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Supplementary figures
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Supplementary Fig. 1. CQ improves social interaction in Shank2™ mice

(a) A schematic depicting drug-administration paradigms. Animals were divided into two experimental
groups; one received vehicle first and CQ second, and the other received CQ first and vehicle second.
Mice were tested 2 hours after receiving the first injection (vehicle or 30 mg kg'l CQ; i.p.). After a 6-
day rest period in single cages, mice received the reciprocal treatment and were retested.

(b-m) CQ improves social interaction (b-i) but has no effect on social novelty recognition (j-m) in
Shank2™ (KO) mice, or on both social interaction and social novelty recognition in WT mice, as
determined by time spent in exploration, preference index from exploration time, and time spent
exploring/sniffing targets (S1/stranger vs. O/object, or S2/new stranger vs. S1/previous stranger).
Data were analyzed as paired comparisons of the effects of CQ (before and after) within WT and KO
groups, or within the vehicle-first and CQ-first groups to minimize carryover effects. (n = 28 for WT-V
and WT-C, 25 for KO-V and KO-C, n = 14 for WT-V and WT-C (vehicle-first), n = 12 for KO-V and KO-
C (vehicle-first), n = 14 for WT-V and WT-C (CQ-first), n = 13 for KO-V and KO-C (CQ-first), NS, not
significant, *p < 0.05, **p < 0.01, ***p < 0.001, Student’s t-test). Data in all panels with error bars
represent mean £ s.e.m.
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Supplementary Fig. 2. Limited correlation between chamber time and exploration time in Shank2™"~
mice, relative to WT mice.

(a-d) Time spent in chamber (chamber time) and time spent in exploring/sniffing the targets (O, S1,
and S2) (exploration time) do not correlate well in Shank2™ mice, relative to WT mice, as determined
using the data from the three-chamber social interaction results from Fig. 1 and Supplementary Fig.
1. Note that this limited correlation in Shank2™™ mice is mildly improved by CQ treatment (Pearson
correlation).
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Supplementary Fig. 3. Free Zn levels are similar in WT and Shank2™ brains, and CQ has no effect
on ZnT3 protein levels

(a and b) There was no difference in the total level of free Zn between WT and Shank2™" brains (8
wks), as determined using the free Zn-binding fluorescent dye, TFL-Zn. (n = 15 hippocampal slices
from 3 animals for WT and KO, NS, not significant, Student’s t-test). ROI, region of interest.

(c) CQ treatment has no effect on the total level of ZnT3 protein in whole brain crude synaptosomal
fractions from WT and Shank2™™ mice (8 wks). Mice were acutely injected with CQ (30 mg kg'l; i.p.) 2
hours before sample preparation and immunoblot analysis. (n = 4 for each group, NS, not significant,
one-way ANOVA). Data in all panels with error bars represent mean + s.e.m.

(d) Free Zn was undetectable in ZnT3™ brain (postnatal day 23), as determined by TFL-Zn.



Suppl Fig 4

Supplementary Fig. 4. WT and Shank2™~ mice show comparable levels of Zn, Cu, and Fe in the
brain, and CQ treatment has no effect on brain levels of these metals.

(a-c) WT and Shank2™™ mice (2—-3 months) were treated with CQ (30 mg kg'l), or vehicle (DMSO), by
i.p. injection for 2 hrs, followed by whole-brain metal analysis by inductively coupled plasma mass
spectrometry. (n = 4 for WT-V, 4 for WT-C, 5 for KO-V, and 4 for KO-C, NS, not significant, two-
way ANOVA and one-way ANOVA with Tukey’s post hoc test). Data in all panels with error bars
represent mean + s.e.m.
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Supplementary Fig. 5. CQ fails to improve repetitive behavior and anxiety-like behavior in Shank2™"~
mice

(a-d) CQ (30 mg kg'l; i.p.) injected 2 hours prior to testing fails to improve jumping and has no effect
on grooming in Shank2™"~ mice. (n =10 for WT-V and WT-C, 11 for KO-V and for KO-C, NS, not
significant, *p < 0.05, Student’s t-test)

(e) CQ has no effect on the time spent in the center region of the open field arena in WT and Shank2™
" mice. (n =10 for WT-V and WT-C, 11 for KO-V and for KO-C, NS, not significant, *p < 0.05, two-way

ANOVA and Kruskal-Wallis one-way ANOVA with Dunn’s post hoc test) Data in all panels with error
bars represent mean + s.e.m.
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Supplementary Fig. 6. CQ has no effect on AMPA-fEPSPs, input-output ratio, or paired pulse ratio,
but Increases the NMDA/AMPA ratio of eEPSCs at Shank2™ synapses

(a) CQ (4 uM) has no effect on AMPA-fEPSPs. The labels a and b indicate 5-min duration before CQ
and the end of recording, respectively. (n = 5 slices (4 animals) for WT and 5 (4) for KO, NS, not

significant, Student’s t-test)

(b) CQ (4 uM) has no effect on the input-output relationship at WT or Shank2™" hippocampal SC-CA1
synapses, as determined by plotting the initial slopes of AMPA-fEPSPs against amplitudes of fiber
volley. (n = 9 slices (7 animals) for WT-V, 9 (7) for WT-C, 8 (5) for KO-V, and 9 (6) for KO-C, one-way
ANOVA).

