SUPPORTING INFORMATION CHARMM Drude Polarizable Force Field for Aldopentofuranoses and Methylaldopentofuranosides

Madhurima Jana^{1,2} and Alexander D. MacKerell, Jr.^{1,*}

¹Department of Pharmaceutical Sciences, University of Maryland, 20 Penn Street HSF II, Baltimore, Maryland 21201, USA

²Department of Chemistry, National Institute of Technology Rourkela, Rourkela 769008,

Odisha, India

* Corresponding author. E-mail: (A.D.M.) alex@outerbanks.umaryland.edu.

Atoms	Chai	rges	Alpha		Thole	
	Upper	Lower	Upper	Lower	Upper	Lower
C1	0.173	0.073	-1.0	-2.10	2.4	0.3
01	-0.15	-0.25	-0.5	-1.3	2.4	0.3
HO1	0.37	0.27				
C4	0.142	0.042	-1.0	-2.10	2.4	0.3
O4	-0.087	-0.187	-0.5	-1.3	2.4	0.3
C5	-0.01	-0.11	-1.0	-2.10	2.4	0.3
O5	-0.18	-0.28	-0.5	-1.3	2.4	0.3
HO5	0.41	0.31				
C2/C3	0.06	-0.04	-1.0/-1.0	-2.10/-2.10	2.4/2.4	0.3/0.3
02/03	-0.15	-0.25	-0.5/-0.5	-1.3/-1.3	2.4/2.4	0.3/0.3
HO2/HO3	0.37	0.27				

Table S1: Upper and lower bounds used for the optimization of the electrostatic parameters in the aldopentoses.

- 0 (
Arib	Туре	E _{QM}	E _{MM} (Drude)	ΔE (Drude	E_{MM} (Add)	ΔE (Add
				MM-QM)		MM-QM)
HO1	D	-6.29	-5.14	1.15	-6.93	-0.64
HO2	D	-0.38	-0.37	0.01	0.81	1.19
HO5	D	-5.96	-5.69	0.27	-7.37	-1.41
Н5	D	-1.53	-0.81	0.72	-1.07	0.46
Н5	D	-1.32	-1.22	0.10	-1.39	0.08
O4	LP	-5.60	-5.66	-0.06	-5.14	0.46
O4	BIS	-4.65	-4.14	0.51	-3.81	0.84
01	LP	-2.30	-3.09	-0.79	-3.54	-1.25
O2	LP	-4.88	-6.24	-1.36	-6.41	-1.54
O2	BIS	-4.34	-6.23	-1.89	-5.99	-1.65
03	BIS	-5.96	-6.07	-0.11	-6.81	-0.85
05	LP	-4.86	-5.11	-0.25	-5.55	-0.69
05	BIS	-4.81	-5.14	-0.33	-5.94	-1.13
I	Average differenc	e	-0.	.16	-0	.48

Table S2. QM, Drude (Globalfit parameters) and Additive ARIB–Water Minimum Interaction Energies (kcal/mol).

D represents the donor sites, BIS and LP represents Acceptor sites

Table S3. QM	I, Drude (Globa	alfit parameters) and	Additive	ARIB-	-Water	Minimum	Distances
(Å).		-						

Arib	Туре	R _{QM}	R _{MM} (Drude)	ΔR (Drude	R _{MM} (Add)	ΔR (Add
				MM-QM)		MM-QM)
HO1	D	1.85	1.87	0.02	1.82	-0.03
HO2	D	3.62	2.70	-0.92	4.50	0.88
HO5	D	1.89	1.88	-0.01	1.82	-0.07
H5	D	2.41	2.79	0.38	2.84	0.33
H5	D	2.44	2.72	0.28	2.68	0.24
O4	LP	1.89	1.79	-0.10	1.73	-0.16
O4	BIS	1.95	1.88	-0.07	1.77	-0.18
01	LP	3.93	4.02	-0.09	4.11	0.08
O2	LP	1.96	1.79	-0.17	1.88	-0.08
O2	BIS	1.99	1.76	-0.23	1.87	-0.12
03	BIS	1.90	1.81	-0.09	1.88	-0.02
05	LP	1.96	1.83	-0.13	1.88	-0.08
05	BIS	1.97	1.86	-0.11	1.87	-0.10
	Average differenc	e	-0.	09	0.	05

D represents the donor sites, BIS and LP represents Acceptor sites

Brib	Туре	Eom	E _{MM} (Drude)	ΔE (Drude	E _{MM} (Add)	ΔE (Add
				MM-QM)		MM-QM)
HO1	D	-5.26	-4.78	0.48	-6.66	-1.40
HO3	D	-0.02	-0.44	-0.42	0.07	0.09
HO5	D	-6.68	-6.00	0.68	-8.28	-1.60
Н5	D	-1.74	-1.11	0.63	-1.33	0.41
Н5	D	-1.97	-1.61	0.36	-1.99	-0.02
O4	LP	-5.39	-6.10	-0.71	-4.82	0.57
O4	BIS	-5.35	-4.82	0.53	-5.05	0.30
01	LP	-4.17	-4.38	-0.21	-4.23	-0.07
01	BIS	-4.58	-5.09	-0.51	-4.96	-0.38
O2	LP	-4.89	-5.66	-0.77	-5.27	-0.38
O2	BIS	-5.17	-6.06	-0.89	-6.04	-0.87
03	BIS	-4.31	-4.97	-0.66	-4.68	-0.37
05	LP	-4.15	-4.30	-0.15	-4.84	-0.69
05	BIS	-3.79	-4.44	-0.65	-4.86	-1.07
I	Average differenc	e	-0.	16	-0	.39

Table S4. QM, Drude (Globalfit parameters) and Additive BRIB–Water Minimum Interaction Energies (kcal/mol).

D represents the donor sites, BIS and LP represents Acceptor sites

Table S5.	QM,	Drude	(Globalfit	parameters)	and	Additive	BRIB-V	Nater	Minimum	Distances
(Å).										

Brib	Туре	R _{QM}	R _{MM} (Drude)	ΔR (Drude	R _{MM} (Add)	ΔR (Add
				MM-QM)		MM-QM)
HO1	D	1.88	1.87	0.01	1.82	-0.06
HO2	D	4.35	4.49	0.14	4.49	0.14
HO5	D	1.87	1.87	0.00	1.82	-0.05
H5	D	2.29	2.71	0.42	2.67	0.38
H5	D	2.37	2.68	0.31	2.64	0.27
O4	LP	1.90	1.82	0.08	1.78	-0.12
O4	BIS	1.93	1.84	0.09	1.74	-0.19
01	LP	1.98	1.82	-0.16	1.91	-0.07
01	BIS	1.95	1.82	-0.13	1.89	-0.06
O2	LP	1.95	1.78	-0.17	1.89	-0.06
O2	BIS	1.94	1.79	-0.15	1.87	-0.07
03	BIS	1.97	1.80	-0.17	1.90	-0.07
05	LP	1.98	1.86	-0.12	1.90	-0.08
05	BIS	1.96	1.83	-0.13	1.86	-0.10
I	Average differenc	e	0.	00	-0.	.01

D represents the donor sites, BIS and LP represents Acceptor sites

Table S6: Furanose conformations used to fit QM energies at the RIMP2/cc-pVQZ//MP2/6-31G(d) level for different dihedral types. The subscripts R, E and H indicate ring, exocyclic and hydroxyl atoms, respectively.

Compounds	No. of conformations	Type of dihedrals
aarb	263	$C_{R/E}$ - C_R - C_R - O_H , C_R - C_R - O_R
barb	279	C_R - C_R - O_H - H , C_R - C_E - O_H - H
arib	276	$C_R-O_R-C_R-C_{R/E}, C_R-O_R-C_R-O_H$
brib	278	$O_H - C_R - C_R - O_H, O_R - C_R - O_H - H, C_R - C_R - O_H$
		C_{E} - O_{H}

 Table S6b. List of specific targeted dihedrals for the aldopentofuranoses

1 0	1
Type of dihedral	Specific dihedral
$C_R-C_R-C_R-C_R$	C1C2C3C4
$C_R-C_R-C_R-O_R$	C2C3C4O4, C3C2C1O4,
$C_{R/E}$ - C_{R} - C_{R} - O_{H}	C3C2C101, C4C3C202, C5C4C303, C1C2C303
C _R -C _R -O _H -H	С1С2О2НО2, С2С3О3НО3, С3С2О2НО2,
	С4С3О3НО3, С2С1О1НО1
$C_R-C_E-O_H-H$	С4С5О5НО5
$C_R-O_R-C_R-C_{R/E}$	C104C4C3, C404C1C2, C404C101, C104C4C5
$C_R-O_R-C_R-O_H$	C4O4C1O1
$O_R-C_R-C_R-O_H$	02C2C104, 03C3C404
$O_{H}-C_{R}-C_{R}-O_{H}$	02C2C3O3, 01C1C2O2
O _R -C _R -O _H -H	O4C1O1HO1
$C_R-C_R-C_E-O_H$	C3C4C5O5

Figure S1. Convergence of the RMSD between MM and QM total dipole moments for methyl-furanosides using the MCSA approach.

Figure S2. Relative QM (red) and Drude MM energies before (green) and after (blue) dihedral fit for conformations of α -methyl-arabinofuranoside, β -methyl-arabinofuranoside, α -methyl-lyxofuranoside.

Figure S3. Interaction geometries of methyl- α -D-arabinofuranoside-water (left) and methyl- β -D-arabinofuranoside-water (right) interactions.

Table S7. Summary of the OME-AARB-water and OME-BARB-water interaction energies (kcal/mol) for the Drude FF and the CHARMM additive FF.

Compds	Energy	Drude	Additive
	Avg difference	0.278	0.553
Me-aarb	RMSD	0.486	0.746
	Avg abs difference	0.405	0.592
	Avg difference	-0.09	0.09
Me-barb	RMSD	0.499	0.764
	Avg abs difference	0.412	0.672

Table S8. Differences in average internal geometries of methyl-aldopentofuranoses as calculated from simulations of infinite crystals and experimental crystal data.

