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I. Materials and Methods
a. Fecal Metagenomic Library Construction and Antibiotic Screening

All fecal samples used in this study were collected with informed consent for the St. Louis
Neonatal Microbiome Initiative (P.I. Dr. Barbara Warner). This study and the St. Louis Neonatal
Microbiome Initiative were approved by Washington University’s Institutional Review Board
(IRB# 201205152 and 201105492, respectively). Demographics and clinical metadata were
securely stored in a RedCap(/) database. Metagenomic DNA (mgDNA) was extracted from
frozen fecal samples as previously described(2). MgDNA was sheared using the Covaris M220
(Shearing conditions as follows: 2-20ug metagenomic DNA were diluted to a volume of 200uL
in Buffer EB. Settings were: duty cycle 20%, intensity 0.1, cycles per burst 1,000, and total
treatment time 600s). Metagenomic libraries were prepared as previously described(3, 4):
sheared DNA fragments 2-5kb in size were selected by gel electrophoresis in a 1% low-melting
point agarose gel in 0.5X Tris-Borate-EDTA buffer stained with GelGreen dye (Biotium). The
fragments were purified using a QIAquick Gel Extraction kit (Qiagen), and end-repaired with the
END-It DNA End Repair Kit (Epicentre). End-repaired fragments were purified with the
QIAquick PCR purification kit (Qiagen), quantitated with the Qbit HS fluorometer (Invitrogen),
and ligated with the Fast Link Ligation kit (Epicentre) at the HinclI site to a pZE21 plasmid
vector that was linearized by PCR amplification as previously described(4). Ligation reactions
were dialyzed with a cellulose membrane (Millipore VSWP09025) and electroporated into E.
coli MegaX DH10B TI1R (Invitrogen) to create metagenomic libraries. These metagenomic
libraries were amplified in Luria-Bertani broth and library titers determined by serial dilution as
previously described(3). Amplified libraries were screened on Mueller-Hinton agar plates with
kanamycin (50ug/mL) and one of 18 antibiotics representing 8 drug classes (Table S2). For each
screening plate, the concentration of the library was adjusted such that the number of clones



plated was equal to 10x the number of unique clones in the library. For each selection condition,
a control organism (MegaX DH10B T1R transformed with unmodified pZE21) was also
screened to confirm susceptibility of the unmodified host organism.

b. lllumina library preparation

Metagenomic inserts from antibiotic-resistant clones were prepared for Illumina sequencing
exactly as previously described(4). Colonies that grew on antibiotic screening plates were
scraped into a slurry with a solution of 15% glycerol in Luria-Bertani broth and frozen at -80C
prior to further processing. Aliquots of plate-scrape slurries underwent cell lysis via
centrifugation and freeze-thaw, insoluble solids were pelleted via centrifugation, and the
supernatant was used as a template for PCR amplification of functionally-selected resistance-
conferring DNA fragments(4) using Taq polymerase (New England Biolabs) and a custom mix
of primers designed to complement DNA flanking the HinclI insertion site (primer F1, 5'-
CCGAATTCATTAAAGAGGAGAAAG; primer F2, 5'-
CGAATTCATTAAAGAGGAGAAAGG; primer F3, 5'-
GAATTCATTAAAGAGGAGAAAGGTAC; primer R1, 5'-
GATATCAAGCTTATCGATACCGTC; primer R2, 5-CGATATCAAGCTTATCGATACCG;
primer R3, 5-TCGATATCAAGCTTATCGATACC) . The amplified resistance-conferring
fragments were purified using the QIAquick PCR purification kit, quantitated using the Qubit
fluorometer, and sheared using the BioRuptor XL as previously described(4). Sheared DNA was
purified with the QIAGEN MinElute PCR Purification kit, then end-repaired with Taq
polymerase, T4 polymerase, T4 PNK, and dNTPs as previously described.(4) Pre-annealed
barcoded sequencing adapters were added to each end-repaired sample with a unique 7bp
oligonucleotide sequence assigned to each library and antibiotic selection combination as
previously described.(4) Barcoded samples were purified using the Qiagen PCR Purification kit
and size-selected for 300-400bp fragments on a 2% agarose gel in 0.5X TBE, then purified using
a QIAGEN MinElute Gel Extraction kit. The purified size-selected barcoded DNA was PCR-
enriched using I[llumina PCR Primer Mix and Phusion HF MasterMix as previously described.(4)
PCR-enriched samples were pooled for sequencing (10nM/sample) and submitted for [llumina
Hi-Seq paired-end 101-bp sequencing using the HiSeq 2000 platform at Washington
University’s GTAC (Genome Technology Access Center, St Louis, Missouri, USA).

