SUPPLEMENTARY FIGURES AND TABLES

Supplementary Figure S1: NPC cell lines (GFP+) stably expressing EBV-miR-BART7–3p (5–8F-BART7–3p and CNE1-BART7–3p cells) were generated using lentivirus infection. (A, B) 5–8F-BART7–3p cells and CNE1-BART7–3p cells were screened respectively by GFP using FACS cytometer. qPCR validated EBV-miR-BART7–3p expression in 5–8F-BART7–3p, CNE1-BART7–3p cells compared to their corresponding control cells (5–8F-NC and CNE1-NC) and clinical NPC tissue sample (5 samples were pooled). Data were plotted as mean values \pm SEM (***P < 0.001).

Supplementary Figure S2: Cell cycle distribution was tested by flow cytometry. (A) Cell cycle distribution was tested by flow cytometry in CNE1-BART7–3p and 5–8F-BART7–3p cells. **(B)** Cell cycle distribution was tested by flow cytometry in two stable NPC cells after the treatment of anti-miR.

Supplementary Figure S3: The growth and proliferation was significantly inhibited in CNE1-BART7–3p and 5–8F-BART7–3p cells following the treatment of anti-miR. (A) Assessment of proliferation in CNE1-BART7–3p and 5–8F-BART7–3p cells after the treatment of anti-miR by MTT assay. Data are plotted as mean values \pm SEM (*P < 0.05, ***P < 0.001). (B),(C) The colony formation ability and cell cycle distribution in CNE1-BART7–3p and 5–8F-BART7–3p cells after the treatment of anti-miR. Data are plotted as mean values \pm SEM (*P < 0.05; **P < 0.01; ***P < 0.001).

Supplementary Figure S4: HE staining confirmed xenograft tumor. Original magnification, × 200, × 400.

Supplementary Figure S5: The expression of EBV-miR-BART7–3p and PTEN in clinical NPC samples. (A) The expression level of EBV-miR-BART7–3p normalized to U6 snRNA was tested by qPCR in clinical NPC tissue samples with clinical T stage. (B) PTEN expression normalized to GAPDH expression was detected by qPCR in NPC samples with T stage information and NP samples. The data were shown as the mean \pm SEM (*P < 0.05, **P < 0.01, ***P < 0.001).

Supplementary Figure S6: PTEN was further validated to be a target of EBV-miR-BART7–3p. (A) A new putative binding site was predicted in the 3'UTR of PTEN by RNAhybrid. **(B)** EBV-miR-BART7–3p mimic or NC were cotransfected with luciferase reporters carrying the wild or the mutant binding site within PTEN 3'-UTR (wt) into 293T cells. Additionally, EBV-miR-BART7–3p mimic were cotransfected with anti-miR or anti-C and luciferase reporters carrying the wild-type binding site into 293T cells. Data were plotted as mean values \pm SEM (*P < 0.05, **P < 0.01). **(C)** PTEN expression was evaluated by IHC in tumor tissues derived from NPC models compared with control models. Original magnification, × 400.

Supplementary Figure S7: The detection of EBV-miR-BART7–3p expression in NPC cell lines. EBV-miR-BART7–3p expression was examined by qPCR in three NPC EBV-positive cells, pooled NPC tissues (5 samples were pooled), CNE1-BART7–3p, 5–8F-BART7–3p cells and three EBV-negative NPC cell lines. Data were plotted as mean values ± SEM.

Supplementary Figure S8: The size of Gold-PEI nano-carrier. (A) The size of Gold-PEI nano-carrier was measured by dynamic lighting scatter (DLS). **(B)** The zeta potential of gold-PEI nano-carrier was positive charge.

Supplementary Figure S9: Gold-PEI nano-carrier morphology. The size and shape of Gold-PEI nano-carrier were confirmed by the transmission electron microscopy (TEM).