Compounds	methyl-α-	methyl-β-	methyl-α-	methyl-α-	Average
1	arabinofuranoside	arabinofuranoside	xylofuranoside	lyxofuranoside	C C
Bonds			-	-	1
O4-C1	0.01	0.03	0.02	0.01	0.02
C1-C2	0.00	-0.01	0.00	0.00	0.00
C2-C3	0.00	-0.01	0.00	0.00	0.00
C3-C4	-0.01	-0.01	0.00	0.01	0.00
O1-CM	-0.02	-0.01	-0.01	-0.02	-0.01
C2-O2	0.02	0.04	0.03	0.03	0.03
C3-O3	0.02	0.03	0.02	0.03	0.03
C4-C5	0.01	0.01	0.01	0.02	0.01
C5-O5	0.00	0.01	0.01	-0.01	0.00
C4-O4	-0.01	0.02	-0.02	-0.02	-0.02
C1-O1	0.03	0.03	0.03	0.04	0.03
Average diff.	0.01	0.01	0.01	0.01	0.01
Angles			•	•	•
O4-C1-C2	-1.64	-1.27	-0.08	0.10	-0.77
C2-C1-O1	1.38	2.77	2.20	0.37	1.68
C1-C2-C3	0.10	-0.15	0.31	-0.57	-0.08
C2-C3-C4	-0.86	-1.10	-0.45	-0.02	-0.61
O4-C4-C5	-0.37	-4.35	0.14	-0.94	-1.38
C1-O1-CM	-1.96	-1.41	-1.47	-2.43	-1.82
C3-C2-O2	-4.86	-1.24	-2.17	0.06	-2.05
C4-C3-O3	-2.53	0.04	1.16	3.26	0.48
C4-C5-O5	1.02	-1.30	1.19	0.26	0.30
C3-C4-O4	-1.58	0.34	1.15	-0.60	-0.17
C4-O4-C1	0.27	0.48	-0.35	-0.21	0.05
04-C1-O1	-1.28	-0.19	-0.72	0.08	-0.53
Average diff.	-1.03	-0.62	0.08	-0.05	-0.41
Dihedrals	•		·	·	·
C4-O4-C1-C2	-1.35	-3.47	1.55	-2.83	-1.53
O4-C1-C2-C3	-1.56	-1.14	-1.41	1.66	-0.61
C1-C2-C3-C4	3.39	5.46	0.79	-0.29	2.34
C2-C3-C4-O4	-3.98	-7.05	0.13	-1.71	-3.15
C3-C4-O4-C1	3.65	6.53	-1.07	2.60	2.93
C2-C1-O1-CM	12.16	-5.92	6.43	4.11	4.19
С3-С2-О2-НО2	-2.88	-4.67	4.30	-3.70	-1.74
С4-С3-О3-НО3	-9.46	-3.15	4.79	4.36	-0.87
04-C4-C5-O5	4.02	1.06	-0.43	3.35	2.00
С4-С5-О5-НО5	-3.64	1.05	-9.77	11.18	-0.30
C1-O4-C4-C5	-0.37	2.03	-0.24	-1.75	-0.08
Average diff.	0.00	0.84	0.46	1.54	0.29

Figure S4. Time evolution plot of pseudorotation angle for aarb, arib, axyf, alyf (left panel, top to bottom) and barb, brib, bxyf, blyf (right panel, top to bottom).

Figure S5. Distribution of pseudorotation angle for aarb, arib, axyf, alyf (a,c,e,g at left panel) and barb, brib, bxyf, blyf (b,d,f,h at right panel).

Table S9. Classical Drude oscillator based polarizable force field for furanose monosaccharides

```
* DRUDE topology and parameter stream file
* Furanoses,
*
read rtf card append
* Drude Furanoses
38
!furanoses, rima
RESI ARIB
                   0.000 ! alpha-Ribose
!RING * 5 C1 C2 C3 C4 O4
!
!
          HO5--05
!
                \setminus
                      04
!
            H51--C5
                    / \
                              Н1
              / \setminus /
!
                           \setminus /
                           C1
!
             H52 C4
                 / \setminus
                            / 
!
                         / 01--но1
!
                H4
                     \backslash
!
                    C3----C2
!
                    / \setminus / \setminus
             НОЗ--ОЗ НЗ О2 Н2
!
!
                          HO2
!
GROUP
ATOM 04 OD305A 0.000 ALPHA -0.684 THOLE 2.074
ATOM C1 CD31FA 0.124 ALPHA -1.022 THOLE 0.462
ATOM H1 HDA1A 0.070
ATOM 01 OD31E 0.000 ALPHA -1.176 THOLE 1.559
ATOM HO1 HDP1A
                0.333
ATOM C4 CD31FC 0.112 ALPHA -1.014 THOLE 0.820
ATOM H4 HDA2E 0.069
ATOM LP1A LPD -0.202
               -0.202
ATOM LP1B LPD
ATOM LP4A LPD
                -0.152
ATOM LP4B LPD
                -0.152
ATOM LPX4 LPD
                 0.000 !dummy for anisotropic polarizability
GROUP ! taken from ETOH
ATOM C5 CD32A -0.086 ALPHA -1.805 THOLE 0.353
ATOM H51 HDA2A 0.080
ATOM H52 HDA2A 0.080
                 0.000 ALPHA -0.732 THOLE 1.027
ATOM 05
         OD31A
ATOM HO5 HDP1A
                 0.328
ATOM LP5A LPD
                 -0.201
ATOM LP5B LPD
                -0.201
GROUP ! taken from glycerol
ATOM C2 CD31FB -0.006 ALPHA -1.438 THOLE 1.015
ATOM H2
       HDA1A 0.070
ATOM 02 OD31E 0.000 ALPHA -0.940 THOLE 0.670
ATOM HO2 HDP1A
                 0.322
ATOM LP2A LPD -0.193
```

ATOM LP2B LPD -0.193 GROUP ! taken from glycerol ATOM C3 CD31FB -0.006 ALPHA -1.127 THOLE 1.340 ATOM H3 HDA1A 0.070 ATOM O3 OD31E 0.000 ALPHA -0.881 THOLE 0.328 ATOM HO3 HDP1A 0.322 ATOM LP3A LPD -0.193 ATOM LP3B LPD -0.193 1 BOND 04 C1 C1 H1 C1 01 01 HO1 BOND C1 C2 C2 H2 C2 O2 O2 HO2 BOND C2 C3 C3 H3 C3 O3 O3 HO3 BOND C3 C4 C4 H4 C4 C5 C4 O4 BOND C5 H51 C5 H52 C5 O5 O5 HO5 BOND O1 LP1A O1 LP1B BOND O2 LP2A O2 LP2B BOND O3 LP3A O3 LP3B BOND 04 LP4A 04 LP4B 04 LPX4 BOND O5 LP5A O5 LP5B

LONEPAIR relative LP1A 01 C1 H01 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP1B 01 C1 H01 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 01 C1 LP1A LP1B A11 0.8108 A22 1.2162

LONEPAIR relative LP2A O2 C2 HO2 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP2B O2 C2 HO2 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY O2 C2 LP2A LP2B A11 0.8108 A22 1.2162

LONEPAIR relative LP3A 03 C3 H03 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP3B 03 C3 H03 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 03 C3 LP3A LP3B A11 0.8108 A22 1.2162

LONEPAIR bisector LP4A 04 C1 C4 distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LP4B 04 C1 C4 distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX4 04 C1 C4 distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY 04 LPX4 LP4A LP4B A11 0.8889 A22 1.2222

LONEPAIR relative LP5A 05 C5 H05 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP5B 05 C5 H05 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 05 C5 LP5A LP5B A11 0.8108 A22 1.2162

!	IC	table;	from	minim	ized geo	metry*			
IC	C4	04	C1	C2	1.4343	107.06	-43.51	102.91	1.5564
IC	04	C1	C2	C3	1.4227	102.91	29.68	103.27	1.5615
IC	C1	C2	C3	C4	1.5564	103.27	-6.90	103.97	1.5386
IC	С3	04	*C4	C5	1.5386	104.85	125.17	112.30	1.5446
IC	С3	04	*C4	H4	1.5386	104.85	-116.42	106.12	1.1143
IC	04	C4	С5	05	1.4343	112.30	-178.59	110.88	1.4293
IC	C4	С5	05	HO5	1.5446	110.88	-86.85	110.49	0.9639
IC	05	C4	*C5	Н51	1.4293	110.88	119.78	108.95	1.1027
IC	05	C4	*C5	Н52	1.4293	110.88	-122.02	109.96	1.1020
IC	C2	04	*C1	01	1.5564	102.91	122.54	109.76	1.4025
IC	04	C1	01	HO1	1.4227	109.76	66.79	107.33	0.9584

```
IC C2
     O4 *C1 H1 1.5564 102.91 -117.68 108.69
                                                 1.1117
     C1 *C2 H2 1.5615 103.27 -113.35 106.87 1.1124
IC C3
IC C3
     C1 *C2 O2 1.5615 103.27 127.46 116.16 1.4278
IC C1 C2 O2 HO2 1.5564 116.16 -81.77 106.00 0.9665
IC C2
     C4 *C3 O3 1.5615 103.97 -125.04 111.07
                                                1.4263
IC C2
     С4 *С3 НЗ
                   1.5615 103.97 115.28 109.94
                                                 1.1126
IC C4
     C3 O3 HO3 1.5386 111.07 -77.15 108.40
                                                0.9644
IC C2
     C4 *C3 H4 1.5615 103.97 -95.69 28.61 2.1867
RESI BRIB
                0.000 ! beta-Ribose
!RING * 5 C1 C2 C3 C4 O4
!
         HO5--05
!
!
                    04
              \backslash
           Н51--С5 / ∖ 01--Н01
!
                        \setminus /
            / \setminus /
!
            H52 C4
                       C1
!
                         / \
!
               / \setminus
               H4 \ / H1
1
!
                   C3----C2
                 / \ / \
!
            ноз--оз нз ог нг
!
!
                       HO2
1
GROUP
ATOM 04
       OD305A 0.000 ALPHA -0.684 THOLE 2.074
ATOM C1 CD31FA 0.124 ALPHA -1.022 THOLE 0.462
ATOM H1 HDA1A 0.070
ATOM 01 OD31E 0.000 ALPHA -1.176 THOLE 1.559
ATOM HO1 HDP1A
                0.333
ATOM C4 CD31FC 0.112 ALPHA -1.014 THOLE 0.820
ATOM H4 HDA2E 0.069
               -0.202
ATOM LP1A LPD
ATOM LP1B LPD
               -0.202
              -0.152
ATOM LP4A LPD
ATOM LP4B LPD
              -0.152
                0.000 !dummy for anisotropic polarizability
ATOM LPX4 LPD
GROUP ! taken from ETOH
ATOM C5 CD32A -0.086 ALPHA -1.805 THOLE 0.353
ATOM H51 HDA2A 0.080
ATOM H52 HDA2A 0.080
ATOM 05 OD31A 0.000 ALPHA -0.732 THOLE 1.027
ATOM HO5 HDP1A
               0.328
ATOM LP5A LPD -0.201
ATOM LP5B LPD
              -0.201
GROUP ! taken from glycerol
ATOM C2 CD31FB -0.006 ALPHA -1.438 THOLE 1.015
ATOM H2 HDA1A 0.070
ATOM 02 OD31E 0.000 ALPHA -0.940 THOLE 0.670
ATOM HO2 HDP1A
                0.322
ATOM LP2A LPD
               -0.193
ATOM LP2B LPD
              -0.193
GROUP ! taken from glycerol
ATOM C3 CD31FB -0.006 ALPHA -1.127 THOLE 1.340
```

0.070 ATOM H3 HDA1A ATOM 03 OD31E 0.000 ALPHA -0.881 THOLE 0.328 ATOM HO3 HDP1A 0.322 ATOM LP3A LPD -0.193 ATOM LP3B LPD -0.193 BOND 04 C1 C1 H1 C1 01 01 HO1 BOND C1 C2 C2 H2 C2 O2 O2 HO2 BOND C2 C3 C3 H3 СЗ ОЗ ОЗ НОЗ BOND C3 C4 C4 H4 C4 C5 C4 O4 BOND C5 H51 C5 H52 C5 O5 O5 HO5 BOND O1 LP1A O1 LP1B BOND O2 LP2A O2 LP2B BOND O3 LP3A O3 LP3B BOND 04 LP4A 04 LP4B 04 LPX4 BOND O5 LP5A O5 LP5B

LONEPAIR relative LP1A 01 C1 H01 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP1B 01 C1 H01 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 01 C1 LP1A LP1B A11 0.8108 A22 1.2162

