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1 METHOD 1.2 Solving the Lagrangian dual problem

1.1 Solving the relaxed problem LR ) The main relation between IP and R is that LR'\) is an upper
bound of IP for any values of, i.e., TP < LR(\), VA& R™°.
Also, LR())’s solution, (Z, %), can be used to create a lower bound
on IP, denoted byb(\), by simply selecting the edge mappings,
', that are adjacent to the selected node mappihgs order to
gnprove the bounds, or eventually to solve IP, we need to solve its

In our approach, LRYX) is solved by a double bipartite matching
algorithm, wherelLocal bipartite matchings are used to find, for
each possible node mapping~ k, the best sets of edge mappings —
havingi < k as tail-node mapping. Then @lobal bipartite
matching finds the best set of node mappings according to th . et e
previously found sets of edge mappings. Lagrangian dua! problem (LD), which is the minimization of LR
Specifically, for a given node mappirig> k, alocal problem overA: LD = min LR(A).
consists of finding a set of edge mappingsj) < (k,1), k < I, Many methods have been proposed so far for solving Lagrangian
such that the corresponding head-nodes mappings! forma 1-  dual problem (Guignard, 2003). Here, we choose the sub-gradient
to-1 matching and such that the contribution of these edge mappingdescent (Heldet al., 1974) because of our large number of
to LR(\)’s objective function, denoted ¥ocal(ik), is maximum.  Lagrangian multipliers. The sub-gradient descent is an iterative
We recall that the contribution of an edge mappingi) « (k,1) method which generate a sequence of Lagrangian multiplier vectors
into LR(\)’s objective function ise* (i, §, k,1) (from (12) in the  A(0), A(1), A(2), ..., starting fromA(0) = 0, as follows:
main text). This corresponds to the following IP program: (UB— LB)
igl _ row a X —
R N OO &

o x (UB — LB)

NL()),
Local(ik) = maXZeg\J&l X Yijkl, 9 El( )
Yo

subject to constraints (10) and (11) from the main text. This problem X}/ (¢ + 1) = max(0, A (t) — —g(\F (1)),
can be rephrased as a maximum weighted bipartite matching llg @)l

problem between the neighboursiofi.e., all possiblej) and the  whereU B is the smallest upper bound diP found so far (i.e.,
neighbours oft (i. €. all possibld, k < 1), where the weight of  the smallest value of LR\)), LB is the largest lower bound on
mappingj to k is e”kl Denoting the maximum degree of a node 7P found so far (i.e., the largest value &f()\)), g()\”l( 1) =

in N1 and N> by d, this matching problem can be solved@{d®) — > 4.k<1 Vit i the sub-gradient vector component associated
time using, for example, the Hungarian algorithm or the SUCCGSSIV@O the corresponding relaxed constraint (8) from the main text,
shortest paths approach. g(NE (1)) = xj1 — 3=, yijr is the sub-gradient vector component

Theglobal problemconsists of finding a set of node mappings and associated to the corresponding relaxed constraint (9) from the
the corresponding edge mappings that have maximum contributiomain text,||g(A(¢))|| is the number of non-zero sub-gradient vector
to the objective function of LR\). The contribution of a node components, and is the step size. In our implementation, the step-
mappingi « k is n*(i, k) (see (12) in the main document), and size is initialised witha: = 1, but is divided by 1.3 every five
the contribution of the edge mappings connected te+ %k is  consecutive iterations that do not improve the bounds on IP and
Local(ik) (as previously found by solving the local problem). This is similarly multiplied by 1.3 every five consecutive iterations that

corresponds to the following IP program: improve the bounds.
A solution of LD is an optimal solution of IP if the corresponding
Global = maxz (4, k) + Local(ik)) X ik, sub-gradient vector components are all equal to 0, but the process

can be stopped earlierif B = LB.

subject to (4), (5), and (7) from the main text. Again, this problem

can be rephrased as a maximum weighted bipartite matchind-3 Extending seed alignments

problem between the nodes i and the nodes iv2, where the  As presented in the main document, the Lagrangian relaxation-
weight of mapping nodéto nodek is n* (i, k) + Local(ik). This  based solver is used to generate a suite of seed alignments, which
can be computed i®(|V|*) time. Thus, solving LR)) is done in  are optimized over theslected node mappings having protein

O(IV]> + |V [*d®) time. similarities higher than a given threshold (see the main text).
Supplementary Algorithm 1 presents the greedy heuristic that we
*to whom correspondence should be addressed use to extend each seed alignmefit,by using all possible node
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mappings, i.e., without being restricted to these selected nodduplicated (mapping edgg, j) with edge(k,!) is represented by

mappings.

