Kinetic Dispersion in Redox Active Dithiocarbamate Monolayers

Amanda L. Eckermann, Justine A. Shaw, Thomas J. Meade*

Departments of Chemistry, Biochemistry and Molecular and Cell Biology, Neurobiology and

Physiology, and Radiology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208

tmeade@northwestern.edu

Supporting Information

Table of neat ferrocene dtc CV parameters. 2
Examples of ACV i_p/i_b plots for 10, 100, 1000, and 10000 s-13
Example of ACV i_p/i_b plot for a distribution of rates
CVs and ACV i_p/i_b plots and fits for FcCONH(CH2)15SH4
Tafel plot fit data for FcC16dtc/C16dtc, FcC16dtc/C18dtc, FcC16dtc/CO2C16dtc, FcCO2dtc/C16dtc, FcCO2C16dtc/C18dtc, and FcCO2C16dtc/CO2C16dtc
Tafel plots for FcC16dtc/C16dtc, FcC16dtc/C18dtc, and FcC16dtc/CO2dtc, FcCO2dtc/C16dtc, FcCO2C16dtc/C18dtc, and FcCO2dtc/CO2C16dtc6-7
Comparison of ACV ip/ib plots for FcC16dtc/C16dtc high surface coverage (1:3) and low surface coverage (1:9)
Marcus density-of-states equations9
¹ H NMR and ESI-MS data10

Table of neat ferrocene dtc CV parameters.

	E _{1/2}	ΔE_{p}	FWHM	coverage
FcC11dtc	275	26	80-115	1.80E-10
FcC16dtc	264	17	80-105	2.30E-10
FcCO2C16dtc	532	9	80-90	2.50E-10

Examples of ACV i_p/i_b plots for 10, 100, 1000, and 10000 s-1Example of ACV i_p/i_b plot for a distribution of rates

Example of ACV i_p/i_b plot for a distribution of rates (25% 10 s⁻¹; 25% 100 s⁻¹; 25% 1,000 s⁻¹, 25% 10,000 s⁻¹)

Variations within rate ranges affect the fit of the simulation to a segment of the i_p/i_b ratio plot. For example, variations of the fit within the 5,000-10,000 s⁻¹ range affect the simulated i_p/i_b data at high frequencies while changes within the 1-100 s⁻¹ range affect the simulated data at low frequencies. FcCONH(CH₂)₁₅SH CVs for a range of scan rates.

FcCONH(CH₂)₁₅SH ACV ip/ib plots with fit data (experiment, red; simulation, black)

Tafel plot fit data.

For the "wide" fit, the fitting algorithm was allowed to range between 0.2-1.1eV for lambda. For the "narrow" fit, lambda was constrained to 0.8-0.9eV. The "goof" is the goodness-of-fit and a value <1 indicates a good fit.

		wide				narrow	
		valley	peak			valley	peak
FcC16/C16	lambda(eV)	0.71	0.61	_	lambda(eV)	0.81	0.81
	k0 (s-1)	349	98		k0 (s-1)	259	88
	coupling(eV)	3.96E-05	1.20E-05		coupling(eV)	5.97E-05	3.48E-05
	(goof)	0.68	0.63		(goof)	1.19	0.89
				-			
FcC16/C18	lambda(eV)	1.01	0.91	_	lambda(eV)	0.98	0.92
	k0 (s-1)	0.28	0.85		k0 (s-1)	0.39	0.76
	coupling(eV)	5.97E-06	5.97E-06	_	coupling(eV)	5.97E-06	5.97E-06
	(goof)	0.68	1.22		(goof)	0.09	1.11
				-			
FcC16/CO2	lambda(eV)	0.41	0.51		lambda(eV)	0.81	0.81
	k0 (s-1)	243	996		k0 (s-1)	166	259
	coupling(eV)	5.97E-06	2.15E-05		coupling(eV)	4.78E-05	5.97E-05
	(goof)	1.02	0.22		(goof)	2.63	10.73

		wide	
		valley	peak
FcCO2/C16	lambda(eV)	0.51	0.61
	k0 (s-1)	153	1055
	coupling(eV)	8.45E-06	3.91E-05
	(goof)	0.73	0.04
FcCO2/C18	lambda(eV)	0.51	0.71
	k0 (s-1)	77	762
	coupling(eV)	5.97E-06	5.85E-05
	(goof)	0.48	0.35
FcCO2/CO2	lambda(eV)	0.51	0.51
	k0 (s-1)	77	383
	coupling(eV)	5.97E-06	1.33E-05
	(goof)	1.85	0.87

	narrow	
	valley	peak
lambda(eV)	0.81	0.81
k0 (s-1)	111	258
coupling(eV)	3.90E-05	5.97E-05
(goof)	1.74	9.32
lambda(eV)	0.81	0.81
k0 (s-1)	57	258
coupling(eV)	2.80E-05	5.97E-05
(goof)	1.35	7.05
lambda(eV)	0.81	0.81
k0 (s-1)	70	259
coupling(eV)	3.10E-05	5.97E-05
(goof)	2.52	1.42

Comparison of ACV ip/ib plots for **FcC16dtc/C16dtc** high surface coverage (1:3) and low surface coverage (1:9). The two plots can be fit to a similar distribution of rates.

