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1 METHOD

1.1 Solving the relaxed problem LR(λ)
In our approach, LR(λ) is solved by a double bipartite matching
algorithm, whereLocal bipartite matchings are used to find, for
each possible node mappingi ↔ k, the best sets of edge mappings
having i ↔ k as tail-node mapping. Then aGlobal bipartite
matching finds the best set of node mappings according to the
previously found sets of edge mappings.

Specifically, for a given node mappingi ↔ k, a local problem
consists of finding a set of edge mappings(i, j) ↔ (k, l), k < l,
such that the corresponding head-nodes mappingsj ↔ l form a 1-
to-1 matching and such that the contribution of these edge mappings
to LR(λ)’s objective function, denoted byLocal(ik), is maximum.
We recall that the contribution of an edge mapping(i, j) ↔ (k, l)
into LR(λ)’s objective function iseλ(i, j, k, l) (from (12) in the
main text). This corresponds to the following IP program:

Local(ik) = max
y

∑

j,l

eλi,j,k,l × yijkl,

subject to constraints (10) and (11) from the main text. This problem
can be rephrased as a maximum weighted bipartite matching
problem between the neighbours ofi (i.e., all possiblej) and the
neighbours ofk (i.e., all possiblel, k < l), where the weight of
mappingj to k is eλijkl. Denoting the maximum degree of a node
in N1 andN2 by d, this matching problem can be solved inO(d3)
time using, for example, the Hungarian algorithm or the successive
shortest paths approach.

Theglobal problem consists of finding a set of node mappings and
the corresponding edge mappings that have maximum contribution
to the objective function of LR(λ). The contribution of a node
mappingi ↔ k is nλ(i, k) (see (12) in the main document), and
the contribution of the edge mappings connected toi ↔ k is
Local(ik) (as previously found by solving the local problem). This
corresponds to the following IP program:

Global = max
x

∑

i,k

(nλ(i, k) + Local(ik))× xik,

subject to (4), (5), and (7) from the main text. Again, this problem
can be rephrased as a maximum weighted bipartite matching
problem between the nodes inV1 and the nodes inV2, where the
weight of mapping nodei to nodek is nλ(i, k) + Local(ik). This
can be computed inO(|V |3) time. Thus, solving LR(λ) is done in
O(|V |3 + |V |2d3) time.
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1.2 Solving the Lagrangian dual problem
The main relation between IP and LR(λ) is that LR(λ) is an upper
bound of IP for any values ofλ, i.e.,IP ≤ LR(λ), ∀λ ∈ R+,0.
Also, LR(λ)’s solution,(~x, ~y), can be used to create a lower bound
on IP, denoted bylb(λ), by simply selecting the edge mappings,
~y′, that are adjacent to the selected node mappings~x. In order to
improve the bounds, or eventually to solve IP, we need to solve its
Lagrangian dual problem (LD), which is the minimization of LR(λ)
overλ: LD = min

λ
LR(λ).

Many methods have been proposed so far for solving Lagrangian
dual problem (Guignard, 2003). Here, we choose the sub-gradient
descent (Heldet al., 1974) because of our large number of
Lagrangian multipliers. The sub-gradient descent is an iterative
method which generate a sequence of Lagrangian multiplier vectors
λ(0), λ(1), λ(2), . . . , starting fromλ(0) = 0, as follows:

λijl

E1
(t+ 1) = max(0, λrow

ijl (t)−
α× (UB − LB)

||g(λ(t))||2
g(λijl

E1
(t))),

λkjl

E2
(t+ 1) = max(0, λcol

kjl(t)−
α× (UB − LB)

||g(λ(t))||2
g(λkjl

E2
(t))),

whereUB is the smallest upper bound onIP found so far (i.e.,
the smallest value of LR(λ)), LB is the largest lower bound on
IP found so far (i.e., the largest value oflb(λ)), g(λijl

E1
(t)) =

xjl−
∑

k,k<l
yijkl is the sub-gradient vector component associated

to the corresponding relaxed constraint (8) from the main text,
g(λkjl

E2
(t)) = xjl −

∑

i
yijkl is the sub-gradient vector component

associated to the corresponding relaxed constraint (9) from the
main text,||g(λ(t))|| is the number of non-zero sub-gradient vector
components, andα is the step size. In our implementation, the step-
size is initialised withα = 1, but is divided by 1.3 every five
consecutive iterations that do not improve the bounds on IP and
is similarly multiplied by 1.3 every five consecutive iterations that
improve the bounds.