Supplementary Algorithm 1. Between two networks,
N; and N, the Extend function heuristically refines a
seed alignment, f, so that its score, S(f), measured
by using L-GRAALs scoring function (see eq. 2
in the main document), is maximized. Note that
f(u) = 0 means thatu € Vi is not aligned yet, and
f'(v) = 0 means thatv € V, is not aligned vyet.

Extend(N1 = (‘/'17 El), No = (‘/'27 EQ), f)
//Step 1: Remove non-contributing node-mappings> v.
for u <» v € fdo
it S(f\{u > v)}) > S(f) then
f+ f\{u < v} (e, setf(u) =0)
//Step 2: Maximally exteng'
for uw € Vi such thatf(u) = 0 do
Findv € Vs s.t. f~1(v) = 0 andv =argmaxS(f U{u + v})
[« fU{u < v} (i.e, setf(u) =v)
//Step 3: Greedy local search
for w € V7 do
Fr e A\ {u e v}
Findv' € Vo s.t. f/~1(v") = @ andv’ =argmaxS(f’ U{u < v'})

two variablesy;;r: andz;;x:), each copy being bound to a different
end-node mapping, and the validity of the alignment then being
guaranteed by the equality betwegandz variables:

Tik < Yiksjl,
Tj1 < Zikjl,
Yijkl = Zijkl-

Natalie relaxes and tries to repair the edge equalities, using sub-
gradient and dual-ascent techniques. In the case of a dense network
the number of relaxed constraints in NATALIE’s scheme is upper-
bounded by:* (wheren is the number of nodes in the network).

In L-GRAAL, we first rewrite constraintsr;; < yir; tO
reduce their numbers, and then relax them. In our approach, the
number of relaxed constraints is upper-bounded:By Since the
efficiency of dual solvers is strongly dependant on the number of
relaxed constraints, our relaxation scheme is favourable. Of lesser
importance, NATALIE doubles the number of variables representing
edge-mapping, which can be an issue for general purpose solvers.

Finally, NATALIE only optimizes the alignments over the
sequence similar node mappings, but never tries to extend the
alignments using non-sequence related proteins. This means in
particular that NATALIE will never uncover functionally similar

if S(f) < S(f'U{u < v'}) then
[ U{u e}
Return f

proteins that are not sequence related.

1.5 Statistical significance

Edge Correctness.When aligning two networksv; = (Vi, E1)

Step one, which removes node mappings that do not contribute tand N, = (V2, E»), under the standard model of sampling without
the score of the alignment, is needed because such node mappingplacement, the probabiligyof obtaining at least common edges
may be included in the seed alignments (the repaired solutions frorhy chance is the tail of the hyper-geometric distribution:
the Lagrangian relaxation-based solver) when we use topological
similarity only: this is because whem = 0, the node mappings Z2 (M2 (N ")
do not contribute directly to the objective function (their weights p(k) = Z W? (1)
are all zero because = 0), but the edges adjacent to such nodes =k m
contribute to th(_e relaxed solution. Then, b_ecause the edge me’mpping;‘here”11 — |E1|, ma = |Ea|, andM = |Va| x (|Va| — 1)/2is the
chosen to be in the relaxed solutlo.n mlghF be |nf§a5|ble (Wherhumber of node pairs itV (Przulj et al., 2004).
only one of their two end-node mapping are in the alignment) such
infeasible edge mapping are removed when creating the repairddteraction prediction overlap. Let M be the number of protein
solution. If the repairing process removes all the edge mappingpairs that are not interacting according to BioGRID (i.e., that are
that are adjacent to the node mapping, this node mapping does noot connected by an edge in the human PPI network, or that are
contribute to the alignment’s score any more. not connected by an edge in the yeast PPI network). Among these
pairs, we predict from an alignmenin, potential interactions,
while 12D predictsms interactions. Under the standard model of
sampling without replacement, the probability that the two methods
predict at least interactions in common by chance is the tail of the
hyper-geometric distribution defined in Equation 1.