1:3		
rate		weight
300	sec ⁻¹	0.20
1000	sec ⁻¹	0.40
3000	sec ⁻¹	0.15
35000	sec ⁻¹	0.25

1:9		
rate		weight
150	sec ⁻¹	0.20
1000	sec ⁻¹	0.40
2000	sec ⁻¹	0.15
35000	sec ⁻¹	0.25

Details of Marcus density-of-states theory

Apparent cathodic and anodic rate constants are calculated as a function of overpotential for electron transfer between a redox-active molecule and a metal electrode using Marcus theory. The ET rate at a given overpotential is calculated via numerical integration of donor and acceptor levels over a range of energies ε , the energy level relative to the Fermi energy level of a metal (Equation 1).¹

$$k_{ox} = A \int_{-\infty}^{\infty} d\varepsilon \, \mathbf{D}_{ox}(\varepsilon) \rho(\varepsilon) f(\varepsilon)$$
Equation 1
$$D_{ox}(\varepsilon) = \frac{1}{\sqrt{4\pi\lambda k_b T}} \exp\left(-\frac{(\lambda - \varepsilon + e_0 \eta)^2}{4\lambda k_b T}\right)$$
Equation 2

The Fermi function $f(\varepsilon)$ of the metal gives the probability that a given available electron energy state will be occupied at a given temperature.² The density of states of the metal, $\rho(\varepsilon)$, is assumed to be constant over the range of energies used to evaluate the integral since the density of states varies slowly near the Fermi level.³ The distribution of electron acceptor levels of the redox center is represented by a Gaussian function $D_{\alpha x}(\varepsilon)$ whose widths are defined as the reorganization energy (Equation 2). The reorganization energy parameter λ can be partitioned into inner- (λ_i) and outer-sphere (λ_o) reorganization energy components. The inner-sphere component λ_i is related to the changes in bond lengths and angles that accompany the change in redox state of the redox species. An analytical expression for the outer-sphere reorganization energy of electron transfer between a redox center (approximated as a spherical cavity) and an electrode in a dielectric continuum is shown in Equation 3. In this expression for λ_o , e is the electron charge, N_A is Avogadro's number, a is the radius of the redox center, d is the distance between the redox center and the electrode, ε_s is the static dielectric constant of the solvent, and ε_{op} is the optical frequency dielectric constant. The preintegral factor, A in Equation 1, includes factors such as electronic coupling, the probability of tunneling through an electronic barrier and surface coverage of redox active sites.

$$\lambda_o = \left(\frac{e^2 N_A}{2}\right) \left(\frac{1}{a} - \frac{1}{2d}\right) \left(\frac{1}{\varepsilon_{op}} - \frac{1}{\varepsilon_s}\right)$$

Equation 3

- 1. Chidsey, C. E. D., *Science* **1991**, 251, (4996), 919-22.
- 2. Kittel, C., Introduction to Solid State Physics. 4th Edition; John Wiley & Sons: 1971.
- 3. Schmickler, W., *Interfacial Electrochemistry*. Oxford University Press: 1996.

1H NMR data and ESI-MS data

FcC11 86% ¹H NMR (401 MHz, CDCl₃) δ 4.07 (s), 4.02 (d), 2.63 (t), 2.29 (t), 1.54 (m), 1.47 (m), 1.25 (m), 0.87 (s). ESI-MS m/e Calcd 523.4 Found [M+H] 524.3 **FcC16** 53% ¹H NMR (500 MHz, CDCl₃) δ 4.08 (s), 4.04 (s), 4.02 (s), 2.65 (m), 2.30 (m), 1.57 (m), 1.48 (m), 1.25 (m), 0.88 (t). ESI-MS m/e Calcd 649.5 Found [M+H] 650.5 **FcCO2C16** 84% ¹H NMR (499 MHz, CDCl₃) δ 4.74 (s), 4.32 (s), 4.14 (m), 2.75 (s), 1.65 (m), 1.36 (m), 1.18 (m), 0.81 (t). ESI-MS m/e Calcd 693.5 Found [M+H] 694.5 **C16** 35% ¹H NMR (500 MHz, CDCl₃) 2.84 (m), 1.8 (m), 1.25 (m), 0.88 (t). ESI-MS Calcd 465.5 Found [M+] 465.2 **CO2C16** 76% ¹H NMR (500 MHz, CDCl₃) 3.67 (s), 2.59 (t), 2.30 (t), 1.49 (m), 1.25 (m), 0.88 (t). ESI-MS Calcd 532.5 Found [M+H] 533.9