LONEPAIR relative LP2A O2 C2 HO2 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP2B O2 C2 HO2 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY O2 C2 LP2A LP2B A11 0.8108 A22 1.2162

LONEPAIR relative LP3A 03 C3 H03 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP3B 03 C3 H03 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 03 C3 LP3A LP3B A11 0.8108 A22 1.2162

LONEPAIR bisector LP4A 04 C1 C4 distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LP4B 04 C1 C4 distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX4 04 C1 C4 distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY 04 LPX4 LP4A LP4B A11 0.8889 A22 1.2222 LONEPAIR relative LP5A 05 C5 H05 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP5B 05 C5 H05 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 05 C5 LP5A LP5B A11 0.8108 A22 1.2162

! :	IC	table;	from	minim	ized geo	metry*			
IC	C4	04	C1	C2	1.4343	107.06	-43.51	102.91	1.5564
IC	04	C1	C2	C3	1.4227	102.91	29.68	103.27	1.5615
IC	C1	C2	C3	C4	1.5564	103.27	-6.90	103.97	1.5386
IC	CЗ	04	*C4	C5	1.5386	104.85	125.17	112.30	1.5446
IC	СЗ	04	*C4	H4	1.5386	104.85	-116.42	106.12	1.1143
IC	04	C4	С5	05	1.4343	112.30	-178.59	110.88	1.4293
IC	C4	С5	05	HO5	1.5446	110.88	-86.85	110.49	0.9639
IC	05	C4	*C5	H51	1.4293	110.88	119.78	108.95	1.1027
IC	05	C4	*C5	Н52	1.4293	110.88	-122.02	109.96	1.1020
IC	C2	04	*C1	01	1.5564	102.91	-122.54	109.76	1.4025
IC	04	C1	01	HO1	1.4227	109.76	66.79	107.33	0.9584
IC	C2	04	*C1	H1	1.5564	102.91	117.68	108.69	1.1117
IC	СЗ	C1	*C2	H2	1.5615	103.27	-113.35	106.87	1.1124
IC	СЗ	C1	*C2	02	1.5615	103.27	127.46	116.16	1.4278
IC	C1	C2	02	HO2	1.5564	116.16	-81.77	106.00	0.9665
IC	С2	C4	*C3	03	1.5615	103.97	-125.04	111.07	1.4263

IC C2 C4 *C3 H3 1.5615 103.97 115.28 109.94 1.1126 IC C4 C3 O3 HO3 1.5386 111.07 -77.15 108.40 0.9644 IC C2 C4 *C3 H4 1.5615 103.97 -95.69 28.61 2.1867 RESI AARB 0.000 ! alpha-Arabinose !RING * 5 C1 C2 C3 C4 O4 HO5--05 1 ! \ 04 H51--C5 / \ ! Н1 `__/ $/ \setminus /$! C1 H52 C4 ! $/ \setminus$! /Н4 / 01--Н01 ! C3----C2 ! ! / \ / \ НОЗ--ОЗ НЗ Н2 О2 ! ! ! HO2 GROUP ATOM 04 OD305A 0.000 ALPHA -0.684 THOLE 2.074 ATOM C1 CD31FA 0.124 ALPHA -1.022 THOLE 0.462 ATOM H1 HDA1A 0.070 ATOM 01 OD31E 0.000 ALPHA -1.176 THOLE 1.559 ATOM HO1 HDP1A 0.333 ATOM C4 CD31FC 0.112 ALPHA -1.014 THOLE 0.820 ATOM H4 HDA2E 0.069 ATOM LP1A LPD -0.202 ATOM LP1B LPD -0.202 ATOM LP4A LPD -0.152 ATOM LP4B LPD -0.152 ATOM LPX4 LPD 0.000 !dummy for anisotropic polarizability GROUP ! taken from ETOH ATOM C5 CD32A -0.086 ALPHA -1.805 THOLE 0.353 ATOM H51 HDA2A 0.080 ATOM H52 HDA2A 0.080 ATOM 05 OD31A 0.000 ALPHA -0.732 THOLE 1.027 ATOM HO5 HDP1A 0.328 ATOM LP5A LPD -0.201 ATOM LP5B LPD -0.201 GROUP ! taken from glycerol ATOM C2 CD31FB -0.006 ALPHA -1.438 THOLE 1.015 ATOM H2 HDA1A 0.070 ATOM 02 OD31E 0.000 ALPHA -0.940 THOLE 0.670 ATOM HO2 HDP1A 0.322 GROUP ! taken from glycerol ATOM C3 CD31FB -0.006 ALPHA -1.127 THOLE 1.340 ATOM H3 HDA1A 0.070 ATOM O3 OD31E 0.000 ALPHA -0.881 THOLE 0.328 ATOM HO3 HDP1A 0.322 ATOM LP3A LPD -0.193 ATOM LP3B LPD -0.193 !

 BOND
 04
 C1
 C1
 H1
 C1
 01
 H01

 BOND
 C1
 C2
 C2
 H2
 C2
 02
 02
 H02

 BOND
 C2
 C3
 C3
 H3
 C3
 03
 03
 H03

 BOND
 C2
 C3
 C3
 H4
 C4
 C5
 C4
 04

 BOND
 C5
 H51
 C5
 H52
 C5
 05
 05
 H05

 BOND
 O1
 LP1A
 O1
 LP1B
 LP1B
 LP2A
 LP2B
 LP3A
 LP3A
 LP3B

 BOND
 O3
 LP3A
 O3
 LP3B
 LPX4
 LPX4
 LPX4

 BOND
 O4
 LP4A
 O4
 LP4B
 O4
 LPX4

 BOND
 O5
 LP5A
 O5
 LP5B
 LPX4

LONEPAIR relative LP1A O1 C1 HO1 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP1B O1 C1 HO1 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY O1 C1 LP1A LP1B A11 0.8108 A22 1.2162

LONEPAIR relative LP2A O2 C2 HO2 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP2B O2 C2 HO2 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY O2 C2 LP2A LP2B A11 0.8108 A22 1.2162

LONEPAIR relative LP3A 03 C3 H03 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP3B 03 C3 H03 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 03 C3 LP3A LP3B A11 0.8108 A22 1.2162

LONEPAIR bisector LP4A 04 C1 C4 distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LP4B 04 C1 C4 distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX4 04 C1 C4 distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY 04 LPX4 LP4A LP4B A11 0.8889 A22 1.2222

LONEPAIR relative LP5A 05 C5 H05 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP5B 05 C5 H05 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 05 C5 LP5A LP5B A11 0.8108 A22 1.2162

! :	IC 1	table;	from	minim	ized geo	metry*			
IC	C4	04	C1	C2	1.4319	108.67	-17.05	106.71	1.5578
IC	04	C1	C2	C3	1.4302	106.71	-10.12	102.15	1.5355
IC	C1	C2	C3	C4	1.5578	102.15	31.25	101.91	1.5267
IC	C3	04	*C4	С5	1.5267	102.62	124.20	112.49	1.5454
IC	C3	04	*C4	H4	1.5267	102.62	-115.89	106.69	1.1135
IC	04	C 4	С5	05	1.4319	112.49	-179.23	111.10	1.4305
IC	C4	С5	05	HO5	1.5454	111.10	-93.06	110.47	0.9646
IC	05	C 4	*C5	Н51	1.4305	111.10	119.95	108.87	1.1029
IC	05	C 4	*C5	Н52	1.4305	111.10	-122.01	109.82	1.1021
IC	C2	04	*C1	01	1.5578	106.71	122.01	110.02	1.3992
IC	04	C1	01	HO1	1.4302	110.02	65.19	106.88	0.9590
IC	C2	04	*C1	H1	1.5578	106.71	-118.66	107.16	1.1129
IC	C3	C1	*C2	H2	1.5355	102.15	115.71	109.19	1.1138
IC	C3	C1	*C2	02	1.5355	102.15	-121.95	114.37	1.4285
IC	C1	C2	02	HO2	1.5578	114.37	-171.75	108.32	0.9638
IC	C2	C4	*C3	03	1.5355	101.91	-122.00	112.32	1.4206
IC	C2	C 4	*C3	HЗ	1.5355	101.91	116.42	109.37	1.1143
IC	C4	С3	03	ноз	1.5267	112.32	-53.24	107.21	0.9692
IC	C2	C 4	*C3	Η4	1.5355	101.91	-71.04	28.67	2.1783
!									
RES	RESI BARB 0.000 ! beta-Arabinose								

```
!RING * 5 C1 C2 C3 C4 O4
!
          H05--05
!
!
               \backslash
                      04
            \ 04
H51--C5 / \ 01--H01
!
                          \ /
              / \setminus /
!
                          C1
!
             H52 C4
                           / \
                / \setminus
!
                        / H1
!
                H4 \
                    C3----C2
!
!
                   / \ / \
             НОЗ--ОЗ НЗ Н2 О2
!
!
                           !
                           HO2
!
!
GROUP
        OD305A 0.000 ALPHA -0.684 THOLE 2.074
ATOM 04
ATOM C1 CD31FA 0.124 ALPHA -1.022 THOLE 0.462
ATOM H1 HDA1A 0.070
ATOM 01 OD31E 0.000 ALPHA -1.176 THOLE 1.559
ATOM HO1 HDP1A
                 0.333
ATOM C4 CD31FC 0.112 ALPHA -1.014 THOLE 0.820
ATOM H4 HDA2E 0.069
ATOM LP1A LPD
                -0.202
ATOM LP1B LPD
                -0.202
ATOM LP4A LPD
                -0.152
ATOM LP4B LPD
               -0.152
ATOM LPX4 LPD
                 0.000 !dummy for anisotropic polarizability
GROUP ! taken from ETOH
ATOM C5 CD32A -0.086 ALPHA -1.805 THOLE 0.353
ATOM H51 HDA2A 0.080
ATOM H52 HDA2A
                0.080
ATOM 05 OD31A
                 0.000 ALPHA -0.732 THOLE 1.027
                 0.328
ATOM HO5 HDP1A
ATOM LP5A LPD
                -0.201
ATOM LP5B LPD
                -0.201
GROUP ! taken from glycerol
ATOM C2 CD31FB -0.006 ALPHA -1.438 THOLE 1.015
ATOM H2 HDA1A 0.070
ATOM 02 OD31E
                0.000 ALPHA -0.940 THOLE 0.670
ATOM HO2 HDP1A
                 0.322
ATOM LP2A LPD
                -0.193
                -0.193
ATOM LP2B LPD
GROUP ! taken from glycerol
ATOM C3
       CD31FB -0.006 ALPHA -1.127 THOLE 1.340
ATOM H3 HDA1A 0.070
ATOM 03 OD31E 0.000 ALPHA -0.881 THOLE 0.328
ATOM HO3 HDP1A
                 0.322
ATOM LP3A LPD
                -0.193
ATOM LP3B LPD
               -0.193
!
BOND 04 C1 C1 H1 C1 O1
                        01 HO1
BOND C1 C2 C2 H2 C2 O2
                         O2 HO2
```

 BOND
 C2
 C3
 C3
 H3
 C3
 O3
 HO3

 BOND
 C3
 C4
 C4
 H4
 C4
 C5
 C4
 O4

 BOND
 C5
 H51
 C5
 H52
 C5
 O5
 O5
 HO5

 BOND
 O1
 LP1A
 O1
 LP1B

 BOND
 O2
 LP2A
 O2
 LP2B

 BOND
 O3
 LP3A
 O3
 LP3B

 BOND
 O4
 LP4A
 O4
 LPX4

 BOND
 O5
 LP5A
 O5
 LP5B

LONEPAIR relative LP1A 01 C1 H01 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP1B 01 C1 H01 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 01 C1 LP1A LP1B A11 0.8108 A22 1.2162