1.4 Differences between L-GRAAL and NATALIE

Since L-GRAAL and NATALIE both use integer programming and
Lagrangian relaxation to optimize their objective functions, we
briefly explain here how the two methods differ.

The two approaches start with the same modelling of node and
edge mappings: node mappings> k are represented with boolean
variablesz;,, edge mapping§, j) < (k, ) with boolean variables 2 SUPPLEMENTARY RESULTS
yijki, @nd the relationships between an edge mapping and its tw@.1  Semantic similarity of the mapped interactions

end-node mappings are first represented by the two constraints: We detail here the semantic similarity results that are obtained at the

interaction level.
As presented in supplementary Fig. 1, HUBALIGN, L-GRAAL,
and SPINAL best map together interactions that are involved in
Then, to apply different relaxation schemes, the two methodsimilar biological processes, in similar molecular functions, and
alter the above model in different ways. NATALIE applies so-calledthat are localised in similar cellular regions. When using GO-BP,
cost split technique: variables representing the edge mappings atlke average semantic similarity of the interaction mapping is 1.09

Tik < Yikjl,
Tj1 < Yikjl-
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for HUBALIGN, 1.08 for L-GRAAL and 1.04 for SPINAL. When the least fragmented network alignments, with LCC of 57.0% for
using GO-MF, the average semantic similarity of the interactionHUBALIGN, 49.1% for L-GRAAL and 47.8% for MI-GRAAL (see
mapping is 0.42 for HUBALIGN, 0.38 for L-GRAAL, and 0.37 the top-right panel of supplementary Fig. 4).

for SPINAL. Finally, when using GO-CC, the average semantic
similarity of the interaction mapping is 0.64 for HUBALIGN, 0.60
for L-GRAAL, and 0.50 for SPINAL.

Biological quality. L-GRAAL, NATALIE and HUBALIGN map
proteins that are involved in similar GO biological processes (GO-
BP) the best, with average semantic similarity of the protein
. L . mappings of 1.31 for L-GRAAL, 1.29 for NATALIE and 1.16 for
2.2 Balancing sequence and topological information HUBALIGN. Similar holds for GO molecular functions (GO-MF)

In the main document, we comment on how the topological ancand GO cellular component annotations (GO-CC), as presented
biological quality of the alignments change whenthe parameter in the the middle panels of supplementary Fig. 4. Finally,
that balances topological and sequence information, varies in [0,JHUBALIGN, L-GRAAL, and MI-GRAAL map interactions that

These changes are presented in supplementary Figure 2. are involved in similar biological processes, in similar molecular
functions, and that are localised in similar cellular regions the best
2.3 Predicting protein interactions (see the bottom panels of supplementary Fig. 4).

In the main document, we present the number of protein interactions

that can be predicted from L-GRAAL's alignment of yeast and

human PPI networks, when using a sequence identity threshold COMPARISON OF NETWORK ALIGNERS ON

between the mapped proteins of 70%, threshold for which ~THE NAPA BENCHMARK

the mapped proteins are expected to share the same functiorSince no GO term annotation is available on the NAPA benchmark,

Supplementary Figure 3 extends these results for more leniente cannot apply semantic similarity-based measures on this dataset.

sequence identity thresholds. In particular, we can predict 24,14However, the equivalence classes of all nodes are known. Thus,

protein interactions with a sequence identity threshold of 30%, fofwe evaluate the biological quality of the alignments by their node

which 90% of the mapped proteins are expected to be homologousorrectness (NC), which is the percentage of the nodes from

(Rost, 1999). Among these 24,147 predicted interactions, 2,27&e smaller network that are mapped with nodes from the same

(10.6%) are also predicted in the Interologous Interaction Databasequivalence classes.

