The *SOX9* upstream region prone to chromosomal aberrations causing campomelic dysplasia contains multiple cartilage enhancers

Baojin Yao, Qiuqing Wang, Chia-Feng Liu, Pallavi Bhattaram, Wei Li, Timothy J. Mead, James F. Crish, and Véronique Lefebvre

SUPPLEMENTARY DATA

Table S1. Primers and restriction enzymes used to amplify and clone mouse *Sox9* enhancer elements. Restriction enzyme sites are italicized in the primer sequences.

Enhancer & Strand		Sequence				
E20	Forward	CACGGATCCTTAGTCTTATCAGGAGCTGGT	BamHI			
	Reverse	CCTAGATCTCAAGCTCTCAGTTTGCAGTGG	BgIII			
E65	Forward	TGCGGATCCTATCGGTCTCTGTAGTAACCAATAGC	BamHI			
	Reverse	CCAGATCTGCTATTTTGTCGTTGTTATTATTTCATGATG	BgIII			
E70	Forward	ATAGATCTAGTGGCCGACGCGTGCTCCAGACATTGAAT	BamHI			
	Reverse	CGGGATCCAGTAGGCTCTGTCATCGTGC	BgIII			
E84	Forward	CAGGATCCAAAGCAGTTAGTGTCAGCCTC	BamHI			
	Reverse	ACAGATCTCTACCTCAGATGGGCTTTCGG	BgIII			
E96	Forward	CCGGGATCCTTCTTTGGCTACTGGAAGAAAG	BamHI			
	Reverse	CCTAGATCTGCTCAAAGGATGTGTGGAGGTG	BgIII			
E125	Forward	TTGGATCCCATGTCTGAGCAGGGAAGAGA	BamHI			
	Reverse	GCCAGATCTGCCTTTTCCTCTACACACTCAC	BgIII			
E161	Forward	GACTAGTCCACAGAGTGTGAAAATGTTCAG	Spel			
	Reverse	GTCTAGACTGAGTGAGCAGAAGTTGCT	Xbal			
E195	Forward	GAGATCTCGCATTTGATCTTCTCCTTGGCTC	BgIII			
	Reverse	AGGATCCCTGGACCCCAATATCAGACAGACT	BamHI			
E239	Forward	CGGCTCGAGCTCCTATGTAGAGAACAAATGGATG	Xhol			
	Reverse	TAGTCGACGCATGTCTGACCTCCACAAGAG	Sall			
E243	Forward	GACTAGTCAGGACTCTTTGCTTGCTGTTG	Spel			
	Reverse	CTCTAGAAGTAAGGAGGATACCACAGCGT	Xbal			
E250	Forward	TATGGATCCCTGTAGGTGTACAGGCAG	BamHI			
	Reverse	CAGAGATCTTCTGTCTACTGTGCCTACC	BgIII			

Table S2. Primers used for site-directed mutagenesis. Nucleotide mutations are underlined.

Mutation	Primer strand	Sequence				
E195 M1 Forward		AGAAAGAGTTT <u>C</u> GTCCCCTTCGGAGAG				
	Reverse	CGAAGGGGAC <u>G</u> AAACTCTTTCTGTTTC				
E195 M2	Forward	GATCTTCCCTC <u>G</u> ACGGGCGCTTATGTTCTC				
	Reverse	CATAAGCGCCC <u>G</u> T <u>C</u> GAGGGAAGATCGCAGA				
E195 M3	Forward	CGCAAGGATGG <u>GC</u> CACCGAGG <u>G</u> AA <u>C</u> TCAATTAAGGCCCCG				
	Reverse	CGGGGCCTTAATTGA <u>G</u> TT <u>C</u> CCTCGGTG <u>GC</u> CCATCCTTGCG				
E195 M4	Forward	TTTATGAGAGGATGA <u>CC</u> AGTTAA <u>GG</u> ATTTGCTCAGTTTGA				
	Reverse	TCAAACTGAGCAAAT <u>CC</u> TTAACT <u>GG</u> TCATCCTCTCATAAA				
E84 M1	Forward	<u>ACCTCGGATTTTTGAAAAACCAGTA</u>				
	Reverse	<u>CCGAGGTAAGCCTTGTATCCCAGAT</u>				
E84 M2	Forward	AAGGGG <u>A</u> A <u>G</u> T <u>A</u> A <u>A</u> GGTGGGCAAAGA				
	Reverse	<u>TTTACTTCCCCTTTATCGTCAGTGG</u>				