(c) CQ (4 uM) has no effect on the paired pulse ratio at both WT and Shank2™ hippocampal SC-CA1
synapses, as determined by plotting the ratio of first/second initial slopes of AMPA-fEPSPs against
interstimulus intervals. (n = 9 slices (7 animals) for WT-V, 9 (7) for WT-C, 8 (5) for KO-V, and 9 (6) for

KO-C, one-way ANOVA).

(d and €) CQ (4 uM) increases the NMDA/AMPA ratio of eEPSCs at -40 mV in both WT and Shank2™"
hippocampal SC-CA1 synapses. (n = 4 cells (3 animals) for WT, and 5 (4) for KO, *p < 0.05, Student’s
t-test). Data in all panels with error bars represent mean + s.e.m.
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Supplementary Fig. 7. Ca-EDTA has no effect on the basal NMDAR function, while TPEN causes a
small increase in NMDAR function.

(a and b) The effect of Ca-EDTA (2 mM) or TPEN (25 uM) on NMDA-fEPSPs. The labels a, b, and ¢
indicate 5-min duration before and during Ca-EDTA, and at the end of recording, respectively. (n = 8
slices (5 animals) for WT-Ca-EDTA, 10 (5) for KO-Ca-EDTA, 11 (6) for WT-TPEN, and 9 (5) for KO-
TPEN, NS, not significant, *p < 0.05, Repeated measures ANOVA). Data in all panels with error bars
represent mean £ s.e.m.
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Supplementary Fig. 8. Src-inhibitory peptide blocks CQ-dependent NMDAR activation

(a-d) Src-inhibitory peptide, Src(40-58), but not its scrambled version, sSrc(40-58), blocks CQ-
dependent NMDAR activation, as measured by the NMDA/AMPA ratio at -40 mV. (Src(40-58), n =5
cells (4 animals) for WT and 6(4) for KO; sSrc(40-58), n = 7 (5) for WT and 7(6) for KO, NS, not
significant, *p < 0.05, Student’s t-test). Data in all panels with error bars represent mean + s.e.m.
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Supplementary Fig. 9. CaMKlla is required for the maintenance of the enhanced NMDAR function
induced by CQ.

(a and b) WT hippocampal slices were treated with CQ (4 uM) for 20 min in the presence of PD98059
(MAPKK/MEK inhibitor) or KN93 (CaMKlIla inhibitor) and measured of NMDA fEPSPs. (PD98059, n =
6 slices (4 animals); KN93, n =9 (4), *p < 0.05, ***p < 0.001, Student’s t-test and repeated measures
ANOVA). Data in all panels with error bars represent mean + s.e.m.
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Supplementary Fig. 10. CQ improves social interaction in Thr1*~ (HT) mice

(a-h) CQ improves social interaction (a-d) but has no effect on social novelty recognition (e-h) in
Tbr1*" mice, or on both parameters (social interaction and social novelty recognition) in WT
littermates, as determined by the times spent in exploring/sniffing the targets (S1/strangers vs.
Olobject, or S2/new stranger vs. S1/old stranger). The paired comparisons of the effects of CQ
(before and after) within the WT or HT group were made to minimize carryover effects. (n = 10 for WT-
V and WT-C, n =11 for HT-V and HT-C, NS, not significant, *p < 0.05, ***p < 0.001, Student’s t-test,
two-way ANOVA and one-way ANOVA with Tukey’s post hoc test). Data in all panels with error bars
represent mean + s.e.m.
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Supplementary Fig. 11. Strong correlation between chamber time and exploration time in Tbr1™~ (HT)
mice.

(a-d) Time spent in chamber (chamber time) and time spent in exploring/sniffing the targets (O, S1,
and S2) (exploration time) correlate well in Tbr1*" mice at levels comparable to that in WT mice, as
determined using the data from the three-chamber social interaction results from Fig. 7 and
Supplementary Fig. 10 (Pearson correlation).
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Supplementary Fig. 12. Tbr1*" hippocampal SC-CA1 synapses show normal excitatory synaptic
transmission

€) Tbr1*" hippocampal CA1 pyramidal neurons (3-5 weeks) show normal mEPSC amplitude and
frequency. (n = 13 cells, 3 animals for WT, and 15 (3) for HT, NS, not significant, Student’s t-test).

+/—

(b) Tbrl™ hippocampal SC-CAL synapses (3-5 weeks) show normal input-output ratio. (n = 10 slices,
3 animals for WT and HT; Student’s t-test).

(c) Tbr1*" hippocampal SC-CA1 synapses (3-5 weeks) show normal paired pulse ratio. (n = 10 slices,
3 animals for WT and HT; Student’s t-test).

(d) Tbr1*"~ hippocampal SC-CA1 synapses (3-5 weeks) show normal NMDA/AMPA ratio. (n = 8 cells
(4 animals) for WT, 9 (5) for HT; Student’s t-test). Data in all panels with error bars represent mean +
s.e.m.

13



Suppl Fig 13

(e
a ©
Src
a-tubulin
(@2
b ~\(}e RS A\(}‘Z' q XQO
F& F IS E
/7
$ $ $ $ ‘l‘O/ (@¥d ‘k‘O/ o7
p-Src(Y416)
a-tubulin
> o
g O @ O
© a9, 3 O X
¢ & é\« & & /\QQ% & & &
7/ o 4
NN\ N N SR NI SN« 1
p-Src(Y527)
a-tubulin

Supplementary Fig. 13. Full-size immunoblot images for Src phosphorylation in Fig. 6a,d.
(a) Total Src.
(b) Src phosphorylation at Y416.

(c) Src phosphorylation at Y527.
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