¢. PARFuMS Assembly and Annotation

Functionally-selected metagenomic fragments submitted for Illumina platform sequencing were
assembled and annotated as previously described.(4) Paired-end sequence reads were binned by
exact-match barcodes, and fragments corresponding to each selection condition were assembled
and annotated using the PARFuMS (Parallel Annotation and Re-assembly of Functional
Metagenomic Selections) tool(4, 5). Fragments were assembled in an iterative process using
Velvet(6), Phrap(7), and custom scripts as previously described.(4) Open reading frames (ORFs)



were identified using MetaGeneMark(8), and annotated by using HMMER3(9) to search against
the TIGRFAMS(/0) and PFam(//) databases.

d. Assignment of Predicted Protein Ontology and Clustering

b1

Predicted protein ontologies were assigned to four categories “resistance gene”, “mobilization
element”, “transporter/efflux pump”, and “other” according to a keyword string search of the
annotations as previously described (3). Predicted proteins were clustered at the 97% identity
level using Cd-hit(/2) and contigs <500bp in size were filtered out. Statistical analysis was
performed on these 97% ID clusters using SAS version 9.3. Analyses were performed using log-
linear models assuming a negative binomial distribution of protein cluster counts. For analyses of
repeated measurements (months 6 and 11) the models were adjusted for within-subject and
within-family correlation. Tables of Pairwise sample similarity (1-dissimilarity) between all
samples were calculated using the binary Jaccard distance metric using the beta diversity.py
script from the QIIME package(/3). Significance of the groups in Figure 1 was calculated using
the all pairs t_test function from the QIIME(/3) stats module.

e. Collection of Twin Demographic Information

Infant diets were ascertained via parental questionnaire; antibiotic exposures were also reported
via parental questionnaire and verified in the infants’ medical records from their primary care
pediatricians.

I1. Supplementary Results
a. Metagenomic Library Phenotypes

The gut microbial communities of all subjects at all time points harbored genes conferring
resistance to a broad array of antibiotics (Fig. S1). As in our previous study of the pediatric fecal
resistome, resistance to chloramphenicol, tetracycline, cycloserine, and sulfonamides
(trimethoprim alone and in combination with sulfamethoxazole) was universal, suggesting that
these are key components of human-associated fecal resistomes. Resistance to colistin,
tigecycline, and gentamicin were less frequently observed. There were no apparent time-
dependent trends observed in infant resistome phenotypes during the first year of life: all infant
gut metagenomes demonstrated resistance to multiple antibiotics at the initial time point (1-2
months of age), and this resistance pattern tended to persist throughout the first year. There were
no apparent effects of amoxicillin exposure on the resistance phenotype, again suggesting that
the fecal resistome is established early, and is robust in the face of antibiotic perturbation at 8
months of age.

b. Beta-Lactam Resistance Genes

In the study cohort, all classes of beta-lactamases were represented. There were two major
groups of Class A beta-lactamases, including one group with high identity to TEM beta-



lactamases that was associated with extended-spectrum penicillin and beta-lactamase inhibitor
resistance, and another group of class A beta-lactamases that were more closely associated with
later-generation cephalosporin resistance (Figs. 3, S2). All fourth-generation cephalosporin
resistance was associated with either Class A or Class D beta-lactamases. The cephalosporin-
resistant group included a novel beta-lactamase (CL1135), which had only 67% protein identity
to a beta-lactamase from Akkermansia CAG:344 (WP_022395938); the source contig was
dissimilar to any known sequence, with only 76% identity to Akkermansia muciniphilia
(CP001071). This beta-lactamase was found in third- and fourth-generation cephalosporin
selections, emphasizing the potential for poorly-understood gut microbes to be a source of
resistance to clinically important antibiotics, even ones such as ceftazidime and cefepime, that
are not used in the outpatient setting. The TEM-like group of Class A beta-lactamases included
three proteins syntenic with mobilization elements, all of which had identical protein sequences
to known beta-lactamases from a variety of gut microbes: CL1167 to Bacillus subtilis beta
lactamase YP_004205979, CL1069 to Clostridium Boltae beta-lactamase WP 002567442, also
found in our survey of the resistomes of healthy children, and CL.1191 to Selenomonadales beta
lactamase WP_006555379, which was found only in infants and was associated with third- and
fourth-generation cephalosporin and monobactam resistance. The TEM-like group also included
beta-lactamases identical to proteins identified in human pathogens: CL1172 to klebsiella
pneumoniae TEM beta-lactamase WP 004151611 and CL1114 to Klebsiella oxytoca

