
Bayesian sensitivity analysis of a cardiac cell model using a Gaussian

process emulator – Supporting information

E T Y Chang1,2, M Strong3 R H Clayton1,2,∗

1 Insigneo Institute for in-silico Medicine, University of Sheffield, Sheffield, UK.

2 Department of Computer Science, University of Sheffield, Sheffield, UK.

3 School of Health and Related Research, University of Sheffield, Sheffield, UK.

∗ E-mail: r.h.clayton@sheffield.ac.uk

Introduction

In this supporting information, we include details of the mathematics that underpin the approach taken in this

study. A much more in-depth coverage of Gaussian process (GP) emulators is given in the MUCM webpages

and the toolkit that has been developed there http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?

page=MetaHomePage.html. Our aim here is to describe the pathway through this material that was followed

for the present study. We have used notation that is consistent with the MUCM pages. Vector and matrix

quantities are indicated by bold type, and posterior estimates given design data are indicated with an asterisk.

Emulator construction

Each emulator was described by a GP, composed of a mean function and a covariance function,

GP(x) = h(x)Tβ + σ2c(x,x′). (1)

We used a linear form for the mean function with h(x) = (1,x)T ,

h(x)Tβ = β0 + β1x1 + ...+ βPxP , (2)

and a Gaussian form for the covariance

c(x1,x2) = exp

[
−

P∑
p=1

{
(xp,1 − xp,2)

δp

}2
]
. (3)

1

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=MetaHomePage.html
http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=MetaHomePage.html

This choice enabled direct calculation of variance based sensitivity indices. In these expressions x =

(x1, x2, ... , xP) are P inputs (parameters), the emulator hyperparameters β and δ are vectors of length

P, and σ2 is a scalar. These quantities were obtained by fitting to the design data, assuming weak prior

information on β and σ2 [?]. In this approach, we first obtained a best estimate for δ, δ̂, from the maximum

of the posterior log likelihood given the design data D and outputs f(D), and and a prior estimate of δ, δ0.

Best estimates of β and σ2, were then obtained from δ̂.

The value for δ̂ was chosen to be the value that optimised the posterior distribution π∗δ , given the design

data D and f(D), and assuming a prior distribution of δ,

π∗δ (δ) ∝ (σ̂2)−(n−q)/2|A|−1/2 |HTAH|−1/2 (4)

Where N was the number of design points (200), Q = P + 1, H an N ×Q matrix given by

H = [h(x1), h(x2), ... , h(xN)]T , (5)

A an N ×N matrix

A =

1 c(x1,x2) · · · c(x1,xN)

c(x2,x1) 1
...

...
. . .

c(xN ,x1) · · · 1

, (6)

c the covariance function given by Equation ??, x1,x2, ... ,xN rows of the design data D, and

σ̂2 =
1

(N −Q− 2)
f(D)T

{
A−1 −A−1H

(
HTA−1H

)−1
HTA−1

}
f(D). (7)

The value of δ̂ was obtained by maximising equation ?? using the design data as described in the imple-

mentation details below. This enabled σ̂2 to be calculated from equation ??, and β̂ was then calculated

from

β̂ =
(
HTA−1H

)−1
HTA−1f(D), (8)

The set of hyper parameters δ̂, σ̂2, and β̂, together with the mean function given by equation ?? and the

2

covariance function equation ?? specified each emulator.

Emulator validation

Once the emulators were constructed, they could be used to estimate the output (e.g. APD90) for an input

x using the posterior mean and variance of the emulator output given the design data. An asterisk is used to

denote a posterior output,. The posterior mean of each emulator output was given by a linear combination of

the inputs modified by a term describing the fit to the design data

m∗(x) = h(x)T β̂ + c(x)TA−1
(
f(D)−Hβ̂

)
, (9)

and the posterior variance by

v∗(x,x′) = σ̂2
{
c(x,x′)− c(x)TA−1c(x′) +

(
h(x)T − c(x)TA−1H

)
(
HTA−1H

)−1 (
h(x′)T − c(x′)TA−1H

)T }
.