(12D ver. 2.3)(Brown and Jurisica, 2007). While the overlap with  GHOST, SPINAL and L-GRAAL produce the largest alignments

12D prediction is small, it is statistically significant, with the on the NAPA benchmark, with edge-correctness of 76.3% for

probability to obtain better or equal overlaps by chance of lessGHOST, 74.4% for SPINAL and 72.7% for L-GRAAL (see the left

than 10~°? (using sampling without replacement presented inpanel of supplementary Fig. 5). NATALIE, L-GRAAL and GHOST

supplementary material section 1.5). best map sparse regions with sparse regions and dense regions with

dense regions, with symmetric sub-structures score of 64.0% for

2.4 Comparison of network aligners on binary protein NATALIE, 61.4% for L-GRAAL and 61.3% for GHOST (see the

interactions middle panel of supplementary Fig. 5). Finally, NATALIE, GHOST

In the main document and in the results presented above we use P?{lld SPINAL map equivalent proteins best, L-GRAAL being the

. o -
networks of physical interactions from BioGRID. These physical 4t 7\3/“32 /N(;7O;;4'grf:j’ 7Né'\ I’;Llisegg.s; a?:eg’f#:ﬁl‘ rlsad;g of
interactions include both binary binding relationships captured b 270, 11970, =70 pectively 'ght p
yeast-two-hybrid (Y2H) experiments, and co-complex interactionsSUppIementary Fig. 5). . .

' ' As already observed by Clark and Kalita (2014), the behaviour of

where proteins belong to stable complexes, as captured by affinity- ) o
purification coupled with mass-spectrometry. network aligners on the NAPA benchmark is different than on real

To assess the robustness of L-GRAAL to the interaction capturinggl:)I nstWOLkSHﬂgAOE?g'\II"GEAﬁL St':cl performs WeII”on the N;A‘PP'SI

technology, we compare it to the other network aligners on binary etnc rrl?ar E)t in ) r‘ WItIC np?r: OZ\TApreLy ;]N?]mor:kresl thod

Y2H PPI data only. For this purpose, we create a new set of pp€tWOrKS obtains poor results on the enchmark. Methods
- . . . such as NATALIE and GHOST achieve much better performances

networks from BioGRID using only Y2H captured interactions. the NAPA benchmark th | PPI network

The resulting networks are presented in supplementary Table fn € enchmark than on rea NETWOTKS.

and are much smaller than our previously considered networks.

Surprisingly, ISORANK, GHOST and PISWAP fail to align some

of these networks, despite their small sizes, which is why we chEFERENCES

include them in the foIIowing comparisons. Brown, K. R. and Jurisica, |. (2007). Unequal evolutionary conservation ofanum
protein interactions in interologous networkaenome biology, 8(5), R95.

Topological quality. HUBALIGN, L-GRAAL and NETAL produce  Clark, C. and Kalita, J. (2014). A comparison of algorithms for the pairwigmatent
the largest alignments, with edge-correctness of 69.2% forG of bioc'io?\;ci'zggg")’oiksaOi”forma“lcs P?g:)gtul?;)- 151200

uignara, . . Lagrangean relaxati ) , — .
HUBALIGN, 66.8% for L-GRAAL and_ 64.4% for NETAL (See Held, M., Wolfe, P., and Crowder, H. (1974). Validation of subgradientnotition.
the top-left panel of supplementary Fig. 4). NETAL, L-GRAAL  \athematical Programming, 6(L), 62-88.
and MI-GRAAL best map sparse regions with sparse regions an@rzulj, N., Corneil, D., and Jurisica, I. (2004). Modeling interactome: Scale-free or
dense regions with dense regions, with symmetric sub-structures geometric?Bioinformatics, 20, 3508-3515.
score of 53.4% for NETAL. 44.9% for L-GRAAL and 40.0% Rost, B. (1999). Twilight zone of protein sequence alignmeRt®tein Engineering,

o - 12(2), 85-94.

for MI-GRAAL (see the top-middle panel of supplementary Fig. A2).85-8
4). Finally, HUBALIGN, L-GRAAL and MI-GRAAL produce