WP 004137840, both of which were found only in infants and were found in extended-spectrum
penicillin selections, both with and without beta-lactamase inhibitors. This data is in agreement
with our previous finding that highly undesirable extended-spectrum beta-lactamases are often
found in healthy infants

Class C beta-lactamases were found in all subjects, and primarily had high identity to
Escherichia coli or Enterobacter aecrogenes ampC beta-lactamases. Classes B and D were much
less common, with only two Class B beta-lactamases found, both in mothers. Class D beta-
lactamases included two novel beta-lactamases, one (CL1013) that had only 56% protein identity
to a clostridial beta-lactamase (WP_005837179) and a second (CL1169) that was syntenic with a
mobile element and had only 70% protein identity to a class D beta-lactamase from Firmicutes
CAG:114 (WP_021920041). In both cases, the source contigs had only short-segment identity to
any known sequences (CL1013 with 69% identity and 11% coverage to clostridium
saccharolyticum (FP929037) and CL1169 with 84% identity over only 9% coverage to
Eubacterium rectale (CP001107)). This underscores the potential importance of cryptic gut
microbes as a source of novel, mobilizable resistance genes.



Maternal

Twin Birth Gestational Route of | Intrapartum
Family ID ID Gender | Placentation | Zygosity weight (g) Age (weeks) delivery Antibiotics
- A Female | Dichorionic Unknown 3013 38 | Vaginal None

Amoxicillin
Discordant | B Female | Dichorionic Unknown 3008 38 | Vaginal None
Antibiotic A Male Dichorionic Dizygotic 2768 37 | Vaginal ampicillin-sulbactam

Naive B Male Dichorionic Dizygotic 3041 37 | Vaginal ampicillin-sulbactam
Amoxicillin A Male Dichorionic Monozygotic 2450 36 | Vaginal ampicillin
Concordant | B Male Dichorionic Monozygotic 2445 36 | Vaginal ampicillin

Table S1. Twin Demographics




Antibiotic Class Antibiotic Concentration
Beta Lactam Penicillin Penicillin 128 ug/mL
Extended-spectrum | Piperacillin 16 ug/mL
+ beta-lactamase inhibitor | Piperacillin-Tazobactam 16/4 ug/mL
2" generation cephalosporin cefoxitin 32 ug/mL
3" generation cephalosporin cefotaxime 8 ug/mL
ceftazidime 16 ug/mL
4" generation cephalosporin cefepime 8 ug/mL
carbapenem meropenem 16 ug/mL
monobactam aztreonam 8 ug/mL
Aminoglycoside gentamicin 16 ug/mL
Tetracyclines tetracycline 8 ug/mL
Tigecycline 2 ug/mL
Polymyxin colistin 8 ug/mL
Quinolone ciprofloxacin 0.5 ug/mL
Folate synthesis trimethoprim 8 ug/mL
inhibitors
Trimethoprim- 2/38 ug/mL
sulfamethoxazole
cycloserine D-cycloserine 32 ug/mL
amphenicol chloramphenicol 8 ug/mL

Table S2. Antibiotics used for functional selections. All antibiotic selections were performed in Mueller-
Hinton agar with 50ug/mL kanamycin.