(10)

In these equations the linear mean function h(x) was given by equation ??, the covariance matrix c(x)

that depends on δ̂ by equation ??, and the matrices H and A by equations ?? and ?? respectively.

These functions were used to validate the emulators against test data Dt and corresponding outputs f(Dt)

obtained from N t = 20 additional runs of the simulator. For each row j = 1, ... , NT of Dt with test inputs

xtj , and test output ytj = f(xtj), the standardised error between the predicted emulator output m∗(xt) and

the observed simulator output ytj was calculated from

Ej =
ytj −m∗(xtj)√
v∗(xtj ,x

t
j)
. (11)

The Mahanalobis distance for the complete set of test data was a measure of overall agreement between the

predicted and test data, and was calculated from

MD = (f(Dt)−m∗)T (V∗)−1 (f(Dt)−m∗), (12)

where m∗ was an N t × 1 vector (m∗(xt1),m
∗(xt2), ... ,m

∗(xtNt)), and V∗ is an N t × N t matrix, where

3

each element V∗(i, j) is v∗(xti,x
t
j). The theoretical distribution for MD has a mean of N t and a variance of

2N t(N t +N −Q− 2)/(N −Q− 4) [?].

Following validation, a new version of each emulator was built by combining the design data {D, f(D)}

and test data {Dt, f(Dt)} and using the N + N t = 220 sets of input and output data to obtain updated

values of the emulator hyperparameters δ̂, β̂ and σ̂2. The updated emulator was used for all subsequent

analysis.

Uncertainty in emulator output

If the probability density function of uncertain inputs is given by ω(x), then the posterior expectation of

the emulator output (http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=ProcUAGP.html)

with random inputs X is

E∗[E[f(X)]] =

∫
m∗(x)ω(x) dx, (13)

and the variance of this expectation was

V ar∗[E[f(X)]] =

∫∫
v∗(x, x′)ω(x)ω(x′) dxdx′. (14)

The expected variance of the emulator output was given by

E∗[V ar[f(X)]] = (I1 − V ar∗[E[f(x))]) + (I2 − (E∗[E[f(x))])2) (15)

where

I1 =

∫
v∗(x, x)ω(x) dx (16)

and

I2 =

∫
m∗(x)2ω(x) dx. (17)

Our choice of linear mean, weak prior, and Gaussian correlation function for the GP enabled the direct

calculation of these integrals, provided that the probability density function of the inputs ω(x) was multivariate

4

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=ProcUAGP.html

Gaussian with specified mean m and variance var. The expectation of the emulator output was then

E∗[E[f(x))] = Rh
T β̂ +Rt

Te, (18)

Where e was an N × 1 vector

e = A−1(f(D−Hβ̂) (19)

Rh a 1×Q vector

Rh = (1,m), (20)

where m was a 1×P vector of the mean values of each input, and Rt a 1×N vector, where the kth element

(of N) was given by

Rt(k) = |B|1/2 |2C+B|−1/2 exp

(
−Qk(m′k)

2

)
. (21)

In this expression C was a diagonal P × P prior correlation matrix where C(i, j) = δ̂(i) for i = j,

and C(i, j) = 0 otherwise, B the precision matrix of the input distribution ω(x), the inverse of a diagonal

covariance matrix CV where CV (i, j) = var(i) for i = j, and C(i, j) = 0 otherwise, and var(i) was the

ith element of a P × 1 variance vector var corresponding to the variance in input i. The function Qk(m
′
k)

yielded a single scalar

Qk(m
′
k) = 2 (m′k − xk)

T
C (m′k − xk) + (m′k −m)

T
B (m′k −m) (22)

where m′k was a P × 1 vector given by

m′k = (2C+B)
−1

(2Cxk +Bm) , (23)

and where xk was the kth row of inputs (with P elements) in the design data used to build the emulator.