LONEPAIR relative LP2A O2 C2 HO2 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP2B O2 C2 HO2 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY O2 C2 LP2A LP2B A11 0.8108 A22 1.2162

LONEPAIR relative LP3A 03 C3 H03 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP3B 03 C3 H03 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 03 C3 LP3A LP3B A11 0.8108 A22 1.2162

LONEPAIR bisector LP4A 04 C1 C4 distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LP4B 04 C1 C4 distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX4 04 C1 C4 distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY 04 LPX4 LP4A LP4B A11 0.8889 A22 1.2222

LONEPAIR relative LP5A 05 C5 H05 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP5B 05 C5 H05 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 05 C5 LP5A LP5B A11 0.8108 A22 1.2162

! IC table; from minimized geometry*

						-			
IC	C4	04	C1	C2	1.4319	108.67	-17.05	106.71	1.5578
IC	04	C1	C2	C3	1.4302	106.71	-10.12	102.15	1.5355
IC	C1	C2	СЗ	C4	1.5578	102.15	31.25	101.91	1.5267
IC	C3	04	*C4	С5	1.5267	102.62	124.20	112.49	1.5454
IC	C3	04	*C4	H4	1.5267	102.62	-115.89	106.69	1.1135
IC	04	C4	С5	05	1.4319	112.49	-179.23	111.10	1.4305
IC	C4	С5	05	HO5	1.5454	111.10	-93.06	110.47	0.9646
IC	05	C4	*C5	H51	1.4305	111.10	119.95	108.87	1.1029
IC	05	C4	*C5	H52	1.4305	111.10	-122.01	109.82	1.1021
IC	C2	04	*C1	01	1.5578	106.71	-122.01	110.02	1.3992
IC	04	C1	01	HO1	1.4302	110.02	65.19	106.88	0.9590
IC	C2	04	*C1	H1	1.5578	106.71	118.66	107.16	1.1129
IC	CЗ	C1	*C2	H2	1.5355	102.15	115.71	109.19	1.1138
IC	CЗ	C1	*C2	02	1.5355	102.15	-121.95	114.37	1.4285
IC	C1	C2	02	HO2	1.5578	114.37	-171.75	108.32	0.9638
IC	C2	C4	*C3	03	1.5355	101.91	-122.00	112.32	1.4206
IC	C2	C4	*C3	HЗ	1.5355	101.91	116.42	109.37	1.1143
IC	C4	С3	03	ноз	1.5267	112.32	-53.24	107.21	0.9692
IC	C2	C4	*C3	Н4	1.5355	101.91	-71.04	28.67	2.1783

RESI AXYF 0.000 ! alpha-Xylofuranose !RING * 5 C1 C2 C3 C4 O4 ! H05--05

\ 04 ! / \ H1 ! H51--C5 ! $/ \setminus /$ \setminus / ! H52 C4 C1 ! $/ \setminus$ $/ \setminus$ \backslash / 01--но1 ! H4 ! C3----C2 ! / \ / \ H3 O3 O2 H2 ! ! ! ноз HO2 GROUP 0.000 ALPHA -0.684 THOLE 2.074 ATOM 04 OD305A ATOM C1 CD31FA 0.124 ALPHA -1.022 THOLE 0.462 ATOM H1 HDA1A 0.070 ATOM 01 OD31E 0.000 ALPHA -1.176 THOLE 1.559 ATOM HO1 HDP1A 0.333 CD31FC ATOM C4 0.112 ALPHA -1.014 THOLE 0.820 ATOM H4 HDA2E 0.069 ATOM LP1A LPD -0.202 ATOM LP1B LPD -0.202 ATOM LP4A LPD -0.152 ATOM LP4B LPD -0.152 ATOM LPX4 LPD 0.000 !dummy for anisotropic polarizability GROUP ! taken from ETOH ATOM C5 CD32A -0.086 ALPHA -1.805 THOLE 0.353 ATOM H51 HDA2A 0.080 ATOM H52 HDA2A 0.080 ATOM 05 OD31A 0.000 ALPHA -0.732 THOLE 1.027 ATOM HO5 HDP1A 0.328 ATOM LP5A LPD -0.201 ATOM LP5B LPD -0.201 GROUP ! taken from glycerol ATOM C2 CD31FB -0.006 ALPHA -1.438 THOLE 1.015 ATOM H2 HDA1A 0.070 0.000 ALPHA -0.940 THOLE 0.670 ATOM 02 OD31E ATOM HO2 HDP1A 0.322 ATOM LP2A LPD -0.193 -0.193 ATOM LP2B LPD GROUP ! taken from glycerol ATOM C3 CD31FB -0.006 ALPHA -1.127 THOLE 1.340 0.070 HDA1A АТОМ НЗ ATOM 03 OD31E 0.000 ALPHA -0.881 THOLE 0.328 ATOM HO3 HDP1A 0.322 ATOM LP3A LPD -0.193 ATOM LP3B LPD -0.193 1 BOND 04 C1 C1 H1 C1 01 01 HO1 BOND C1 C2 C2 H2 C2 O2 O2 HO2 BOND C2 C3 C3 H3 C3 O3 ОЗ НОЗ BOND C3 C4 C4 H4 C4 C5 C4 O4 BOND C5 H51 C5 H52 C5 O5 05 HO5 BOND O1 LP1A O1 LP1B BOND O2 LP2A O2 LP2B

BOND 03 LP3A 03 LP3B BOND 04 LP4A 04 LP4B 04 LPX4 BOND 05 LP5A 05 LP5B

LONEPAIR relative LP1A 01 C1 H01 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP1B 01 C1 H01 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 01 C1 LP1A LP1B A11 0.8108 A22 1.2162

LONEPAIR relative LP2A O2 C2 HO2 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP2B O2 C2 HO2 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY O2 C2 LP2A LP2B A11 0.8108 A22 1.2162

LONEPAIR relative LP3A 03 C3 H03 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP3B 03 C3 H03 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 03 C3 LP3A LP3B A11 0.8108 A22 1.2162

LONEPAIR bisector LP4A 04 C1 C4 distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LP4B 04 C1 C4 distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX4 04 C1 C4 distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY 04 LPX4 LP4A LP4B A11 0.8889 A22 1.2222

LONEPAIR relative LP5A 05 C5 H05 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP5B 05 C5 H05 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 05 C5 LP5A LP5B A11 0.8108 A22 1.2162

! :	IC 1	table;	from	minim	ized geo	metry*			
IC	C4	04	C1	C2	1.4368	109.21	7.17	106.92	1.5609
IC	04	C1	C2	C3	1.4288	106.92	-29.31	100.61	1.5256
IC	C1	C2	C3	C4	1.5609	100.61	38.33	101.22	1.5366
IC	C3	04	*C4	C5	1.5366	105.95	126.07	111.10	1.5466
IC	C3	04	*C4	H4	1.5366	105.95	-115.62	106.41	1.1129
IC	04	C 4	С5	05	1.4368	111.10	-170.12	111.17	1.4292
IC	C4	С5	05	HO5	1.5466	111.17	-86.81	110.69	0.9637
IC	05	C 4	*C5	Н51	1.4292	111.17	119.44	108.73	1.1031
IC	05	C 4	*C5	H52	1.4292	111.17	-122.76	110.12	1.1017
IC	C2	04	*C1	01	1.5609	106.92	123.12	110.19	1.4024
IC	04	C1	01	HO1	1.4288	110.19	60.16	106.38	0.9603
IC	C2	04	*C1	H1	1.5609	106.92	-117.24	106.84	1.1130
IC	CЗ	C1	*C2	H2	1.5256	100.61	-119.80	111.22	1.1086
IC	CЗ	C1	*C2	02	1.5256	100.61	116.99	113.84	1.4299
IC	C1	C2	02	HO2	1.5609	113.84	25.15	106.11	0.9678
IC	C2	C4	*C3	03	1.5256	101.22	116.82	111.32	1.4223
IC	C2	C4	*C3	HЗ	1.5256	101.22	-120.45	112.39	1.1104
IC	C4	С3	03	ноз	1.5366	111.32	68.17	107.50	0.9664
IC	С2	C4	*C3	H4	1.5256	101.22	-77.82	29.09	2.1676

RESI BXYF		0.000 !	beta-Xylof	luranose
!RING * 5	C1 C2 C3 C	C4 O4		
!	HO505			
!	\	04		
!	H51C5	5 /	\ 01HC)1
!	/ \	\ /	\setminus /	
!	Н52	C4	C1	
!	/	/ \	/ \	

H4 \ / H1 ! C3----C2 ! ! / \ / \ ! H3 O3 O2 H2 1 1 ноз HO2 GROUP ATOM 04 OD305A 0.000 ALPHA -0.684 THOLE 2.074 0.124 ALPHA -1.022 THOLE 0.462 ATOM C1 CD31FA HDA1A 0.070 ATOM H1 ATOM O1 OD31E 0.000 ALPHA -1.176 THOLE 1.559 ATOM HO1 HDP1A 0.333 CD31FC 0.112 ALPHA -1.014 THOLE 0.820 ATOM C4 ATOM H4 HDA2E 0.069 ATOM LP1A LPD -0.202 ATOM LP1B LPD -0.202 -0.152 ATOM LP4A LPD ATOM LP4B LPD -0.152 ATOM LPX4 LPD 0.000 !dummy for anisotropic polarizability GROUP ! taken from ETOH CD32A -0.086 ALPHA -1.805 THOLE 0.353 ATOM C5 ATOM H51 HDA2A 0.080 ATOM H52 HDA2A 0.080 OD31A ALPHA -0.732 THOLE 1.027 ATOM 05 0.000 ATOM HO5 HDP1A 0.328 ATOM LP5A LPD -0.201 ATOM LP5B LPD -0.201 GROUP ! taken from glycerol ATOM C2 CD31FB -0.006 ALPHA -1.438 THOLE 1.015 0.070 ATOM H2 HDA1A ATOM 02 OD31E 0.000 ALPHA -0.940 THOLE 0.670 ATOM HO2 HDP1A 0.322 ATOM LP2A LPD -0.193 ATOM LP2B LPD -0.193GROUP ! taken from glycerol ATOM C3 CD31FB -0.006 ALPHA -1.127 THOLE 1.340 АТОМ НЗ HDA1A 0.070 OD31E ATOM 03 0.000 ALPHA -0.881 THOLE 0.328 ATOM HO3 HDP1A 0.322 ATOM LP3A LPD -0.193ATOM LP3B LPD -0.193 ! BOND 04 C1 C1 H1 C1 01 01 HO1 BOND C1 C2 C2 H2 C2 O2 O2 HO2 BOND C2 C3 C3 H3 C3 O3 ОЗ НОЗ BOND C3 C4 C4 H4 C4 C5 C4 O4 BOND C5 H51 C5 H52 C5 O5 05 HO5 BOND O1 LP1A O1 LP1B BOND O2 LP2A O2 LP2B BOND O3 LP3A O3 LP3B BOND 04 LP4A 04 LP4B 04 LPX4 BOND O5 LP5A O5 LP5B LONEPAIR relative LP1A 01 C1 H01 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP1B 01 C1 H01 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 01 C1 LP1A LP1B A11 0.8108 A22 1.2162