Il MDR_in_Bla_Sel=1

Empirical Standard Error Estimates
Parameter Estimate Standard 5% Cf)n.fidence z Pr> |Z]|

Error Limits

Intercept -0.5469 0.6788 -1.8774 0.7836| -0.81 0.4205
time 11 0.8196 0.4895 -0.1399 1.7790 1.67 0.0941
time 6 0.0000 0.0000 0.0000 0.0000 .
AbxExp 0 2.6053 0.5800 1.4686 3.7420 4.49 <.0001
AbxExp 1 0.0000 0.0000 0.0000 0.0000 . .
mobl -4.6687 0.9088 -6.4500 -2.8874| -5.14 <.0001

Table S3. Log-linear model of multidrug efflux pump protein clusters identified in beta-lactam selections
following amoxicillin exposure. The count matrix in the model includes family ID (Control = antibiotic-
naive control, Abx Disc = twins discordant for antibiotic exposure, Abx Conc = twins concordant for
antibiotic exposure), twin ID (1 = twin A, 2 = twin B), timepoint at which the source fecal sample was
collected (6 or 7 months, and 11 months), exposure to antibiotics prior to collection of the source fecal
sample (AbxExp 0 = no antibiotic exposure; AbxExp 1 = exposure to amoxicillin), co-localization with a
mobilization element (mobl 0 = no co-localization, mobl 1 = co-localization), and the number of
multidrug efflux pumps identified under the conditions stipulated. The output table describes the
contributions of three variables (time, antibiotic exposure, and co-localization with a mobilization
element) to the model. Multidrug efflux proteins were significantly more likely to be found in beta-
lactam selections following antibiotic exposure. They were significantly less likely to be co-localized with
a mobilization element than not.



Analysis Of Maximum Likelihood Parameter Estimates

Standard | Wald 95% Confidence

Parameter DF Estimate . Wald Chi-Square Pr > ChiSq
Error Limits

Intercept 1 11.9656 0.8974 10.2068 13.7244 177.80 <.0001
FamShare 1 -3.3731 0.4639 -4.2822 -2.4639 52.87 <.0001
MaxShare 1 -3.2655 0.4561 -4.1594 -2.3716 51.27 <.0001
FamShare*MaxShare 1 1.1797 0.2281 0.7326 1.6268 26.74 <.0001
Dispersion 1 0.1029 0.0768 0.0238 0.4440

Table S4. Log-linear model of within-family and between-family sharing of resistance-associated protein
clusters. The count matrix in the model includes the number of families a protein cluster was found in
(FamShare: 1, 2, or 3 families), the number of members of a given family a protein cluster was found in
(MaxShare: 1, 2, or 3 members),and the number of resistance protein clusters identified under the

conditions stipulated. The output table describes the contributions of three variables (FamShare,

MaxShare, and an interaction term FamShare*MaxShare) to the model. Resistance proteins were

significantly less likely to be found in multiple members of the same family or in multiple families, but
there was a significant positive interaction between within-family and between-family sharing (proteins

found in more than one member were more likely to also be found in more than one family.




Analysis Of Maximum Likelihood Parameter Estimates

Parameter DF Estimate Standard | Wald 95% Confidence | Wald Chi-Square Pr > ChiSq
Intercept 1 8.1273 0.6879 6.7790 9.4756 139.58 <.0001
FamShare 1 -1.1041 0.3124 -1.7164 -0.4918 12.49 0.0004
Mobile 1 -3.7332 1.0438 -5.7791 -1.6873 12.79 0.0003
FamShare*Mobile 1 0.5502 0.4941 -0.4183 1.5186 1.24 0.2655
MaxShare 1 -1.2461 0.3389 -1.9102 -0.5819 13.52 0.0002
Mobile*MaxShare 1 0.6047 0.4943 -0.3642 1.5735 1.50 0.2212
Dispersion 1 0.1029 0.0768 0.0238 0.4440

Table S5. Log-linear model of within-family and between-family sharing of resistance-associated protein
clusters. The count matrix in the model includes the number of families a protein cluster was found in
(FamShare: 1, 2, or 3 families), the number of members of a given family a protein cluster was found in
(MaxShare: 1, 2, or 3 members), co-localization with a mobilization element (Mobile = 1: co-localization
with a mobile element; Mobile = 0: no co-localization), and the number of resistance protein clusters
identified under the stipulated conditions. The output table describes the contributions of five variables
(FamShare, MaxShare, Mobile and the interaction terms FamShare*Mobile and MaxShare*Mobile) to
the model. There was no significant positive association between co-localization with a mobilization

element and sharing within (MaxShare) or between (FamShare) familes.




Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

X Standard 95% Confidence
Parameter Estimate .. Y4 Pr> |Z|
Error Limits
Intercept 1.7346 0.2553 1.2343 2.2349 6.79 <.0001
Mom -2.8332 0.8555 -4.5099 -1.1565| -3.31 0.0009

Table S6. Log-linear model of multidrug efflux pump protein clusters identified in chloramphenicol
selections in infants and mothers. The model includes columns for family ID (Control = antibiotic-naive
control, Abx Disc = twins discordant for antibiotic exposure, Abx Conc = twins concordant for antibiotic
exposure), member ID (0= mother, 1 = twin A, 2 = twin B), and the number of multidrug efflux pumps
identified under the conditions stipulated. The output table describes the contributions of the variable
“mom” (member ID = 0) to the model. Multidrug efflux proteins were significantly more likely to be

found in infants than in mothers.




Empirical Standard Error Estimates

X Standard 95% Confidence
Parameter Estimate _ z Pr> |Z|
Error Limits
Intercept 1.5044 0.2755 0.9643 2.0445 5.46 <.0001
Month -0.1880 0.0294 -0.2456 -0.1304 | -6.40 <.0001

Table S7. Log-linear model of multidrug efflux pump protein clusters identified in chloramphenicol
selections in infants over time. The count matrix in the model includes for family ID (Control = antibiotic-
naive control, Abx Disc = twins discordant for antibiotic exposure, Abx Conc = twins concordant for
antibiotic exposure), member ID (1 = twin A, 2 = twin B), timepoint (1, 6-7, and 11 months), and the
number of multidrug efflux pumps identified under each condition. The output table describes the
contributions of the variable “month” to the model. Multidrug efflux proteins were significantly less
likely to be found at later timepoints.



Analysis Of GEE Parameter Estimates

Empirical Standard Error Estimates

X Standard 95% Confidence
Parameter Estimate . z Pr> |Z|
Error Limits
Intercept 0.5108 0.1826 0.1530 0.8687 2.80 0.0051
Mom 0.8755 0.1826 0.5176 1.2333 4.80 <.0001

Table S8. Log-linear model of chloramphenicol acetyltransferase protein clusters identified in
chloramphenicol selections in infants over time. The count matrix in the model includes family ID
(Control = antibiotic-naive control, Abx Disc = twins discordant for antibiotic exposure, Abx Conc = twins
concordant for antibiotic exposure), member ID (0 = mom, 1 = twin A, 2 = twin B), and the number of
chloramphenicol acetyltransferases identified under each condition. The output table describes the
contributions of the variable “mom” (member ID = 0) to the model. Chloramphenicol acetyltransferases

were significantly more likely to be found in mothers than in infants.




Empirical Standard Error Estimates

X Standard 95% Confidence
Parameter Estimate .. Y4 Pr> |Z|
Error Limits
Intercept -1.1785 0.7206 -2.5907 0.2338 | -1.64 0.1019
Month 0.0866 0.0824 -0.0748 0.2481 1.05 0.2930

Table S9. Log-linear model of chloramphenicol acetyltransferase protein clusters identified in
chloramphenicol selections in infants over time. The count matrix in the model includes family ID
(Control = antibiotic-naive control, Abx Disc = twins discordant for antibiotic exposure, Abx Conc = twins
concordant for antibiotic exposure), member ID (1 = twin A, 2 = twin B), and timepoint (1, 6-7, and 11
months), and number of chloramphenicol acetyltransferases identified under each condition. The
output table describes the contributions of the variable “month” to the model. Chloramphenicol
acetyltransferases were not significantly more likely to be found at later timepoints.



Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard | Wald 959.6 C.onfidence Wald Chi-Square Pr > ChiSq
Error Limits

Intercept 1 11.6053 0.6307 10.3691 12.8414 338.57 <.0001
FamShare 1 -3.2214 0.3376 -3.8832 -2.5596 91.03 <.0001
MaxShare 1 -3.1086 0.3294 -3.7543 -2.4629 89.04 <.0001
FamShare*MaxShare 1 1.0810 0.1672 0.7533 1.4087 41.80 <.0001
SelfDiffTime 1 -2.8207 0.5071 -3.8146 -1.8268 30.94 <.0001
MaxShare*SelfDiffTime 1 0.5487 0.2736 0.0124 1.0849 4.02 0.0449
Dispersion 1 0.0541 0.0489 0.0092 0.3183

