCTATCCACA ACTTTGAGGAGGGAAG		
D121	Forward	GTGGATATGCAACTGTGACGTAGGCCGAAGCAGTGATTGTCCAG		
D121	Rearward	CTGGACAATCACTGCTTCGGCCTACGTCACAGTTGCATATCCAC		
V161	Forward	GCAGCAATTACATATGCCCCACTTAGCATAACTCTACAACCTGG		
V161	Rearward	CCAGGTTGTAGAGTTATGCTAAGTGGGGGCATATGTAATTGCTGC		
K172	Forward	CCTGGCATTCTGACTATTAGGTCAAAGGGCTATGTGATTC		
K172	Rearward	GAATCACATAGCCCTTTGACCTAATAGTCAGAATGCCAGG		
K174	Forward	CAACCTGGCATTCTGACTATAAGGTCTAGGGGCTATGTGATTC		
K174	Rearward	GAATCACATAGCCCCTAGACCTTATAGTCAGAATGCCAGGTTG		
D185	Forward	CTAACCTCATTTCCATGTAGATCACCTTCTTCTCAGAGGAC		
D185	Rearward	GTCCTCTGAGAAGAAGGTGATCTACATGGAAATGAGGTTAG		
D192	Forward	CACCTTCTTCTCAGAGTAGGGAGAGCTATCATCC		
D192	Rearward	GGATGATAGCTCTCCCTACTCTGAGAAGAAGGTG		
K200	Forward	GAGCTATCATCCCTGGGATAGGAGGGCACAGG		
K200	Rearward	CCTGTGCCCTCCTATCCCAGGGATGATAGCTC		
E201	Forward	CATCCCTGGGAAAGTAGGGCACAGGGTTCAG		
E201	Rearward	CTGAACCCTGTGCCCTACTTTCCCAGGGATG		

K225	Forward	CAAAATGCAATACTGCTAGCATTGGGGAGTCAGAC		
K225	Rearward	GTCTGACTCCCCAATGCTAGCAGTATTGCATTTTG		
A240	Forward	GTCTGGTTCGAGATGTAGGATAAGGATCTCTTTGC		
A240	Rearward	GCAAAGAGATCCTTATCCTACATCTCGAACCAGAC		
K242	Forward	CTGCAAAATGCAATACTGCTAGCATTGGGGAGTCAGAC		
K242	Rearward	GTCTGACTCCCCAATGCTAGCAGTATTGCATTTTGCAG		
D243	Forward	GGTTCGAGATGGCTGATAAGTAGCTCTTTGCTGCAG		
D243	Rearward	CTGCAGCAAAGAGCTACTTATCAGCCATCTCGAACC		
A246	Forward	GGCTGATAAGGATCTCTTTTAGGCAGCCAGATTCC		
A246	Rearward	GGAATCTGGCTGCCTAAAAGAGATCCTTATCAGCC		
A247	Forward	CTGATAAGGATCTCTTTGCTTAGGCCAGATTCCCTGAATG		
A247	Rearward	CATTCAGGGAATCTGGCCTAAGCAAAGAGATCCTTATCAG		
R249	Forward	GGATCTCTTTGCTGCAGCCTAGTTCCCTGAATGCCCAGAAGG		
R249	Rearward	CCTTCTGGGCATTCAGGGAACTAGGCTGCAGCAAAGAGATCC		
E252	Forward	CTGCAGCCAGATTCCCTTAGTGCCCAGAAGGGTCAAG		
E252	Rearward	CTTGACCCTTCTGGGCACTAAGGGAATCTGGCTGCAG		
Y281	Forward	GAGAGGATCTTGGATTAGTCCCTCTGCCAAGAAACC		
Y281	Rearward	GGTTTCTTGGCAGAGGGACTAATCCAAGATCCTCTC		
W288	Forward	CTCTGCCAAGAAACCTAGAGCAAAATCAGAGCG		
W288	Rearward	CGCTCTGATTTTGCTCTAGGTTTCTTGGCAGAG		
G321	Forward	GAACCGGTCCTGCTTTCACCATAATCAATTAGACCCTAAAATAC		
G321	Rearward	GTATTTTAGGGTCTAATTGATTATGGTGAAAGCAGGACCGGTTC		
R332	Forward	CTTTGAGACCAGATACATCTAGGTCGATATTGCTGCTCCAATCC		
R332	Rearward	GGATTGGAGCAGCAATATCGACCTAGATGTATCTGGTCTCAAAG		
I339	Forward	CAGAGTCGATATTGCTGCTCCATAGCTCTCAAGAATGGTCGG		
I339	Rearward	CCGACCATTCTTGAGAGCTATGGAGCAGCAATATCGACTCTG		
R342	Forward	GACCAGATACATCAGAGTCTAGATTGCTGCTCCAATCCTCTC		
R342	Rearward	GAGAGGATTGGAGCAGCAATCTAGACTCTGATGTATCTGGTC		
G345	Forward	CCAATCCTCTCAAGAATGGTCTAGATGATCAGTGGAACTACCAC		
G345	Rearward	GTGGTAGTTCCACTGATCATCTAGACCATTCTTGAGAGGATTGG		
M346	Forward	CAATCCTCTCAAGAATGGTCGGATAGATCAGTGGAACTACCACAG		
M346	Rearward	CTGTGGTAGTTCCACTGATCTATCCGACCATTCTTGAGAGGATTG		
P362	Forward	GGGATGACTGGGCATAGTATGAAGACGTGGAAATTGGACC		
P362	Rearward	GGTCCAATTTCCACGTCTTCATACTATGCCCAGTCATCCC		