LONEPAIR relative LP2A O2 C2 HO2 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP2B O2 C2 HO2 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY O2 C2 LP2A LP2B A11 0.8108 A22 1.2162

LONEPAIR relative LP3A 03 C3 H03 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP3B 03 C3 H03 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 03 C3 LP3A LP3B A11 0.8108 A22 1.2162

LONEPAIR bisector LP4A 04 C1 C4 distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LP4B 04 C1 C4 distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX4 04 C1 C4 distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY 04 LPX4 LP4A LP4B A11 0.8889 A22 1.2222

LONEPAIR relative LP5A 05 C5 H05 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP5B 05 C5 H05 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 05 C5 LP5A LP5B A11 0.8108 A22 1.2162

! :	IC t	able;	from	minim	ized geo	metry*			
IC	C4	04	C1	C2	1.4368	109.21	7.17	106.92	1.5609
IC	04	C1	C2	C3	1.4288	106.92	-29.31	100.61	1.5256
IC	C1	C2	C3	C4	1.5609	100.61	38.33	101.22	1.5366
IC	CЗ	04	*C4	С5	1.5366	105.95	126.07	111.10	1.5466
IC	CЗ	04	*C4	H4	1.5366	105.95	-115.62	106.41	1.1129
IC	04	C4	С5	05	1.4368	111.10	-170.12	111.17	1.4292
IC	C4	С5	05	HO5	1.5466	111.17	-86.81	110.69	0.9637
IC	05	C4	*C5	H51	1.4292	111.17	119.44	108.73	1.1031
IC	05	C4	*C5	H52	1.4292	111.17	-122.76	110.12	1.1017
IC	C2	04	*C1	01	1.5609	106.92	-123.12	110.19	1.4024
IC	04	C1	01	HO1	1.4288	110.19	60.16	106.38	0.9603
IC	C2	04	*C1	H1	1.5609	106.92	117.24	106.84	1.1130
IC	CЗ	C1	*C2	H2	1.5256	100.61	-119.80	111.22	1.1086
IC	CЗ	C1	*C2	02	1.5256	100.61	116.99	113.84	1.4299
IC	C1	C2	02	HO2	1.5609	113.84	25.15	106.11	0.9678
IC	C2	C4	*C3	03	1.5256	101.22	116.82	111.32	1.4223
IC	C2	C4	*C3	HЗ	1.5256	101.22	-120.45	112.39	1.1104
IC	C4	C3	03	ноз	1.5366	111.32	68.17	107.50	0.9664
IC	C2	C4	*C3	H4	1.5256	101.22	-77.82	29.09	2.1676

ноз ! HO2 GROUP ATOM 04 OD305A 0.000 ALPHA -0.684 THOLE 2.074 ATOM C1 CD31FA 0.124 ALPHA -1.022 THOLE 0.462 ATOM H1 HDA1A 0.070 ATOM 01 OD31E 0.000 ALPHA -1.176 THOLE 1.559 ATOM HO1 HDP1A 0.333 ATOM C4 CD31FC 0.112 ALPHA -1.014 THOLE 0.820 ATOM H4 HDA2E 0.069 ATOM LP1A LPD -0.202 ATOM LP18 LPD -0.202 ATOM LP4A LPD -0.152 -0.152 ATOM LP4B LPD ATOM LPX4 LPD 0.000 !dummy for anisotropic polarizability GROUP ! taken from ETOH ATOM C5 CD32A -0.086 ALPHA -1.805 THOLE 0.353 ATOM H51 HDA2A 0.080 ATOM H52 HDA2A 0.080 0.000 ALPHA -0.732 THOLE 1.027 ATOM 05 OD31A ATOM HO5 HDP1A 0.328 ATOM LP5A LPD -0.201 ATOM LP5B LPD -0.201 GROUP ! taken from glycerol ATOM C2 CD31FB -0.006 ALPHA -1.438 THOLE 1.015 ATOM H2 HDA1A 0.070 ATOM 02 OD31E 0.000 ALPHA -0.940 THOLE 0.670 ATOM HO2 HDP1A 0.322 ATOM LP2A LPD -0.193 -0.193 ATOM LP2B LPD GROUP ! taken from glycerol ATOM C3 CD31FB -0.006 ALPHA -1.127 THOLE 1.340 АТОМ НЗ HDA1A 0.070 ATOM 03 OD31E 0.000 ALPHA -0.881 THOLE 0.328 ATOM HO3 HDP1A 0.322 ATOM LP3A LPD -0.193 ATOM LP3B LPD -0.193 BOND 04 C1 C1 H1 C1 01 01 HO1 BOND C1 C2 C2 H2 C2 O2 O2 HO2 BOND C2 C3 C3 H3 C3 O3 O3 HO3 C4 C5 BOND C3 C4 C4 H4 C4 O4 BOND C5 H51 C5 H52 C5 O5 O5 HO5 BOND O1 LP1A O1 LP1B BOND O2 LP2A O2 LP2B BOND O3 LP3A O3 LP3B BOND 04 LP4A 04 LP4B 04 LPX4 BOND O5 LP5A O5 LP5B LONEPAIR relative LP1A 01 C1 H01 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP1B 01 C1 H01 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 01 C1 LP1A LP1B A11 0.8108 A22 1.2162 LONEPAIR relative LP2A 02 C2 H02 distance 0.35 angle 110.0 dihe 91.0

LONEPAIR relative LP2B 02 C2 H02 distance 0.35 angle 110.0 dihe 269.0

ANISOTROPY 02 C2 LP2A LP2B A11 0.8108 A22 1.2162

. . . .

.

~

LONEPAIR relative LP3A 03 C3 H03 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP3B 03 C3 H03 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 03 C3 LP3A LP3B A11 0.8108 A22 1.2162

LONEPAIR bisector LP4A 04 C1 C4 distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LP4B 04 C1 C4 distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX4 04 C1 C4 distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY 04 LPX4 LP4A LP4B A11 0.8889 A22 1.2222

LONEPAIR relative LP5A 05 C5 H05 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP5B 05 C5 H05 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 05 C5 LP5A LP5B A11 0.8108 A22 1.2162

! .	LC t	table;	irom	mınım	ized geo	metry*			
IC	C4	04	C1	C2	1.4315	107.76	-22.45	106.42	1.5606
IC	04	C1	C2	С3	1.4298	106.42	-6.06	102.41	1.5494
IC	C1	C2	C3	C4	1.5606	102.41	29.67	101.01	1.5315
IC	C3	04	*C4	C5	1.5315	102.23	127.07	113.37	1.5469
IC	CЗ	04	*C4	H4	1.5315	102.23	-114.55	106.16	1.1145
IC	04	C4	С5	05	1.4315	113.37	172.78	110.88	1.4279
IC	C4	С5	05	HO5	1.5469	110.88	-89.23	111.11	0.9627
IC	05	C4	*C5	H51	1.4279	110.88	120.67	109.96	1.1012
IC	05	C4	*C5	Н52	1.4279	110.88	-120.92	109.55	1.1021
IC	C2	04	*C1	01	1.5606	106.42	121.62	109.95	1.3992
IC	04	C1	01	HO1	1.4298	109.95	66.51	107.28	0.9594
IC	C2	04	*C1	H1	1.5606	106.42	-119.08	107.39	1.1123
IC	CЗ	C1	*C2	H2	1.5494	102.41	115.35	109.45	1.1122
IC	CЗ	C1	*C2	02	1.5494	102.41	-123.37	114.05	1.4282
IC	C1	C2	02	HO2	1.5606	114.05	104.03	106.69	0.9675
IC	C2	C4	*C3	03	1.5494	101.01	118.58	111.21	1.4279
IC	C2	C4	*C3	HЗ	1.5494	101.01	-119.18	112.30	1.1095
IC	C4	С3	03	ноз	1.5315	111.21	-32.26	108.53	0.9635
IC	C2	С4	*C3	H4	1.5494	101.01	-68.34	28.96	2.1721

RESI BLYF 0.000 ! beta-lyxofuranose !RING * 5 C1 C2 C3 C4 O4 HO5--05 ! ! \ 04 H51--C5 / \ 01--H01 /\//\/ H52 C4 C1 /\// H4 \//H1 C3----C2 ! ! ! ! ! C3----C2 ! ! ! НЗ ОЗ Н2 О2 1 ! ! ноз но2 ! GROUP ATOM 04 0D305A 0.000 ALPHA -0.684 THOLE 2.074 ATOM C1 CD31FA 0.124 ALPHA -1.022 THOLE 0.462

0.070 ATOM H1 HDA1A 0.000 ALPHA -1.176 THOLE 1.559 ATOM O1 OD31E ATOM HO1 HDP1A 0.333 ATOM C4 CD31FC 0.112 ALPHA -1.014 THOLE 0.820 ATOM H4 HDA2E 0.069 ATOM LP1A LPD -0.202 ATOM LP18 LPD -0.202 ATOM LP4A LPD -0.152 ATOM LP4B LPD -0.152 ATOM LPX4 LPD 0.000 !dummy for anisotropic polarizability GROUP ! taken from ETOH ATOM C5 CD32A -0.086 ALPHA -1.805 THOLE 0.353 ATOM H51 HDA2A 0.080 ATOM H52 HDA2A 0.080 ATOM 05 OD31A 0.000 ALPHA -0.732 THOLE 1.027 ATOM HO5 HDP1A 0.328 -0.201 ATOM LP5A LPD ATOM LP5B LPD -0.201 GROUP ! taken from glycerol ATOM C2 CD31FB -0.006 ALPHA -1.438 THOLE 1.015 0.070 ATOM H2 HDA1A 0.000 ALPHA -0.940 THOLE 0.670 ATOM 02 OD31E ATOM HO2 HDP1A 0.322 ATOM LP2A LPD -0.193 ATOM LP2B LPD -0.193 GROUP ! taken from glycerol ATOM C3 CD31FB -0.006 ALPHA -1.127 THOLE 1.340 ATOM H3 HDA1A 0.070 ATOM 03 OD31E 0.000 ALPHA -0.881 THOLE 0.328 ATOM HO3 HDP1A 0.322 ATOM LP3A LPD -0.193 ATOM LP3B LPD -0.193 1 BOND 04 C1 C1 H1 C1 01 01 HO1 BOND C1 C2 C2 H2 C2 O2 O2 HO2 BOND C2 C3 C3 H3 C3 O3 O3 HO3 BOND C3 C4 C4 H4 C4 C5 C4 O4 BOND C5 H51 C5 H52 C5 O5 05 HO5 BOND O1 LP1A O1 LP1B BOND O2 LP2A O2 LP2B BOND O3 LP3A O3 LP3B BOND 04 LP4A 04 LP4B 04 LPX4 BOND O5 LP5A O5 LP5B LONEPAIR relative LP1A 01 C1 H01 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP1B 01 C1 H01 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY O1 C1 LP1A LP1B A11 0.8108 A22 1.2162 LONEPAIR relative LP2A 02 C2 H02 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP2B 02 C2 H02 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 02 C2 LP2A LP2B A11 0.8108 A22 1.2162

LONEPAIR relative LP3A 03 C3 H03 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP3B 03 C3 H03 distance 0.35 angle 110.0 dihe 269.0