Table $10. Log-linear model of within-family sharing, between-family sharing, and appeareace of
resistance-associated protein clusters at different points in time. The count matrix in the model includes
the number of families a protein cluster was found in (FamShare: 1, 2, or 3 families), the number of
members of a given family a protein cluster was found in (MaxShare: 1, 2, or 3 members), whether or
not a resistance protein cluster was found in an individual at multiple timepoints (SelfDiffTime; 1=
present at multiple timepoints; 0 = present at a single timepoint), and the number of resistance protein
clusters identified under the stipulated conditions. The output table describes the contributions of five
variables (FamShare, MaxShare, SelfDiffTime and the interaction terms FamShare*MaxShare and
MaxShare*SelfDiffTime) to the model. There were significant positive associations between sharing
within (MaxShare) or between (FamShare) familes and between sharing within families (MaxShare) and
persistence within an individual at different timepoints (SelfDiffTime). Models including interaction
terms between persistence at different timepoints and sharing between families
(SelfDiffTime*FamShare) or sharing within and between families (SelfDiffTime*FamShare*MaxShare)

did not show any significant contributions from those interaction terms.
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Fig. S1. Antibiotic Resistance Phenotypes. Metagenomic libraries were constructed from fecal samples
collected from three mother-twin triads. One twin pair was antibiotic-naive for the 11-month study
period, and one pair was concordant and the other discordant for a 10-day course of oral amoxicillin
administered at 8 months of age. Maternal libraries were constructed using fecal samples collected at
the time of delivery. Infant libraries were constructed from fecal samples collected at three timepoints:
1-2 months of age (baseline), 6-7 months of age (30 days after solid food initiation), and 11 months of
age (30 days following antibiotic exposure). The metagenomic libraries were screened against an array
of antibiotics that were inhibitory to the control organism. Libraries that demonstrated resistance to a
given antibiotic are represented by dark squares; if the antibiotic screening plates had no growth, then
there is a corresponding white square. There was no resistance to meropenem or ciprofloxacin in any of
the subjects. All subjects at all time points had resistance to multiple antibotics.
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Fig. S2. Beta-Lactam Resistance Genotype and Phenotype. Predicted beta-lactam resistance proteins, collapsed into
97% identity clusters, are sorted by class and ordered according to position on a phylogenetic tree (Fig 5). Antibiotic
selection conditions are shaded purple, with dark purple indicating that a resistance protein was identified in that
antibiotic selection condition, and a light purple square indicating that the resistance protein was not identified in
that condition. Class A beta-lactamases fall into two distinct groups; one with resistance to extended-spectrum
penicillins and beta-lactamase inhibitors, and one with resistance to cephalosporins. Class C beta-lactamases
highlighted cephalosporin resistance. All Cefepime resistance was found in class A or D beta-lactamases or penicillin
binding proteins. Study subjects are shaded green; dark green indicates that a given resistance protein was identified
in a given subject at a given timepoint. Many beta-lactam resistance proteins persist over time (are present within a
given individual at multiple timepoints) or are present in both infants in a sibling pair. Mothers and infants tend to
have different sets of beta-lactam resistance proteins. The resistance phenotypes associated with the fecal
metagenome of each study subject is highlighted orange, with dark orange indicating that resistance to that antibiotic
was observed at that timepoint.
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Fig. S3. Twin Infant Fecal Resistomes Resemble Those of their Siblings At Each Timepoint. Predicted
resistance proteins were collapsed into 97% identity clusters. Binary Jaccard resistance protein cluster
composition similarity was determined at each of the three timepoints for (1) infants and their twin
sibling and (2) infants and an unrelated infant sampled at the same timepoint. The panel at left shows all
resistance proteins; the panel at right shows the subset of B-lactamases and penicillin binding proteins.
Significance was calculated using the Student’s t-test with 1,000 Monte Carlo simulations (* P<0.005).
Infant resistomes overall (panel A) were significantly more similar to a twin sibling or at each timepoint
than to those of unrelated infants. With the subset of 3-lactamases and penicillin binding proteins, the
difference in sharing between twins and their sibling was only significant at the second timepoint, likely
due to the smaller sample size
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