A solution of LD is an optimal solution of IP if the corresponding
sub-gradient vector components are all equal to 0, but the process
can be stopped earlier ifUB = LB.

1.3 Extending seed alignments
As presented in the main document, the Lagrangian relaxation-
based solver is used to generate a suite of seed alignments, which
are optimized over theselected node mappings having protein
similarities higher than a given threshold (see the main text).
Supplementary Algorithm 1 presents the greedy heuristic that we
use to extend each seed alignment,f , by using all possible node
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mappings, i.e., without being restricted to these selected node
mappings.

Supplementary Algorithm 1. Between two networks,
N1 and N2, the Extend function heuristically refines a
seed alignment, f , so that its score,S(f), measured
by using L-GRAAL’s scoring function (see eq. 2
in the main document), is maximized. Note that
f(u) = ∅ means thatu ∈ V1 is not aligned yet, and
f−1(v) = ∅ means thatv ∈ V2 is not aligned yet.

Extend(N1 = (V1, E1), N2 = (V2, E2), f )
//Step 1: Remove non-contributing node-mappingsu↔ v.
for u↔ v ∈ f do

if S(f\{u↔ v)}) ≥ S(f) then
f ← f\{u↔ v} (i.e., setf(u) = ∅)

//Step 2: Maximally extendf
for u ∈ V1 such thatf(u) = ∅ do

Findv ∈ V2 s.t.f−1(v) = ∅ andv =argmaxS(f
⋃
{u↔ v})

f ← f
⋃
{u↔ v} (i.e., setf(u) = v)

//Step 3: Greedy local search
for u ∈ V1 do

f ′ ← f\{u↔ v}
Findv′ ∈ V2 s.t.f ′−1(v′) = ∅ andv′ =argmaxS(f ′

⋃
{u↔ v′})

if S(f) < S(f ′
⋃
{u↔ v′}) then

f ← f ′
⋃
{u↔ v′}

Return f

Step one, which removes node mappings that do not contribute to
the score of the alignment, is needed because such node mappings
may be included in the seed alignments (the repaired solutions from
the Lagrangian relaxation-based solver) when we use topological
similarity only: this is because whenα = 0, the node mappings
do not contribute directly to the objective function (their weights
are all zero becauseα = 0), but the edges adjacent to such nodes
contribute to the relaxed solution. Then, because the edge mappings
chosen to be in the relaxed solution might be infeasible (when
only one of their two end-node mapping are in the alignment) such
infeasible edge mapping are removed when creating the repaired
solution. If the repairing process removes all the edge mappings
that are adjacent to the node mapping, this node mapping does not
contribute to the alignment’s score any more.

1.4 Differences between L-GRAAL and NATALIE
Since L-GRAAL and NATALIE both use integer programming and
Lagrangian relaxation to optimize their objective functions, we
briefly explain here how the two methods differ.

The two approaches start with the same modelling of node and
edge mappings: node mappingsi ↔ k are represented with boolean
variablesxik, edge mappings(i, j) ↔ (k, l) with boolean variables
yijkl, and the relationships between an edge mapping and its two
end-node mappings are first represented by the two constraints:

xik ≤ yikjl,
xjl ≤ yikjl.

Then, to apply different relaxation schemes, the two methods
alter the above model in different ways. NATALIE applies so-called
cost split technique: variables representing the edge mappings are

duplicated (mapping edge(i, j) with edge(k, l) is represented by
two variables,yijkl andzijkl), each copy being bound to a different
end-node mapping, and the validity of the alignment then being
guaranteed by the equality betweeny andz variables:

xik ≤ yikjl,
xjl ≤ zikjl,
yijkl = zijkl.

Natalie relaxes and tries to repair the edge equalities, using sub-
gradient and dual-ascent techniques. In the case of a dense network,
the number of relaxed constraints in NATALIE’s scheme is upper-
bounded byn4 (wheren is the number of nodes in the network).

In L-GRAAL, we first rewrite constraintsxjl ≤ yikjl to
reduce their numbers, and then relax them. In our approach, the
number of relaxed constraints is upper-bounded byn3. Since the
efficiency of dual solvers is strongly dependant on the number of
relaxed constraints, our relaxation scheme is favourable. Of lesser
importance, NATALIE doubles the number of variables representing
edge-mapping, which can be an issue for general purpose solvers.

