

# Supplementary Figure 1 (to Fig. 1, Swamy et al)

Supplementary figure 1. IEL rapidly produce ISG-inducing activity upon anti-CD3 stimulation. IEL include  $TCR\alpha\beta^+CD8\alpha\beta^+$ ,  $TCR\alpha\beta$   $CD8\alpha\alpha^+$ ,  $TCR\gamma\delta^+CD8\alpha\alpha^+$ , and  $TCR\gamma\delta^+$  DN populations, found directly *ex vivo* (a), and after 13 days culture (b): living  $CD45^+$  cells before and after 13 days of culture were stained for  $TCR\beta$  and  $TCR\gamma\delta$  (left-hand panel), and the

CD8 $\alpha$ , CD8 $\beta$  and CD4 phenotypes determined for TCR $\beta^+$  cells (middle-panels) and TCR $\gamma\delta^+$  cells (right-hand panel). (c) Upregulation of ISGs as measured by qRT-PCR relative to TBP, in MODE-K cells. MODE-K cells were treated for the indicated number of hours with IEL supernatant (SN) from cultured IEL re-stimulated on anti-CD3 for 18h. Shown is a representative experiment. (d) Cultured IEL were stimulated on plate-bound anti-CD3 for the indicated number of hours, and the supernatant used to treat MODE-K for 6h. qRT-PCR was performed and 3 experiments were normalized to untreated controls. Data shows the mean and SEM of the fold upregulation of 3 independent experiments. p-values were calculated by Kruskal-Wallis tests. (d) 12-day cultured IEL were unstimulated (uns) or re-stimulated on plate-bound anti-TCR $\alpha\beta$  (H57) or anti-TCR $\gamma\delta$  (GL3) for 18 hours and supernatant harvested. The supernatants were used to treat MODE-K cells for 6h, and cDNA prepared from the treated MODE-K cells. qRT-PCR depicting expression of ISGs relative to TBP is shown.



## Supplementary Figure 2 (to Fig. 2, Swamy et al)



stimulation. (a) Representative flow cytometry data of sorted TCR $\gamma\delta^+$  CD8 $\alpha\alpha^+$  IEL, shown preand immediately post-sort. Sorted TCR $\gamma\delta^+$  and TCR $\beta^+$  IEL were then directly stimulated with anti-CD3 (data are shown in Suppl. Fig. 2c) or were cultured for two weeks and then re-assessed by flow cytometry (b), prior to stimulation with anti-CD3 (for data shown in Fig. 2a). (c) qRT-PCR showing expression of Type I, II, III IFN mRNA and *irf7* mRNA in IEL flow-sorted immediately *ex vivo* into TCR $\gamma\delta^+$  CD8 $\alpha\alpha^+$  and TCR $\alpha\beta^+$  CD8 $\alpha\alpha^+$  subsets, briefly rested, and then stimulated with anti-CD3 for 2 hours (red bars), without prior culture. Data are the mean and SEM of IEL from 3 mice. (d) Full images for western blots shown in Fig. 2d. Molecular weight markers in kDa are indicated to the left of each blot.



# **Supplementary Figure 3**

Supplementary figure 3. Upregulation of antiviral genes involves multiple cytokines produced by IEL. (a) MODE-K cells were treated for 6 hours with activated IEL supernatant (6 hours) to which neutralizing/blocking antibodies against IFN $\gamma$  (5µg/ml), TNF (1µg/ml) and/or IFNAR1 (1µg/ml) had been added alone or in combinations. cDNA was prepared and upregulation of ISGs measured by qRT-PCR. Data are means + SEM of triplicate wells normalized to medium control, and are representative of  $\geq$  3 independent experiments. (b) Cultured IEL were stimulated on plate-bound anti-CD3 for the indicated number of hours, and the supernatant used to treat MODE-K for 6h. qRT-PCR was used to measure the indicated gene expression in MODE-K. Whereas *il10rb* (co-receptor for IFN $\lambda$ ), *ifnar1* and *pkr* mRNA were easily detected, mRNA for *ifnlr1* was not expressed.