ANISOTROPY 03 C3 LP3A LP3B A11 0.8108 A22 1.2162

LONEPAIR bisector LP4A 04 C1 C4 distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LP4B 04 C1 C4 distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX4 04 C1 C4 distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY 04 LPX4 LP4A LP4B A11 0.8889 A22 1.2222

LONEPAIR relative LP5A 05 C5 H05 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP5B 05 C5 H05 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 05 C5 LP5A LP5B A11 0.8108 A22 1.2162

!	IC 1	table;	from	minim	ized geo	metry*			
IC	C4	04	C1	C2	1.4315	107.76	-22.45	106.42	1.5606
IC	04	C1	C2	C3	1.4298	106.42	-6.06	102.41	1.5494
IC	C1	C2	C3	C4	1.5606	102.41	29.67	101.01	1.5315
IC	C3	04	*C4	C5	1.5315	102.23	127.07	113.37	1.5469
IC	C3	04	*C4	H4	1.5315	102.23	-114.55	106.16	1.1145
IC	04	C4	С5	05	1.4315	113.37	172.78	110.88	1.4279
IC	C4	С5	05	HO5	1.5469	110.88	-89.23	111.11	0.9627
IC	05	C 4	*C5	Н51	1.4279	110.88	120.67	109.96	1.1012
IC	05	C 4	*C5	H52	1.4279	110.88	-120.92	109.55	1.1021
IC	C2	04	*C1	01	1.5606	106.42	-121.62	109.95	1.3992
IC	04	C1	01	HO1	1.4298	109.95	66.51	107.28	0.9594
IC	C2	04	*C1	H1	1.5606	106.42	119.08	107.39	1.1123
IC	C3	C1	*C2	H2	1.5494	102.41	115.35	109.45	1.1122
IC	C3	C1	*C2	02	1.5494	102.41	-123.37	114.05	1.4282
IC	C1	C2	02	HO2	1.5606	114.05	104.03	106.69	0.9675
IC	C2	C4	*C3	03	1.5494	101.01	118.58	111.21	1.4279
IC	C2	C4	*C3	HЗ	1.5494	101.01	-119.18	112.30	1.1095
IC	C4	С3	03	ноз	1.5315	111.21	-32.26	108.53	0.9635
IC	С2	C4	*C3	H4	1.5494	101.01	-68.34	28.96	2.1721

0.000 ! alpha-Deoxy-Ribose RESI ADEO !RING * 5 C1 C2 C3 C4 O4 ! ! HO5--05 \ 04 ! H51--C5 / H1 /\//H52 C4 C1 /\//H4 \ / O1--H01 ! ! ! ! ! C3----C2 ! ! $/ \setminus / \setminus$ НОЗ--ОЗ НЗ Н21 Н22 ! ! GROUP ATOM 04 OD305A 0.000 ALPHA -0.684 THOLE 2.074 ATOM C1 CD31FA 0.124 ALPHA -1.022 THOLE 0.462 ATOM H1 HDA1A 0.070 ATOM 01 OD31E 0.000 ALPHA -1.176 THOLE 1.559 ATOM HO1 HDP1A 0.333 ATOM C4 CD31FC 0.112 ALPHA -1.014 THOLE 0.820 ATOM H4 HDA2E 0.069

ATOM LP1A LPD -0.202 ATOM LP1B LPD -0.202 ATOM LP4A LPD -0.152 ATOM LP4B LPD -0.152 ATOM LPX4 LPD 0.000 !dummy for anisotropic polarizability GROUP ! taken from ETOH CD32A -0.086 ALPHA -1.805 THOLE 0.353 ATOM C5 ATOM H51 HDA2A 0.080 ATOM H52 HDA2A 0.080 ATOM 05 OD31A 0.000 ALPHA -0.732 THOLE 1.027 ATOM HO5 HDP1A 0.328 ATOM LP5A LPD -0.201 ATOM LP5B LPD -0.201 GROUP ! taken from THF ATOM C2 CD325B -0.142 ALPHA -1.617 THOLE 1.103! ALPHA @ALPHA1 THOLE @THOLE1 !ALPHA -1.617 THOLE 1.103 ATOM H21 HDA2R5 0.071 ATOM H22 HDA2R5 0.071 GROUP ! taken from glycerol ATOM C3 CD31FB -0.006 ALPHA -1.127 THOLE 1.340 0.070 АТОМ НЗ HDA1A ATOM 03 OD31E 0.000 ALPHA -0.881 THOLE 0.328 ATOM HO3 HDP1A 0.322 -0.193 ATOM LP3A LPD ATOM LP3B LPD -0.193 1 BOND 04 C1 C1 H1 C1 01 01 HO1 BOND C1 C2 C2 H21 C2 H22 C2 C3 O3 HO3 C3 C4 BOND C3 H3 C3 O3 C4 C5 BOND C4 H4 C4 O4 C5 H51 BOND C5 H52 C5 O5 O5 HO5 BOND O1 LP1A O1 LP1B BOND 03 LP3A 03 LP3B BOND 04 LP4A 04 LP4B 04 LPX4 BOND O5 LP5A O5 LP5B LONEPAIR relative LP1A 01 C1 H01 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP1B 01 C1 H01 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY O1 C1 LP1A LP1B A11 0.8108 A22 1.2162 LONEPAIR relative LP3A 03 C3 H03 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP3B 03 C3 H03 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 03 C3 LP3A LP3B A11 0.8108 A22 1.2162 LONEPAIR bisector LP4A 04 C1 C4 distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LP4B 04 C1 C4 distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX4 04 C1 C4 distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY 04 LPX4 LP4A LP4B A11 0.8889 A22 1.2222 LONEPAIR relative LP5A 05 C5 H05 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP5B 05 C5 H05 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 05 C5 LP5A LP5B A11 0.8108 A22 1.2162 ! IC table; from minimized geometry*

IC	C4	04	C1	C2	1.4309	108.67	-19.01	106.25	1.5278
IC	04	C1	C2	C3	1.4258	106.25	-8.82	103.23	1.5178
IC	C1	C2	C3	C4	1.5278	103.23	31.05	101.83	1.5232
IC	C3	04	*C4	C5	1.5232	101.44	124.05	113.01	1.5448
IC	C3	04	*C4	H4	1.5232	101.44	-115.42	106.74	1.1134
IC	04	C4	С5	05	1.4309	113.01	-178.27	111.12	1.4304
IC	C4	C5	05	HO5	1.5448	111.12	-87.73	110.40	0.9643
IC	04	C4	*C5	H51	2.4824	32.04	59.71	109.84	1.1020
IC	04	C4	*C5	H52	2.4824	32.04	-58.37	108.86	1.1027
IC	C2	04	*C1	01	1.5278	106.25	119.87	110.66	1.3905
IC	04	C1	01	HO1	1.4258	110.66	60.11	106.63	0.9584
IC	C2	04	*C1	H1	1.5278	106.25	-119.86	107.45	1.1137
IC	C3	C1	*C2	H21	1.5178	103.23	118.42	111.24	1.1030
IC	C3	C1	*C2	H22	1.5178	103.23	-122.05	112.95	1.0962
IC	C2	C4	*C3	03	1.5178	101.83	-120.07	112.49	1.4116
IC	C4	CЗ	03	ноз	1.5232	112.49	-53.93	107.21	0.9673
IC	C2	C4	*C3	HЗ	1.5178	101.83	117.41	109.93	1.1144

RESI BDEO 0.000 ! beta-Deoxy-Ribose !RING * 5 C1 C2 C3 C4 O4 ! ! HO5--O5 ! \ O4

HO5--O5 \ 04 H51--C5 / \ 01--HO1 /\ / / \/ H52 C4 C1 /\ /\ H4 \ / H1 C3----C2 / \ /\ H03--O3 H3 H21 H22

GROUP

! ! ! ! ! !

GI(001	-						
ATOM	04	OD305A	0.000	ALPHA	-0.684	THOLE	2.074
ATOM	C1	CD31FA	0.124	ALPHA	-1.022	THOLE	0.462
ATOM	H1	HDA1A	0.070				
ATOM	01	OD31E	0.000	ALPHA	-1.176	THOLE	1.559
ATOM	HO1	HDP1A	0.333				
ATOM	C4	CD31FC	0.112	ALPHA	-1.014	THOLE	0.820
ATOM	H4	HDA2E	0.069				
ATOM	LP1A	LPD	-0.202				
ATOM	LP1B	LPD	-0.202				
ATOM	LP4A	LPD	-0.152				
ATOM	LP4B	LPD	-0.152				
ATOM	LPX4	LPD	0.000	!dummy	for and	isotrop	pic polarizability
GROUI	?!ta	aken from	m ETOH				
ATOM	C5	CD32A	-0.086	ALPHA	-1.805	THOLE	0.353
ATOM	H51	HDA2A	0.080				
ATOM	H52	HDA2A	0.080				
ATOM	05	OD31A	0.000	ALPHA	-0.732	THOLE	1.027
ATOM	HO5	HDP1A	0.328				
ATOM	LP5A	LPD	-0.201				
ATOM	LP5B	LPD	-0.201				

GROUP ! taken from THF ATOM C2 CD325B -0.142 ALPHA -1.617 THOLE 1.103! ALPHA @ALPHA1 THOLE @THOLE1 !ALPHA -1.617 THOLE 1.103 ATOM H21 HDA2R5 0.071 0.071 ATOM H22 HDA2R5 GROUP ! taken from glycerol ATOM C3 CD31FB -0.006 ALPHA -1.127 THOLE 1.340 АТОМ НЗ HDA1A 0.070 0.000 ALPHA -0.881 THOLE 0.328 ATOM O3 OD31E ATOM HO3 HDP1A 0.322 ATOM LP3A LPD -0.193 ATOM LP3B LPD -0.193 1 BOND 04 C1 C1 H1 C1 01 01 HO1 BOND C1 C2 C2 H21 C2 H22 C2 C3 BOND C3 H3 C3 O3 O3 HO3 C3 C4 BOND C4 H4 C4 O4 C4 C5 C5 H51 BOND C5 H52 C5 O5 O5 HO5 BOND O1 LP1A O1 LP1B BOND O3 LP3A O3 LP3B BOND 04 LP4A 04 LP4B 04 LPX4 BOND O5 LP5A O5 LP5B LONEPAIR relative LP1A 01 C1 H01 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP1B 01 C1 H01 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY O1 C1 LP1A LP1B A11 0.8108 A22 1.2162 LONEPAIR relative LP3A 03 C3 H03 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP3B 03 C3 H03 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 03 C3 LP3A LP3B A11 0.8108 A22 1.2162

LONEPAIR bisector LP4A 04 C1 C4 distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LP4B 04 C1 C4 distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX4 04 C1 C4 distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY 04 LPX4 LP4A LP4B A11 0.8889 A22 1.2222

LONEPAIR relative LP5A 05 C5 H05 distance 0.35 angle 110.0 dihe 91.0 LONEPAIR relative LP5B 05 C5 H05 distance 0.35 angle 110.0 dihe 269.0 ANISOTROPY 05 C5 LP5A LP5B A11 0.8108 A22 1.2162