The variance of the expectation of the emulator output V ar∗[E[f(x]] was given by

V ar∗[E[f(x)]] = σ̂2
[
U −RT

t A
−1Rt + (Rh −GTRt)

TW(Rh −GTRt)
]
. (24)

In this expression

5

U = |B||B2|−1/2 (25)

where B2 was a 2P × 2P matrix,

B2(1...P, 1...P) = 2C+B,

B2(P + 1...2P, P + 1...2P) = 2C+B,

B2(1...P, P + 1...2P) = −2C,

B2(P + 1...2P, 1...P) = −2C,

(26)

G an N ×Q matrix,

G = A−1H, (27)

and W a Q×Q matrix,

W = HTA−1H. (28)

The expectation of the variance of the emulator output E∗[V ar[f(x]] could then be calculated using

equation ??, where

I1 = σ̂2
[
1− trace

(
A−1Rtt

)
+ trace

(
W
(
Rhh − 2RhtG+GTRttG

))]
(29)

and

I2 = β̂TRhhβ̂ + 2β̂TRhte+ eTRtte. (30)

In these expressions Rtt was an N ×N matrix, where entry (k, l) was given by

Rtt(k, l) = |B|1/2 |4C+B|−1/2 exp (−Qkl(m′kl)/2) , (31)

where m′kl was a P × 1 vector

6

m′kl = (4C+B)
−1

(2Cxk + 2Cxl +Bm) , (32)

and Qkl(m
′
kl) a scalar given by

Qkl(m
′
kl) = 2(m′kl − xk)TC(m′kl − xk) + 2(m′kl − xl)TC(m′kl − xl)

+(m′kl −m)TB(m′kl −m).

(33)

Rht was a Q×N matrix, where the kth column was given by

Rht(k) = Rt(k)F, (34)

where F was a Q× 1 vector with entries (1,m′k(1)...m
′
k(P)), where m′k was given by equation ??. Finally,

Rhh was a Q×Q matrix Rhh = RT
hRh, where Rh was given by equation ??.

In the manuscript, Table 2 shows E∗[E[f(x))], V ar∗[E[f(x))], and E∗[V ar(f(x))]/E∗[E[f(x)]]×100 for

each of the eight emulators, obtained by setting the mean vector m for the inputs to be (0.5, 0.5, 0.5, 0.5, 0.5, 0.5),

and the variance vector var to be (0.04, 0.04, 0.04, 0.04, 0.04, 0.04). The distributions of APD90 in Figure

5(a) were obtained from E∗[E[f(x))] and E∗[V ar(f(x))] calculated using an identical mean vector with

all entries set to 0.5, and a variance vector where all elements were set to 0.0001 except for the element

corresponding to GK , which was set to 0.01, 0.02, 0.05, and 0.1.

Calculation of mean effects

The mean effect Mw(xw) shows how the emulator output averaged over uncertain inputs changes when input

xw is given a fixed value. The posterior expectation of Mw(xw) is a scalar, and is given by

Mw(xw) = Rwβ̂ +Twe. (35)

This equation had the same form as equation ??. Rw was a 1×Q vector with Rw(1) = 1, and Rw(i) = xw

for i = w, and the mean value of input i m(i) otherwise for i = 2...Q. Tw was a 1 × N vector, where the

kth element was given by

7

Tw(k) =

∏
i 6=w

[
B

1/2
ii

(2Cii +Bii)1/2
exp

(
−1

2

(
2CiiBii

2Cii +Bii

)
(xi,k −mi)

2

)]
× exp

(
−1

2
(xw − xw,k)T 2Cww (xw − xw,k)

)
,

(36)

where xi/w,k was the value of the i/wth (of P) input on the kth (of N) of the design data used to build the

emulator, and all other quantities are defined above.