Finally, NATALIE only optimizes the alignments over the
sequence similar node mappings, but never tries to extend the
alignments using non-sequence related proteins. This means in
particular that NATALIE will never uncover functionally similar
proteins that are not sequence related.

1.5 Statistical significance
Edge Correctness.When aligning two networksN1 = (V1, E1)
andN2 = (V2, E2), under the standard model of sampling without
replacement, the probabilityp of obtaining at leastk common edges
by chance is the tail of the hyper-geometric distribution:

p(k) =

m2
∑

i=k

(

m2

i

)(

M−m2

m1−i

)

(

M

m1

) , (1)

wherem1 = |E1|, m2 = |E2|, andM = |V2|× (|V2|−1)/2 is the
number of node pairs inN2 (Přzulj et al., 2004).

Interaction prediction overlap. Let M be the number of protein
pairs that are not interacting according to BioGRID (i.e., that are
not connected by an edge in the human PPI network, or that are
not connected by an edge in the yeast PPI network). Among these
pairs, we predict from an alignment,m1 potential interactions,
while I2D predictsm2 interactions. Under the standard model of
sampling without replacement, the probability that the two methods
predict at leastk interactions in common by chance is the tail of the
hyper-geometric distribution defined in Equation 1.

2 SUPPLEMENTARY RESULTS

2.1 Semantic similarity of the mapped interactions
We detail here the semantic similarity results that are obtained at the
interaction level.

As presented in supplementary Fig. 1, HUBALIGN, L-GRAAL,
and SPINAL best map together interactions that are involved in
similar biological processes, in similar molecular functions, and
that are localised in similar cellular regions. When using GO-BP,
the average semantic similarity of the interaction mapping is 1.09
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for HUBALIGN, 1.08 for L-GRAAL and 1.04 for SPINAL. When
using GO-MF, the average semantic similarity of the interaction
mapping is 0.42 for HUBALIGN, 0.38 for L-GRAAL, and 0.37
for SPINAL. Finally, when using GO-CC, the average semantic
similarity of the interaction mapping is 0.64 for HUBALIGN, 0.60
for L-GRAAL, and 0.50 for SPINAL.

2.2 Balancing sequence and topological information
In the main document, we comment on how the topological and
biological quality of the alignments change whenα, the parameter
that balances topological and sequence information, varies in [0,1].
These changes are presented in supplementary Figure 2.

2.3 Predicting protein interactions
In the main document, we present the number of protein interactions
that can be predicted from L-GRAAL’s alignment of yeast and
human PPI networks, when using a sequence identity threshold
between the mapped proteins of 70%, threshold for which
the mapped proteins are expected to share the same functions.
Supplementary Figure 3 extends these results for more lenient
sequence identity thresholds. In particular, we can predict 24,147
protein interactions with a sequence identity threshold of 30%, for
which 90% of the mapped proteins are expected to be homologous
(Rost, 1999). Among these 24,147 predicted interactions, 2,273
(10.6%) are also predicted in the Interologous Interaction Database
(I2D ver. 2.3)(Brown and Jurisica, 2007). While the overlap with
I2D prediction is small, it is statistically significant, with the
probability to obtain better or equal overlaps by chance of less
than 10−99 (using sampling without replacement presented in
supplementary material section 1.5).

2.4 Comparison of network aligners on binary protein
interactions

In the main document and in the results presented above we use PPI
networks of physical interactions from BioGRID. These physical
interactions include both binary binding relationships captured by
yeast-two-hybrid (Y2H) experiments, and co-complex interactions,
where proteins belong to stable complexes, as captured by affinity-
purification coupled with mass-spectrometry.

To assess the robustness of L-GRAAL to the interaction capturing
technology, we compare it to the other network aligners on binary
Y2H PPI data only. For this purpose, we create a new set of PPI
networks from BioGRID using only Y2H captured interactions.
The resulting networks are presented in supplementary Table 1,
and are much smaller than our previously considered networks.
Surprisingly, ISORANK, GHOST and PISWAP fail to align some
of these networks, despite their small sizes, which is why we do
include them in the following comparisons.

Topological quality. HUBALIGN, L-GRAAL and NETAL produce
the largest alignments, with edge-correctness of 69.2% for
HUBALIGN, 66.8% for L-GRAAL and 64.4% for NETAL (see
the top-left panel of supplementary Fig. 4). NETAL, L-GRAAL
and MI-GRAAL best map sparse regions with sparse regions and
dense regions with dense regions, with symmetric sub-structures
score of 53.4% for NETAL, 44.9% for L-GRAAL and 40.0%
for MI-GRAAL (see the top-middle panel of supplementary Fig.
4). Finally, HUBALIGN, L-GRAAL and MI-GRAAL produce

the least fragmented network alignments, with LCC of 57.0% for
HUBALIGN, 49.1% for L-GRAAL and 47.8% for MI-GRAAL (see
the top-right panel of supplementary Fig. 4).