Table S3. EMSA Probes. Sequences are shown for the upper strand only. Two Gs added for

 probe labeling are italicized and underlined. WT, wild-type; MUT, mutant

Probe name	Sequence
E195 probe 1 WT	<u>GG</u> CTCTAGCATAGGAAACAGAAAGAGTTTTGTCCCCTTC
E195 probe 1 MUT	<u>GG</u> CTCTAGCATAGGAAACAGAAAGAGTTTCGTCCCCTTC
E195 probe 2 WT	<u>GG</u> TGCGATCTTCCCTCAATGGGCGCTTATGTTCTCGCCA
E195 probe 2 MUT	<u>GG</u> TGCGATCTTCCCTCGACGGGCGCTTATGTTCTCGCCA
E195 probe 3 WT	<u>GG</u> GCGCAAGGATGGAAAACCGAGTTAATTCAATTAAGGC
E195 probe 3 MUT	<u>GG</u> GCGCAAGGATGGGCAACCGAGTGAACTCAATTAAGGC
E195 probe 4 WT	<u>GG</u> TTATGAGAGGATGAAAAGTTAATTATTTGCTCAGTTT
E195 probe 4 MUT	<u>GG</u> TTATGAGAGGATGACCAGTTAAGGATTTGCTCAGTTT
E84 probe 1 WT	<u>GG</u> GATACAAGGCTTCCATAGTATTTTTGAAA
E84 probe 1 MUT	<u>GG</u> GATACAAGGCTTACCTCGGATTTTTGAAA
E84 probe 2 WT	<u>GG</u> CTGACGATAAAGGGGCATTCACGGTG
E84 probe 2 MUT	<u>GG</u> CTGACGATAAAGGGGAAGTAAAGGTG

Table S4. Genomic features of *Sox9* enhancers. Distance (dist.) was calculated from the middle of the enhancers to the transcription start site of the *Sox9/SOX9* gene.

F .a.b.	Mouse (mm9)			Human (hg19)			Rat (rn5)		
ancer	Coordinates on chr11:	Size (bp)	Dist. (kb)	Coordinates on chr.17	Size (bp)	Dist. (kb)	Coordinates on chr. 10:	Size (bp)	Dist. (kb)
E20	112,623,542- 112,624,237	696	20	70,096,653- 70,097,365	712	21	100,944,949- 100,945,638	690	20
E65	112,578,666- 112,579,289	624	65	70,060,876- 70,061,498	623	56	100,898,122- 100,898,731	610	67
E70	112,572,641- 112,573,424	784	70	70,053,842- 70,054,652	810	63	100,891,271- 100,892,059	789	73
E84	112,559,105- 112,559,750	646	84	70,042,609- 70,043,257	648	75	100,871,144- 100,871,776	633	94
E96	112,546,971- 112,547,335	365	96	70,030,466- 70,030,844	378	87	100,860,402- 100,860,757	356	104
E125	112,518,744- 112,519,299	556	125	70,004,793- 70,005,376	583	112	100,832,534- 100,833,089	556	132
E161	112,481,770- 112,482,929	1160	161	69,971,188- 69,972,311	1123	146	100,792,746- 100,793,913	1168	172
E195	112,447,134- 112,450,155	3022	195	69,922,750- 69,927,819	5069	194	100,759,205- 100,761,891	2687	206
E239	112,403,840- 112,404,821	982	239	69,866,609- 69,867,480	871	251	100,681,310- 100,682,282	973	283
E243	112,399,345- 112,401,408	2064	243	69,861,669- 69,863,717	2048	255	100,676,074- 100,678,151	2078	289
E250	112,393,446- 112,393,851	406	250	69,856,081- 69,856,452	371	261	100,670,678- 100,671,082	405	294