! IC table; from minimized geometry* 1.4309 108.67 -19.01 106.25 IC C4 04 C1 C2 1.5278 IC 04 С1 C2 CЗ 1.4258 106.25 -8.82 103.23 1.5178 C3 C4 1.5278 103.23 31.05 101.83 IC Cl C2 1.5232 IC C3 04 *C4 С5 1.5232 101.44 124.05 113.01 1.5448 IC C3 04 *C4 H4 1.5232 101.44 -115.42 106.74 1.1134 C4 C5 IC 04 1.4309 113.01 -178.27 111.12 05 1.4304 IC C4 C5 05 HO5 1.5448 111.12 -87.73 110.40 0.9643 IC 04 C4 *C5 H51 2.4824 32.04 59.71 109.84 1.1020 IC 04 C4 *C5 H52 2.4824 32.04 -58.37 108.86 1.1027 IC C2 04 *C1 01 1.5278 106.25 -119.87 110.66 1.3905 IC 04 C1 O1 HO1 1.4258 110.66 60.11 106.63 0.9584 IC C2 1.5278 106.25 119.86 107.45 04 *C1 H1 1.1137 IC C3 C1 *C2 H21 1.5178 103.23 118.42 111.24 1.1030

IC C3 C1 *C2 H22 1.5178 103.23 -122.05 112.95 1.0962 1.5178 101.83 -120.07 112.49 IC C2 C4 *C3 03 1.4116 IC C4 C3 O3 HO3 1.5232 112.49 -53.93 107.21 0.9673 IC C2 C4 *C3 H3 1.5178 101.83 117.41 109.93 1.1144 ! O-alkyl patches for furanose ! PRES FOMA 0.000 ! adding alpha O-methyl to C1 on aldopentose dele atom HO1 dele atom LP1A dele atom LP1B GROUP ATOM 04 OD305A 0.000 ALPHA -0.505 THOLE 0.807 ATOM C1 CD31FA 0.152 ALPHA -1.000 THOLE 0.487 ATOM H1 HDA1A 0.070 ATOM 01 OD30A 0.000 ALPHA -0.503 THOLE 0.443 ATOM CM CD33E -0.053 ALPHA -1.038 THOLE 0.667 ATOM HM1 HDA3A 0.069 ATOM HM2 HDA3A 0.069 ATOM HM3 HDA3A 0.069 ATOM C4 CD31FC 0.131 ALPHA -1.029 THOLE 0.909 ATOM H4 HDA2E 0.069 ATOM LPMA LPD -0.121 ATOM LPMB LPD -0.121 ATOM LP4A LPD -0.167 ATOM LP4B LPD -0.167 ATOM LPX4 LPD 0.000 !dummy for anisotropic polarizability ATOM LPX1 LPD 0.000 !dummy for anisotropic polarizability BOND O1 CM BOND CM HM1 CM HM2 CM HM3 BOND O1 LPMA O1 LPMB O1 LPX1 LONEPAIR bisector LPMA 01 C1 CM distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LPMB 01 C1 CM distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX1 01 C1 CM distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY O1 LPX1 LPMA LPMB A11 0.8889 A22 1.2222 ! Ι T(JKL) J K L R(IK) T(IKJ) PHI R(KL) IC 1.4477 109.89 66.08 108.74 1.4244 04 C1 01 CM 1.0883 C1 CM HM1 1.4355 108.74 59.11 111.44 IC 01 1.0883 111.44 119.69 113.64 IC HM1 O1 *CM HM2 1.0586 IC HM3 O1 *CM HM2 1.1131 110.64 -122.99 113.64 1.0586 PRES FOMB 0.000 ! adding beta O-methyl to C1 on aldopentose dele atom HO1 dele atom LP1A dele atom LP1B GROUP OD305A 0.000 ALPHA -0.505 THOLE 0.807 ATOM 04 ATOM C1 CD31FA 0.152 ALPHA -1.000 THOLE 0.487 ATOM H1 HDA1A 0.070 0.000 ALPHA -0.503 THOLE 0.443 ATOM 01 OD30A ATOM CM CD33E -0.053 ALPHA -1.038 THOLE 0.667

ATOM HM1 HDA3A 0.069 ATOM HM2 HDA3A 0.069 ATOM HM3 HDA3A 0.069 ATOM C4 CD31FC 0.131 ALPHA -1.029 THOLE 0.909 ATOM H4 HDA2E 0.069 ATOM LPMA LPD -0.121 ATOM LPMB LPD -0.121 ATOM LP4A LPD -0.167 ATOM LP4B LPD -0.167 0.000 !dummy for anisotropic polarizability ATOM LPX4 LPD ATOM LPX1 LPD 0.000 !dummy for anisotropic polarizability BOND O1 CM BOND CM HM1 CM HM2 CM HM3 BOND O1 LPMA O1 LPMB O1 LPX1 LONEPAIR bisector LPMA 01 C1 CM distance 0.35 angle 110.0 dihe 90.0 LONEPAIR bisector LPMB 01 C1 CM distance 0.35 angle 110.0 dihe 270.0 LONEPAIR bisector LPX1 01 C1 CM distance 0.10 angle 0.0 dihe 0.0 ANISOTROPY O1 LPX1 LPMA LPMB A11 0.8889 A22 1.2222 ! I J K L R(IK) T(IKJ) PHI T(JKL) R(KL) 01 CM O4 C1 1.4138 114.30 -66.36 108.55 IC 1.4077 C1 O1 CM HM1 1.4353 108.55 41.11 109.39 1.0734 HM1 O1 *CM HM2 1.0734 109.39 129.90 119.45 1.0441 IC C1 01 IC HM3 01 *CM HM2 1.1148 107.24 -121.74 119.45 1.0441 IC !furanoses, rima end read para card append * Drude polarizable FF parameters * BONDS !atom type Kb b0 OD305A CD31FA 280.0 1.430 ! CD31FC OD305A 280.0 1.415 ! 1.093 ! CD31FA HDA1A 309.0 OD31E CD31FA 350.0 1.400 ! CD31FA CD31FB 222.5 1.520 ! CD31FB HDA1A 309.0 1.093 ! CD31FB OD31E 350.0 1.440 ! CD31FB CD31FB 222.5 1.520 ! CD31FB CD31FC 222.5 1.520 ! CD31FC HDA2E 307.0 1.100 ! CD31FC CD32A 222.5 1.510 ! CD31FA CD325B 222.5 1.520 ! CD325B CD31FB 222.5 1.520 ! OD30A CD31FA 280.0 1.430 ! ANGLES !atom types Ktheta Theta0 Kub S0 !_____

CD31FA	OD305A	CD31FC	95.00	111.00	!			
OD305A	CD31FA	HDA1A	70.00	107.30	!			
OD305A	CD31FA	OD31E	90.00	111.50	!			
OD305A	CD31FA	CD31FB	45.00	111.10	!			
OD305A	CD31FC	HDA2E	70.00	107.30	!			
OD305A	CD31FC	CD32A	75.00	106.50	!			
OD305A	CD31FC	CD31FB	45.00	111.50	!			
OD31E	CD31FA	HDA1A	47.00	110.50	!			
CD31FB	CD31FA	HDA1A	35.00	111.40		22.53	2.179	!
CD31FA	CD31FB	HDA1A	35.00	111.40		22.53	2.179	!
CD31FA	OD31E	HDP1A	59.00	108.00	!			
CD31FB	OD31E	HDP1A	59.00	108.00	!			
HDA1A	CD31FB	OD31E	47.00	110.50	!			
CD31FB	CD31FB	OD31E	65.30	109.00	!			
CD31FC	CD32A	HDA2A	34.60	110.10		22.53	2.179	!
CD31FB	CD31FB	HDA1A	35.00	111.40		22.53	2.179	!
CD31FC	CD31FB	OD31E	65.30	109.00	!			
CD31FC	CD31FB	HDA1A	35.00	111.40		22.53	2.179	!
CD31FC	CD31FB	CD31FB	58.00	109.50		11.16	2.561	!
CD31FC	CD32A	OD31A	63.00	111.00	!			
HDA2E	CD31FC	CD32A	34.50	110.10		22.53	2.179	!
CD31FA	CD31FB	CD31FB	58.00	109.50		11.16	2.561	!
CD31FA	CD31FB	OD31E	65.30	109.00	!			
CD32A	CD31FC	CD31FB	58.00	109.50		11.16	2.561	!
HDA2E	CD31FC	CD31FB	35.00	111.40		22.53	2.179	!
CD31FB	CD31FA	OD31E	65.30	109.00	!			
0D305A	CD31FA	CD325B	45.00	111.10	!		0 1 7 0	
HDAIA	CD31FA	CD325B	35.00	111.40		22.53	2.179	!
OD31E	CD31FA	CD325B	65.30	109.00	!		0 1 7 0	
CD31FA	CD325B	HDAZRO	35.00	111.40		22.03	2.179	1
CD31FB	CD325B	HDAZK5	55.00	111.40		22.00	2.1/9	:
CD31FA	CD32JB	CD31FD	50.00	109.30		11.10	2.501	÷.,
CD325P	CD31FB	CD3236	35.00	109.30		22 53	2.301	
CD325B	CD31FB	NDAIA	55.00	100 00		22.33	2.1/9	÷
003057	CD31FA	OD307	90.00	111 50	-			
HDA1A	CD31FA	OD30A	47 00	110 50	:			
	CD31FA	CD31FB	47.00 65 30	109 00	•			
CD31FA	OD30A	CD33E	95.00	109.70				
					•			
DIHEDRALS	5							
!atom typ	bes	Kchi	. n	delta				
!=======								
!								
!furanose	es, rima							
OD305A	CD31FA	CD31FB	HDA1A	0.190	3	0.0	0 !	
OD305A	CD31FC	CD32A	HDA2A	0.200	3	0.0	0 !	
OD305A	CD31FC	CD31FB	HDA1A	0.190	3	0.0	0 !	
CD31FA	OD305A	CD31FC	HDA2E	0.300	3	0.0	0 !	
HDA1A	CD31FA	OD305A	CD31FC	0.300	3	0.0	0 !	
CD31FA	CD31FB	CD31FB	HDA1A	0.190	3	0.0	0 !	
HDP1A	OD31E	CD31FA	HDA1A	0.060	1	0.0	0 !	
HDP1A	OD31E	CD31FA	HDA1A	0.060	2	0.0	0 !	
HDP1A	OD31E	CD31FA	HDA1A	0.000	3	0.0	0 !	