Calculation of sensitivity indices from the GP emulators

For each emulator, the sensitivity index of each input was calculated from E∗[Vw]/E
∗[V ar[f(x)]]. The total

variance in emulator output E∗[V ar[f(x)]]was calculated as described in equation ??, and the variance in the

emulator output when input xw was fixed E∗[Vw], the sensitivity variance, was calculated from

E∗[Vw] = E∗[E[E[f(x|xw)]2]]− E∗[E[f(x)]2]. (37)

The first term in this equation was given by

E∗[E[E[f(x|xw)]2]] = σ̂2
{
Uw − trace

[
W
(
Qw − SwA

−1H−HTA−1STw +HTA−1PwA
−1H

)]}
+

eTPwe+ 2β̂TSwe+ β̂TQwβ̂,

(38)

where Uw was a scalar

Uw =
∏
i6=w

(
Bii

Bii + 4Cii

)1/2

, (39)

Pw was an N ×N matrix, where the (k, l)th element was

8

Pw(k, l) =

∏
i 6=w

[
Bii

2Cii +Bii
exp

(
−1

2

(
2CiiBii

2Cii +Bii

)[
(xi,k −mi)

2 + xi,l −mi)
2
])]

×
{(

Bww
4Cww +Bww

)1/2

exp

(
− 1

2

(
1

4Cww +Bww

)[
4C2

ww(xw,k − xw,l)2+

2CwwBww
(
(xw,k −mw)

2 + (xw,l −mw)
2
)])}

(40)

Qw is a Q×Q matrix, which was assembled in the following steps

Qw(1, 1) = 1

Qw(1, 2...Q) = m(1...P)

Qw(2...Q, 1) = m(1...P)

Qw(2...Q, 2...Q) = mmT

Qw(w + 1, w + 1) = Qw(w + 1, w + 1) +B−1ww, (41)

and Sw a Q×N matrix, where the (k, l)th element was

Sw(k, l) = E[hk(x)]
∏

1≤i≤P

(
B

1/2
ii

(2CiiBii)1/2

)
exp

[
−1

2

(
2CiiBii

2Cii +Bii
(xi,l −mi)

2

)]
(42)

E[hk(x)] =

1 if k = 1

mk if k 6= w

2Ckkxk,l+Bkkmk

2Ckk+Bkk
if k = w

(43)

Implementation

All of the code for this study was implemented in Matlab, using expressions detailed in the MUCM toolkit

(http://mucm.aston.ac.uk/MUCM/MUCMToolkit/). The code was tested against the numerical examples

provided in the toolkit.

Each emulator was fitted using design data and outputs obtained from N = 200 runs of the LR1991

9

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/

simulator, so for each emulator D was an N × P (200 × 3) matrix, and f(D) an N × 1 (200 × 1) vector.

The design data were used to construct H. An initial estimate of σ2 was then obtained from equation ??.

Following the MUCM toolkit, we re-parameterised equation ?? with τ = 2 loge(δ). This removes a constraint

on the optimisation because δ ranges from 0→∞ whereas τ can range from −∞→∞. Matrix A was thus

calculated from equations ?? and ?? with δ = exp(τ/2), and the Nelder-Mead algorithm as implemented in

the Matlab function fminsearch was then used to find the minimum of

− π∗(τ) = −π∗δ (exp(τ/2)) (44)

with a tolerance of 10−5 and a maximum number of iterations set to 2000.

A vector of initial values for the correlation length hyperparameters, δ0, was required for the Nelder-Mead

minimisation. We found the fit of the emulator to the test data was sensitive to the choice of δ0. Good sets

of initial estimates (found by trial and error) were (0.1, 1.0, 1.0, 1.0, 1.0, 1.0) for the emulator for maximum

dV /dT , (0.1, 1.0, 1.0, 0.1, 1.0, 1.0) for peak Vm, the variance of each column of D for the emulators for dome

voltage, APD90, and resting voltage, and (1.0, 1.0, 1.0, 1.0, 1.0, 1.0) for the remaining emulators.

10