N. Malod-Dognin & N. Przulj

4 SUPPLEMENTARY FIGURES AND TABLES

18 —————— 0.9 A 1.2 - B
16 1 0.8 1 N
E 14t [ . 4 E o7t ; . 4 £
5 12f ‘ § osr ‘ 5 osr ‘
o L i J w L J Q
& 1 s 05 O ol | J
2 o8t I 1 2 04 1 2
< < <
w06 1 w 03 1 w 04 1
<3 ) 5
S 04 1 g o02f 1 2
w o W o2l 4
02| _ ] 01} * ] ~
0 0 0
4 - >l >l = >l < w X o z >l >l = = - < w o 4 z = = = [ - < w o b4
15} M < M 1] M Z O3 zZ < 1) M < 0 < M Z O < Z o < < < v M zZ 7 < zZ
u z o 5 o T < = 3 z o & o T = < 5 £ 2 £ 9 o T 3 <
I & a I L £ B L £ a I X L £ o < L £ a & I L £ @ <
s Q@ o Q9 © % = £ O 7 s Q@ o o Q9 £ = £ 7 O x Q@ o 9 v £ = £ 7 O
> 4 = z 9 > 4 = z %] > 4 = z 2]
I I I

Supplementary Figure 1.Network aligners (x-axis) are compared according to the minimumagesand maximum semantic
similarity of their interaction mappings (the error-bars on y-axis), wrengiGO-BP (left panel), GO-MF (middle panel), and
GO-CC (right panel).
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Supplementary Figure 2.Effect of o (x-axis) on the quality of L-GRAAL's alignments, as indicated by the minimaagerage

and maximum value of the different scoring schemes (the errordpaysaxis).Top: Topological quality of the alignments, as
measured by edge-correctness (EC, left panel), by symmetristautiure score (S3, middle panel), and by largest connected
component (LCC, right panelMiddle: Biological quality of the protein mappings, as measured by the averagansie
similarity using GO-BP (left panel), GO-MF (middle panel), and GO-CChfriganel) of the aligned protein®&ottom:
Biological quality of the interaction mappings, as measured by the aveemantic similarity using GO-BP (left panel),
GO-MF (middle panel), and GO-CC (right panel) of the aligned interactions
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Supplementary Figure 3.The number of predicted interactions (y-
axis) as a function of the minimum sequence identity between the
aligned yeast-human proteins (x-axis). We add in red the number of
predicted interactions that are also predicted in 12D database.
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Id | #Nodes| #Edges
HS | 8,428 | 25,290
DM | 7,239 | 23,434
SC | 3,471 | 11,230
AT 4,473 | 9,316
CE | 3,073 | 5,249
MM | 1,173 | 1,588
SP 532 577
RN 196 188

Supplementary Table 1. The eight binary Y2H captured PPI
networks considered in this study.For each network (row), the
table presents its Id (column 1), its number of proteins (#Nodes,
column 2), and its number of interactions (#Edges, column 3).
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Supplementary Figure 4.Network aligners (x-axis) are compared according to the minimumageeand maximum of the
best scores (the error-bars on y-axis) that they achieve on thar@®pgeast-two-hybrid PPI networks from BioGRIDop:
Topological quality of the alignments, as measured by edge-corredtB€s left panel), by symmetric sub-structure score (S3,
middle panel), and by largest connected component (LCC, right)pavigldle: Biological quality of the protein mappings,
as measured by the average semantic similarity using GO-BP (left p&@iMF (middle panel), and GO-CC (right panel) of
the aligned protein®Bottom: Biological quality of the interaction mappings, as measured by the avesgantic similarity
using GO-BP (left panel), GO-MF (middle panel), and GO-CC (rightgbenf the aligned interactions.
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Supplementary Figure 5.Network aligners (x-axis) are compared according to the minimumageeand maximum of the
best scores (error-bars on y-axis) that they achieve on the 30gi@BI networks from the NAPA benchmaikeft: when
the topological quality of the alignments is measured by edge-correcfE€sMiddle: when the topological quality of
the alignments is measured by symmetric sub-structure score R&8jt: when the biological quality of the alignments is
measured by the node correctness (NC).