Biological quality. L-GRAAL, NATALIE and HUBALIGN map
proteins that are involved in similar GO biological processes (GO-
BP) the best, with average semantic similarity of the protein
mappings of 1.31 for L-GRAAL, 1.29 for NATALIE and 1.16 for
HUBALIGN. Similar holds for GO molecular functions (GO-MF)
and GO cellular component annotations (GO-CC), as presented
in the the middle panels of supplementary Fig. 4. Finally,
HUBALIGN, L-GRAAL, and MI-GRAAL map interactions that
are involved in similar biological processes, in similar molecular
functions, and that are localised in similar cellular regions the best
(see the bottom panels of supplementary Fig. 4).

3 COMPARISON OF NETWORK ALIGNERS ON
THE NAPA BENCHMARK

Since no GO term annotation is available on the NAPA benchmark,
we cannot apply semantic similarity-based measures on this dataset.
However, the equivalence classes of all nodes are known. Thus,
we evaluate the biological quality of the alignments by their node
correctness (NC), which is the percentage of the nodes from
the smaller network that are mapped with nodes from the same
equivalence classes.

GHOST, SPINAL and L-GRAAL produce the largest alignments
on the NAPA benchmark, with edge-correctness of 76.3% for
GHOST, 74.4% for SPINAL and 72.7% for L-GRAAL (see the left
panel of supplementary Fig. 5). NATALIE, L-GRAAL and GHOST
best map sparse regions with sparse regions and dense regions with
dense regions, with symmetric sub-structures score of 64.0% for
NATALIE, 61.4% for L-GRAAL and 61.3% for GHOST (see the
middle panel of supplementary Fig. 5). Finally, NATALIE, GHOST
and SPINAL map equivalent proteins best, L-GRAAL being the
4th with NC of 74.6%, NATALIE, GHOST and SPINAL leading
at 79.3%, 77.9%, and 76.1%, respectively (see the right panel of
supplementary Fig. 5).

As already observed by Clark and Kalita (2014), the behaviour of
network aligners on the NAPA benchmark is different than on real
PPI networks. Although L-GRAAL still performs well on the NAPA
Benchmark, HUBALIGN, which performs very well on real PPI
networks obtains poor results on the NAPA benchmark. Methods
such as NATALIE and GHOST achieve much better performances
on the NAPA benchmark than on real PPI networks.
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Id #Nodes #Edges
HS 8,428 25,290
DM 7,239 23,434
SC 3,471 11,230
AT 4,473 9,316
CE 3,073 5,249
MM 1,173 1,588
SP 532 577
RN 196 188

Supplementary Table 1. The eight binary Y2H captured PPI
networks considered in this study.For each network (row), the
table presents its Id (column 1), its number of proteins (#Nodes,
column 2), and its number of interactions (#Edges, column 3).
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Supplementary Figure 4.Network aligners (x-axis) are compared according to the minimum, average and maximum of the
best scores (the error-bars on y-axis) that they achieve on the 28 pairs of yeast-two-hybrid PPI networks from BioGRID.Top:
Topological quality of the alignments, as measured by edge-correctness (EC, left panel), by symmetric sub-structure score (S3,
middle panel), and by largest connected component (LCC, right panel). Middle: Biological quality of the protein mappings,
as measured by the average semantic similarity using GO-BP (left panel),GO-MF (middle panel), and GO-CC (right panel) of
the aligned proteins.Bottom: Biological quality of the interaction mappings, as measured by the averagesemantic similarity
using GO-BP (left panel), GO-MF (middle panel), and GO-CC (right panel) of the aligned interactions.
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Supplementary Figure 5.Network aligners (x-axis) are compared according to the minimum, average and maximum of the
best scores (error-bars on y-axis) that they achieve on the 30 pairsof PPI networks from the NAPA benchmark.Left: when
the topological quality of the alignments is measured by edge-correctness(EC). Middle: when the topological quality of
the alignments is measured by symmetric sub-structure score (S3).Right: when the biological quality of the alignments is
measured by the node correctness (NC).
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