Characteristics	Clinical samples			
	NP ($n = 15$)	NPC $(n = 40)$	<i>p</i> -value	
Age, years	41.67	44.22	0.4640*	
Gender, male	8	32	0.0861&	
Poorly differentiated SCC		1		
Undifferentiated cancer		39		
Differentiated SCC		0		

Supplementary Table S1: The information of Clinical samples for clinical data analysis

Supplementary	y Table S2: C	Clinicopatholo	gical chara	cteristics of	patients	with NPC
			a			

Characteristic	No of patients $(N = 40)$		
Sex			
Male	32		
Female	8		
Age (years)			
≤ 45	26		
> 45	14		
Histological type			
Poorly differentiated SCC	1		
Undifferentiated cancer	39		
Differentiated SCC	0		
T stage			
T1	12		
T2	14		
T3	6		
T4	8		
N stage			
NO	9		
N1	9		
N2	12		
N3	10		
M stage			
M0	38		
M1	1		
M2	1		
M3	0		
TNM stage			
Ι	4		
П	9		
III	14		
IV	13		

Supplementary Table S3: RNA oligoribonucleotides for EBV-miR-BART7-3p

Mimic and anti-miR	Sense strand (5'-3')
mimic	CAUCAUAGUCCAGUGUCCAGGG
NC	UUCUCCGAACGUGUCACG
anti-miR	CCCUGGACACUGGACUAUGAUG
anti- C	CAGUACUUUUGUGUAGUACAA

www.impactjournals.com/oncotarget/

Gene	Forward primer (5'-3')	Reverse primer (5'-3')
CCND1	GCTCCTGGTGAACAAGCTCAA	TTGGAGAGGAAGTGTTCAATGAAA
CCND2	TCATGACTTCATTGAGCA	CACTTCCTCATCCTGCTG
CDK4	TTCGTGAGGTGGCTTTACTG	GATATGTCCTTAGGTCCTGGTCT
CCNE1	CTTCACAGGGAGACCTTTTAC	CATTCAGCCAGGACACAATAG
CCNA1	TAGACACCGGCACACTCAAG	AGGAGAGATGAATCTACCAGCAT
CDK2	TTCTGCCATTCTCATCGG	ATGGGTGTAAGTACGAACAGG
CCNB1	AACTTTCGCCTGAGCCTATTTT	TTGGTCTGACTGCTTGCTCTT
CDK1	CTAACAGCAGAGAGCGTCACC	AAAGGTTTGATAACTGTGCCCA
p15 INK4B	GTTTTGGCGACCCCTGTAGAC	GCATTCCACCAGACAAACTATCA
p16 INK4A	ACCGAATAGTTACGGTCGGAGG	CATCATCATGACCTGGTCTTCTAGG
p21 CIP1	GGCAGACCAGCATGACAGATT	GCGGATTAGGGCTTCCTCTT
p27 ^{KIP1}	AAAGCACTCAGCAGATGGGTT	GATGCACGTTCCAGAGTTTCG
pRb	GCAGTATGCTTCCACCAGGC	AAGGGCTTCGAGGAATGTGAG
GAPDH	GGTGAAGGTCGGAGTCAACGGA	GTCATGGATGACCTTGGCCAGG

Supplementary Table S4: Primers for qRT-PCR assay of cell cycle regulators

Supplementary Table S5: Primers for qRT-PCR assay of miRNA and PTEN

Primers	Sense strand (5'-3')
EBV-miR-BART7–3p	CATCATAGTCCAGTGTCCAGGG
U6	CTCGCTTCGGCAGCACATATA
PTEN Forward	TGTGGTCTGCCAGCTAAAGG
PTEN Reverse	CGGCTGAGGGAACTCAAAGT
GAPDH Forward	GGTGAAGGTCGGAGTCAACGGA
GAPDH Reverse	GTCATGGATGACCTTGGCCAGG

Supplementary Table S6: The information of antibodies

Antibody	Cat. No.	Company	Molecular weight	Dilution(WB/IHC)
PTEN	BS1305	Bioworld	54kDa	1:800/1:200
Akt	BS2987	Bioworld	55kDa	1:1000
Akt(p-Ser473)	AM1006	ABZOOM	60kDa	1:1000
c-Myc	1472–1	Epitomics	57kDa	1:1000
c-Jun	1696–1	Epitomics	43kDa	1:1000
Cyclin D1	10438–1-AP	proteintech	34kDa	1:800
Cyclin E1	1655–1	Epitomics	47kDa	1:800
p21	3733–1	Epitomics	21kDa	1:1000
Ki67	ab16667	Abcam		1:400
PCNA	A0264			1:100
Beta-actin	Jan-79	Epitomics	43kDa	1:1000