**Supplementary Figure 4. Anti-CD3 i.p. injection does not cause major damage to the epithelium yet induces rapid upregulation of ISGs.** (a) Representative flow cytometry of CD45<sup>+</sup> and CD45<sup>-</sup> MACS-sorted cells used in Figure 5b and 5c. (b, c) C57BL/6 mice were injected i.p. with 25µg anti-CD3 antibody and mice sacrificed after 1, 3 or 6 hours, respectively. 25µg Armenian hamster IgG was injected into the control, which was sacrificed after 3h (isotype). IEL (b) and IEC (c) were isolated from small intestines by Percoll gradient; RNA was prepared and samples were analysed by qRT-PCR. Gene expression is shown relative to

expression of TBP. (d) H&E stained duodenal and colonic sections taken 3h after anti-CD3 or isotype injection. (e) Anti-CD3 stained (brown) sections of intestinal tissue from isotype-injected (12h) and anti-CD3 injected (6h and 12h) mice. (f-h) Flow cytometry data showing cells isolated 3h after i.p. injection of anti-CD3 (f) or isotype control (g). (h) purity of sorted TCR $\gamma\delta$  CD8 $\alpha\alpha$  cells from an anti-CD3 injected mouse used for the analyses shown in Fig. 4e.



## Supplementary Figure 5 (to Figure 5, Swamy et al)

Supplementary Figure 5. Additional data supporting Figure 5. (a) Tissue sections from anti-CD3 i.p. injected B6.A2G-Mx1 wt and IFNAR/IFNLR DKO mice, both of which contain a functional Mx1 gene, were prepared at 0 and 12 hours after injection. Paraffin-embedded sections were stained for Mx1 protein (intra-nuclear, green), CD3 (red), and nuclei (DAPI, blue). Scale bar=20µm. (b) Staining for Mx1 protein in Mx1-deficient (Mx<sup>-/-</sup>) and Mx1-sufficient (Mx<sup>+/+</sup>) mice treated with PBS, or with IFN $\lambda$  to induce Mx1 protein expression. Arrows indicate non-specific diffuse cytoplasmic staining seen even in the absence of Mx1 protein expression.



#### Supplementary figure 6 (to figure 6, Swamy et al)

**Supplementary Figure 6.** Activation of IEL is protective against murine norovirus (MNV) *in vivo*. C57BL/6 mice were orally infected with MNV-O7, without pre-treatment (no label), or 8 hours after treating mice intraperitoneally with anti-CD3 antibodies or the isotype control IgG (ITC). 40 hours after infection, the organs were isolated and assayed for live virus (TCID<sub>50</sub>) per mg of tissue (a) or viral particles (RNA copies) per mg of tissue (b) as in Fig. 6. Uninfected mice were used as controls (--). Statistical significance between conditions was measured by twotailed Kolmogorov-Smirnov test.

| Gene          | Forward primer            | Reverse primer             | JOE probe               |
|---------------|---------------------------|----------------------------|-------------------------|
| Adar          | ggaagaagactcggagaaacc     | tcccagagaacaaggatgttg      |                         |
| Eif2ak2 (Pkr) | ggagcacgaagtacaagcgc      | gcaccgggttttgtatcga        |                         |
| lfit1         | ctccactttcagagccttcg      | tgctgagatggactgtgagg       |                         |
| lfit2         | aaatgtcatgggtactggagtt    | atggcaattatcaagtttgtgg     |                         |
| lfna (all)    | tctgatgcagcaggtggg        | agggctctccagacttctgctctg   |                         |
| lfnb1         | ctggcttccatcatgaacaa      | agagggctgtggtggagaa        |                         |
| lfng          | ttactgccacggcacagtc       | agataatctggctctgcagg       |                         |
| ifnl          | agctgcaggccttcaaaaag      | tgggagtgaatgtggctcag       |                         |
| lfnl3         | tcagccctgaccaccatc        | ctgtggcctgaagctgtgta       |                         |
| ll17a         | agctccagaaggccctcagactacc | cagctttccctccgcattgacac    |                         |
| lrf1          | gagctgggccattcacac        | tccatgtcttgggatctgg        |                         |
| lrf7          | cttcagcactttcttccgaga     | tgtagtgtggtgacccttgc       |                         |
| Mx1           | tgtgcaggcactatgaggag      | actctggtccccaatgacag       |                         |
| Oas1g         | gcatcaggaggtggagtttg      | ggcttcttattgatactaccatgacc |                         |
| Oas2          | tgcggaagttcctactgacc      | cccaccatgtcacttgtcttt      |                         |
| Tbp           | ggggagctgtgatgtgaagt      | ccaggaaataattctggctcat     |                         |
| Tnf           | ctgtagcccacgtcgtagc       | ttgagatccatgccgttg         |                         |
| Usp18         | ttgggctcctgaggaaacc       | cgatgttgtgtaaaccaaccaga    |                         |
| MNV-Q2        | gctttggaacaatggatgctgag   | cgctgcgccatcactcatc        | ccgcaggaaygctcagcagtctt |

**Supplementary Table 1.** Sequences of primers used for qRT-PCR.