2-Amino-9*H*-pyrido[2,3-*b*]indole (AαC) Adducts and Thiol Oxidation of Serum Albumin as Potential Biomarkers of Tobacco Smoke Khyatiben V. Pathak¹, Medjda Bellamri², Yi Wang¹, Sophie Langouët², and Robert J. Turesky¹

¹Masonic Cancer Center and Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN 55455, USA

²UMR Inserm 1085 IRSET, Rennes1 University, UMS 3480 Biosit, F-35043 Rennes, France

Supplemental data

SUPPLEMENTAL FIGURE LEGENDS

SUPPLEMENTAL FIG. 1S. Product ion spectra of LGMFL*Y^[AaC]EY adduct (P6) $[M+2H]^{2+}$ at m/z 616.5 of SA modified with *N*-acetoxy-AaC (upper panel) and LGMFL*Y^[AaC]EY adduct (P6) $[M+2H]^{2+}$ at m/z m/z 619.5 of SA modified with *N*-acetoxy-[¹³C₆]AaC (lower panel), following trypsin-chymotrypsin digestion of SA.

SUPPLEMENTAL FIG. 2S. UPLC-ESI/MS² chromatograms A α C-peptide adducts from commercial SA (*A*) and plasma SA (*B*) modified with 1 mole equivalent *N*-acetoxy-A α C following digestion with trypsin/chymotrypsin: LQQ*C^[A α C]PF sulfenamide ([M+2H]²⁺ at *m/z* 458.7), LQQ*C^[SOA α C]PF sulfinamide ([M+2H]²⁺ at *m/z* 466.7), LQQ*C^[SO₂A α C]PF sulfonamide ([M+2H]²⁺ at *m/z* 474.7), LQQ*C^[SOA α C]PFEDHVK sulfinamide ([M+3H]³⁺ at *m/z* 514.2), LQQ*C^[SO₂A α C]PFEDHVK sulfonamide ([M+3H]³⁺ at *m/z* 519.6), L*Y^[A α C]EIAR ([M+2H]²⁺ at *m/z* 473.3), F*Y^[A α C]PELL ([M+2H]²⁺ at *m/z* 517.3) and full scan spectrum of A α C ([M+H]⁺ at *m/z* 184.1) were used to construct the ion chromatograms.

SUPPLEMENTAL FIG. 3S. Product ion spectra of (*A*) LQQ*C^[AaC]PF sulfenamide ([M+2H]²⁺ at m/z 458.7, upper level) and LQQ*C^[¹³C₆AaC]PF sulfenamide m/z 461.7, lower panel), (*B*) LQQ*C^[SOAaC]PF sulfinamide ([M+H]⁺ at m/z 932.4, upper panel) and LQQ*C^{[SO13}C₆AaC]</sup>PF sulfinamide ([M+H]⁺ at m/z 938.4, lower panel); and (*C*) LQQ*C^[SOAaC]PFEDHVK sulfinamide ([M+3H]³⁺ at m/z 514.2, upper panel) and LQQ*C^{[SO13}C₆AaC]</sup>PFEDHVK sulfinamide ([M+3H]³⁺ at m/z 516.2, lower panel) obtained from trypsin/chymotrypsin digest of SA obtained from human hepatocytes treated with 50 µM of an equimolar mixture of AaC and [¹³C₆]-AaC.

SUPPLEMENTAL FIG. 4S. Product ion spectra of (*A*) LQQ*C^[SO₂H]PFEDHVK sulfinic acid $[M+2H]^{2+}$ at *m/z* 688.3, (*B*) LQQ*C[SO₃H]PFEDHVK sulfonic acid $[M+2H]^{2+}$ at *m/z* 696.3, (*C*) DVFLGM^[O]F [M+H]+ at *m/z* 844.3 obtained from trypsin/chymotrypsin digest of SA of human hepatocytes treated with 50 µM of an equimolar mixture of A α C and [¹³C₆]A α C.

Supplemental Fig. 1S

Supplemental Fig. 2S

Supplemental Fig. 3S

Supplemental Fig. 4S