Figure S1. Vertebrate conservation of *Sox9* enhancers. (A) UCSC genome browser multiz alignment of the E250 region in 60 vertebrate species. (B) Schematic of phylogeny with branch lengths and clade groupings showing the most distant species from mouse that show conservation in *Sox9* enhancers.

Figure S2. Activity of *Sox9* enhancers in E14.5 transgenic embryos. **(A)** High-magnification pictures of X-gal-stained sections through non-cartilaginous tissues from the same embryos as in Figure 3. **(B)** X-gal-stained E14.5 transgenic embryos harboring a *Sox9* promoter-pWHERE reporter carrying four copies of E20, E64, E161 or E239. Tissues expressing the reporters are seen in blue. **(C)** X-gal-stained sections through forelimbs of similar embryos as in panel B. Transgene activity is seen in mesenchyme surrounding skeletal elements in E20, E64 and E161 embryos, and in perichondrium in the E239 embryo. These structures no longer express *Sox9* at this stage. **(D** and **E)** X-gal-stained sections through various tissues from the same embryos as in panel C. Most sites of transgene activity are ectopic with regards to *Sox9* expression in panel D, but match *Sox9*-expressing sites in panel E. **(F)** X-gal staining (left) followed by SOX9 immunostaining and DNA staining with DAPI (middle) in a section through an E14.5 embryo testis expressing E239. The two pictures were merged in Adobe photoshop by inserting the X-gal staining picture into the green channel of the SOX9/DAPI picture (right). Note that E239 is active in cells located within seminiferous tubules (likely to be germ cells), but not in SOX9-expressing Sertoli cells lining the tubules.

Figure S3. Activity of *Sox9* enhancers in E12.5 and E11.5 transgenic embryos. **(A)** X-galstained sections through various tissues from the same E12.5 embryos as in Figure 3E. Most sites of transgene activity match *Sox9*- or *Sox10*-expressing sites. **(B)** Whole-mount X-galstained E11.5 embryo carrying the E250 transgene. Arrow, transgene activity in the humerus and scapula primordia. **(C)** X-gal-stained section through a forelimb of the embryo shown in panel B. Left, low-magnification picture of the entire limb bud section. Right, high-magnification pictures of boxed areas highlighting mesenchymal cells that will soon give rise to digital precartilaginous condensations (top) and the condensing humerus primordium (bottom).

Figure S4. EMSAs with wild-type (wt) and mutant (mut) E195 probes 1, 2 and 4 and E84 probes 1 and 2. **(A)** Comparison of relative amounts of SOX proteins present in nuclear extracts. Nuclear extracts were obtained from COS-7 cells following cell transfection for 24 h with empty (-) or FLAG-tagged SOX-expression plasmids (SOX5, SOX6 or SOX9). The extracts were tested in western blot with anti-FLAG antibody to demonstrate that similar amounts of SOX proteins were present in all extracts. These extracts were also used in the EMSA shown in Figures 5F, 5G, and 6E. **(B)** EMSA with E195 probes and nuclear extracts from COS-7 cells forced to express no protein, SOX5, SOX6, or SOX9. Note that probe 4 forms a complex with a non-specific protein migrating at the same level as SOX/DNA complexes (arrowhead). SOX5,

SOX6 and SOX9 supershifts were obtained by EMSA of extracts incubated with probe 4 and preimmune serum (pi) or antiserum against SOX5 (5), SOX6 (6), or SOX9 (9). Star, antibody supershifts. **(C)** EMSA with E84 probes and nuclear extracts from COS-7 cells forced to express no protein, SOX5, SOX6, or SOX9.