Supplementary Figure S1. Characterizations of unnatural amino acids NAEK and DiZPK synthesized in lab by high resolution mass spectrometry.

HIGH RESLUTION MASS SPECTROMETRY REPORT

Supplementary Figure S2. Systematic exploitation of genetic code expansion-mediated unnatural amino acid incorporation into lentiviral envelope protein at different sites. (A) The expression level of VSVG was analyzed by SDS-PAGE and detected by western blotting using mouse monoclonal anti-VSVg (Sigma Aldrich). (B) The expression level of GAPDH was analyzed by SDS-PAGE and detected by western blotting using rabbit monoclonal anti-GAPDH as loading controls.

A UAA VSVG	WT <u>N20</u> <u>I37</u> <u>Q42</u> <u>Y73</u> - + - + - + - + -	WT <u>K242</u> <u>R249</u> <u>Y281</u> <u>W288</u> - + - + - + - + -
UAA VSVG	WT <u>Y77</u> <u>Y116</u> <u>D121</u> <u>V161</u> + - + - + - + -	WT <u>G321</u> <u>R332</u> <u>D334</u> <u>I339</u> - + - + - + - + -
UAA VSVG	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	WT <u>R342</u> <u>G345</u> <u>M346</u> <u>P362</u> - + - + - + - + -
UAA VSVG	WT Mock <u>E201</u> <u>D192</u> <u>D35</u> - + - + - + - + -	$\frac{\text{WTMock}}{-} + \frac{\text{E243}}{+} + \frac{\text{A240}}{+} + \frac{\text{K225}}{+} + \frac{-}{-}$
UAA VSVG	WT Mock E252 A247 + - + -	Mock: the cell lysis of HEK 293T
B uaa	WT <u>N20</u> <u>I37</u> <u>Q42</u> <u>Y73</u> - + - + - + - + -	WT <u>K242</u> <u>R249</u> <u>Y281</u> <u>W288</u> - + - + - + - + - + -
GAPDH UAA GAPDH	$ \begin{array}{c} WT \\ - \\ + \\ - \\ \end{array} \begin{array}{c} Y77 \\ + \\ - \\ \end{array} \begin{array}{c} Y116 \\ + \\ - \\ \end{array} \begin{array}{c} D121 \\ + \\ - \\ \end{array} \begin{array}{c} V161 \\ + \\ - \\ \end{array} $	WT <u>G321</u> <u>R332</u> <u>D334</u> <u>1339</u> - + - + - + - + -
UAA GAPDH	WT <u>K172</u> <u>K174</u> <u>D185</u> <u>K200</u>	WT <u>R342</u> <u>G345</u> <u>M346</u> <u>P362</u> - + - + - + - + - + -
UAA GAPDH	WT Mock E201 D192 D35 - + - + - + -	WT Mock E243 A240 K225 - + - + - + -
UAA GAPDH	WT Mock E252 A247 A246 - + - + - + - + -	Mock: the cell lysis of HEK 293T

Supplementary Figure S3. LC-MS/MS peptide sequencing of VSVg protein. VSVg proteins with or without NAEK incorporated at different positions were purified by immunoprecipitation (IP), analyzed by SDS-PAGE and visualised with Coomassie blue staining. The corresponding protein bands were sliced and analyzed with LC-MS/MS. (**A**) The partial peptide sequencing of the wide type VSVg protein with each mass peak denoted by the corresponding residue. (**B**) The peptide sequencing of NAEK-containing VSVg protein conjugated with Alexa 488; each mass peak was denoted by the corresponding residue including the incorporated NAEK labeled as i*. As it was confirmed that NAEK was incorporated at I339, the mass difference $[y_5-y_3-m(pro)-m(NAEK)=1549.5511-375.2350-97.12-241.12=836.0761]$ indicated the conjugation of DIBO- Alexa 488 to NAEK.

Supplementary Figure S4. Development of a NAEK-containing lentiviral vector as a tool for single-virus tracking. Monitoring (A) and quantitative analysis (B) of the viral motility of different single viruses in different pathways within the infected cell.

Supplementary Figure S5. Structural representatives of DIBO-RGD and DIBO-RAD used in this study.

c(RGDfK(PEG-PEG))

Chemical Formula: C56H73N11O15

Chemical Formula: C₅₇H₇₅N₁₁O₁₅

Supplementary Figure S6. RGD conjugation to lentiviral vectors enhances the lentiviral vector tropism. (A) Characterization of the enhancedinfectivity in U87 cell upon RGD conjugation of lentiviral vectors at different sites, analyzed by one-way ANOVA test (*P < 0.05, *** P<0.001). (B) The RGD-conjugated lentiviral vector, which used green fluorescent protein (GFP) as reporter gene, was much more efficient than the corresponding RAD-conjugated vector in the delivery of these genes into U87 cells (** P<0.01).

Supplementary Figure S7. Site-specific PEGylation of the azide-containing lentiviral vector. (A) Conjugation of DIBO-5K PEG with the azide-containing lentiviral vector at site 246, while the wild type lentiviral vector as a control. The VSVg protein was analyzed by 9% Gel and detected by western blotting. (B) The time-dependent conjugation of DIBO-5K PEG with the azide-containing lentiviral vector; Conjugation occurred within 2 h. (C) Conjugation of the azide-containing lentiviral vector with different sized PEG moieties; the conjugated products were analyzed by western blotting.

Supplementary Figure S8. Display of DiZPK on lentiviral vector for detection of virus-host interactions. (A) Schematic representative of DiZPK-mediated conversion of physical protein-protein interaction to covalently bound protein complex via photo-crossing activation. (B) DiZPK-dependent expression of VSVg protein analyzed by western blotting using monoclonal anti-VSVg. The coding gene bears an amber codon at position Y77 or Y116. GAPDH acts as a loading control. (C) Comparisons of the effect of displaying DiZPK at site Y77 and Y116 on propagation and infectivity of lentiviral vectors, which was detected based on the luciferase assay. (D) Two undetermined cellular factors captured by DiZPK-bearing lentiviral vectors, which was analyzed by western blotting.