HDA1A	CD31FA	CD31FB	HDA1A	0.190	3	(0.00 !	
OD31E	CD31FB	CD31FA	HDA1A	0.270	1	(0.00 !	
OD31E	CD31FB	CD31FA	HDA1A	0.050	2	(0.00 !	
OD31E	CD31FB	CD31FA	HDA1A	0.120	3	(0.00 !	
CD31FB	CD31FB	CD31FA	HDA1A	0.190	3	(0.00 !	
OD31E	CD31FA	CD31FB	HDA1A	0.270	1	(0.00 !	
OD31E	CD31FA	CD31FB	HDA1A	0.050	2	(0.00 !	
OD31E	CD31FA	CD31FB	HDA1A	0.120	3	(0.00 !	
CD31FC	CD31FB	CD31FB	HDA1A	0.190	3	(0.00 !	
HDA2E	CD31FC	CD32A	HDA2A	0.190	3	(0.00 !	
HDA2E	CD31FC	CD32A	OD31A	0.175	3	(0.00 !	
HDA2E	CD31FC	CD31FB	CD31FB	0.190	3	(0.00 !	
HDA2E	CD31FC	CD31FB	HDA1A	0.190	3	(0.00 !	
HDA2E	CD31FC	CD31FB	OD31E	0.270	1	(0.00 !	
HDA2E	CD31FC	CD31FB	OD31E	0.050	2	(0.00 !	
HDA2E	CD31FC	CD31FB	OD31E	0.120	3	(0.00 !	
CD31FB	CD31FB	CD31FC	CD32A	0.410	3	180	0.00 !	
HDA1A	CD31FB	CD31FC	CD32A	0.190	3	(0.00 !	
CD31FB	CD31FC	CD32A	HDA2A	0.190	3	(0.00 !	
HDA1A	CD31FB	OD31E	HDP1A	0.060	1	(0.00 !	
HDA1A	CD31FB	OD31E	HDP1A	0.060	2	(0.00 !	
HDA1A	CD31FB	OD31E	HDP1A	0.000	3	(0.00 !	
HDA1A	CD31FB	CD31FB	HDA1A	0.190	3	(0.00 !	
OD31E	CD31FB	CD31FB	HDAIA	0.270	1 O	(0.00 !	
OD31E	CD31FB	CD31FB	HDAIA	0.050	2	(0.00 !	
OD31E	CD31FB	CD31FB	HDAIA	0.120	3	(0.00 !	
!fitdih	iuranoses	3 3 3 3 1 1 1 1		1	0202	1	0 0 0	
CD31FA	CD31FB	CD31FB	CD31FC	1.	0392	1	0.00	:
CD31FA	CD31FB	CD31FB	CD31FC	0.	9303	2	0.00	-
CDSIFA	CD31FB	CD31FB	CD3IFC	0.	7403	1	0.00	-
CD31FA	CD31FB	CD31FB	ODSIE	0.	2/42	⊥ 2	0.00	:
CD31FA	CD31FB	CD31FB	OD31E	0.	5903	2	180 00	-
CD31FA	CD31FB	CD31FB	VDJIE VDJIE	0.	2611	1	180.00	-
CD31FA	CD31FB	OD31E	IIDF IA	0.	5151	1 2	0.00	-
CD31FA	CD31FB	OD31E	HDD1A	0.	1830	2	0.00	•
CD31FR	CD31FC		CD31FA	0.	6882	1	0.00	-
CD31FB	CD31FC	0D305A	CD31FA	0.	7079	2	0.00	1
CD31FB	CD31FC	0D305A	CD31FA	0	7433	3	0 00	1
CD32A	CD31FC	0D305A	CD31FA	0.	9269	1	180.00	!
CD32A	CD31FC	0D305A	CD31FA	0.	5245	2	0.00	1
CD32A	CD31FC	0D305A	CD31FA	0.	2728	3	0.00	!
CD31FB	CD31FA	OD31E	HDP1A	0.	3772	1	0.00	!
CD31FB	CD31FA	OD31E	HDP1A	0.	4430	2	0.00	!
CD31FB	CD31FA	OD31E	HDP1A	Ο.	1763	3	180.00	!
CD31FB	CD31FB	CD31FC	OD305A	Ο.	5081	1	0.00	!
CD31FB	CD31FB	CD31FC	OD305A	Ο.	4468	2	0.00	!
CD31FB	CD31FB	CD31FC	OD305A	Ο.	3245	3	0.00	!
CD31FB	CD31FB	OD31E	HDP1A	0.	4056	1	0.00	!
CD31FB	CD31FB	OD31E	HDP1A	0.	4316	2	0.00	!
CD31FB	CD31FB	OD31E	HDP1A	0.	2648	3	0.00	!
OD31E	CD31FA	CD31FB	CD31FB	0.	1215	1	0.00	!
OD31E	CD31FA	CD31FB	CD31FB	0.	6332	2	180.00	!
OD31E	CD31FA	CD31FB	CD31FB	0.	3012	3	180.00	!

OD305A	CD31FA	CD31FB	CD31FB	0.4187	1	0.00 !
OD305A	CD31FA	CD31FB	CD31FB	0.2784	2	0.00 !
OD305A	CD31FA	CD31FB	CD31FB	0.0200	3	0.00 !
CD31FB	CD31FC	CD32A	OD31A	0.5003	1	180.00 !
CD31FB	CD31FC	CD32A	OD31A	0.2096	2	0.00 !
CD31FB	CD31FC	CD32A	OD31A	0.0681	3	0.00 !
CD31FC	CD31FB	CD31FB	OD31E	0.3659	1	180.00 !
CD31FC	CD31FB	CD31FB	OD31E	0.2749	2	0.00 !
CD31FC	CD31FB	CD31FB	OD31E	0.8934	3	0.00 !
CD31FC	CD31FB	OD31E	HDP1A	0.3741	1	0.00 !
CD31FC	CD31FB	OD31E	HDP1A	0.0242	2	0.00 !
CD31FC	CD31FB	OD31E	HDP1A	0.1025	3	0.00 !
CD31FC	CD32A	OD31A	HDP1A	0.3581	1	0.00 !
CD31FC	CD32A	OD31A	HDP1A	0.4874	2	0.00 !
CD31FC	CD32A	OD31A	HDP1A	0.1880	3	0.00 !
CD31FB	CD31FA	OD305A	CD31FC	0.8201	1	0.00 !
CD31FB	CD31FA	OD305A	CD31FC	0.5947	2	0.00 !
CD31FB	CD31FA	OD305A	CD31FC	0.2261	3	0.00 !
OD31E	CD31FA	0D305A	CD31FC	1.1409	1	180.00 !
OD31E	CD31FA	0D305A	CD31FC	1.0488	2	0.00 !
OD31E	CD31FA	0D305A	CD31FC	0.3135	3	0.00 !
OD31E	CD31FB	CD31FC	CD32A	0.1541	1	0.00 !
OD31E	CD31FB	CD31FC	CD32A	0.3485	2	180.00 !
OD31E	CD31FB	CD31FC	CD32A	0.0817	3	0.00 !
OD31E	CD31FA	CD31FB	OD31E	0.2182	1	180.00 !
OD31E	CD31FA	CD31FB	OD31E	0.1501	2	180.00 !
OD31E	CD31FA	CD31FB	OD31E	0.0060	3	0.00 !
OD305A	CD31FA	CD31FB	OD31E	0.4388	1	0.00 !
OD305A	CD31FA	CD31FB	OD31E	0.4009	2	180.00 !
OD305A	CD31FA	CD31FB	ODJIE	0.3834	3	0.00 !
OD31E	CD31FB	CD31FB	OD31E	0.4307	⊥ ⊃	180.00 !
OD31E	CD31FB	CD31FB	OD31E	0.6208	2	180.00 !
OD31E	CD31FB	CD31FB	OD31E	0.4495	3	180.00 !
OD31E	CD31FB	CD31FC	OD305A	0.7740	1	180.00 !
OD31E	CD31FB	CD31FC	OD305A	0.0201	2	0.00 !
ODSIE	CD31FB	CDSIFC	UDSUSA A LOOU	0.5125	3 1	0.00 !
OD305A	CD31FA	ODSIE ODSIE	HDPIA 1 A	1 0250	1	0.00 !
OD305A	CD31FA	OD31E	HDPIA A LOOU	1.0339	2	0.00 !
0D305A	CD31FC	CD32A	NDF1A	0.0700	1	180 00 1
0D305A	CD31FC	CD32A	OD31A	0.3700	2	
0D305A	CD31FC	CD32A	OD31A	0.7800	2	180 00 1
0D305A	CD31FC	CD325B	UDJIA UDJ2D5	0.0222	2	
CD31EA	CD325B	CD31FB	CD31EC	1 0392	1	0.00 !
CD31FA	CD325B	CD31FB	CD31FC	1.0392	1 2	0.00 1
CD31FA	CD325B	CD31FB	CD31FC	0.9303	2	
CD31FA	CD325B	CD31FB	HDA1A	0.7405	3	
HDA1A	CD31FA	CD325B	HDA1A	0.190	3	
HDA1A	CD31FA	CD325B	CD31FB	0.190	3	
OD31E	CD31FA	CD325B	HDA2R5	0 270	1	
OD31E	CD31FA	CD325B	HDA2R5	0 050	2	
OD31E	CD31FA	CD325B	HDA2R5	0 120	2 2	
CD31FC	CD31FB	CD325B	HDA2R5	0.190	3	0.00 1
HDA2E	CD31FC	CD31FB	CD325B	0.190	3	0.00 !
-					-	

CD32A	CD31FC	CD31FB	CD325B	0.410	3	180.00 !
HDA2R5	CD325B	CD31FB	HDA1A	0.190	3	0.00 !
HDA2R5	CD325B	CD31FB	OD31E	0.270	1	0.00 !
HDA2R5	CD325B	CD31FB	OD31E	0.050	2	0.00 !
HDA2R5	CD325B	CD31FB	OD31E	0.120	3	0.00 !
OD31E	CD31FB	CD325B	CD31FA	1 6826	1	0 00 1
OD31E	CD31FB	CD325B	CD31FA	0 3708	2	180 00 1
0D31E	CD31FB	CD325B	CD31FA	1 0478	3	180 00 1
CD325B	CD31FA	0D31E	HDP1A	0 5210	1	
CD325B	CD31FA	00315		0.0210	2	
CD325B	CD31FA	OD31E		0.2397	2	
CD325B	CD31FA	CD31EC	OD3057	0.2302	1	190 00 1
CD325B		CD31FC	OD30JA	0.4277	1 2	100.00 !
CD325B	CDSIFD	CD31FC	OD30JA	0.3937	2	100.00 !
CD323B	CDSIFB	CDSIFC	UDSUJA	0.3030	2 1	100.00 !
CD325B	CD31FB	OD31E	HDP1A	0.9384	1 O	0.00 !
CD325B	CD31FB	OD31E	HDP1A	0.0104	2	0.00 !
CD325B	CD31FB	ODJIE	HDPIA	0.2568	3	0.00 !
OD31E	CD31FA	CD325B	CD31FB	0.2311	1	0.00 !
OD31E	CD31FA	CD325B	CD31FB	0.3468	2	180.00 !
OD31E	CD31FA	CD325B	CD31FB	0.0532	3	0.00 !
OD305A	CD31FA	CD325B	CD31FB	0.2237	1	0.00 !
OD305A	CD31FA	CD325B	CD31FB	0.1834	2	0.00 !
OD305A	CD31FA	CD325B	CD31FB	0.1093	3	0.00 !
CD325B	CD31FA	OD305A	CD31FC	0.3531	1	0.00 !
CD325B	CD31FA	OD305A	CD31FC	0.1220	2	0.00 !
CD325B	CD31FA	OD305A	CD31FC	0.2640	3	180.00 !
CD31FA	OD30A	CD33E	HDA3A	0.000	3	0.00 !
HDA1A	CD31FA	OD30A	CD33E	0.000	3	0.00 !
OD30A	CD31FA	CD31FB	HDA1A	0.000	3	0.00 !
OD30A	CD31FA	CD31FB	CD31FB	1.3664	1	0.00 !
OD30A	CD31FA	CD31FB	CD31FB	1.0474	2	0.00 !
OD30A	CD31FA	CD31FB	CD31FB	1.8077	3	180.00 !
CD31FB	CD31FA	OD30A	CD33E	1.3198	1	180.00 !
CD31FB	CD31FA	OD30A	CD33E	0.5302	2	180.00 !
CD31FB	CD31FA	OD30A	CD33E	0.0701	3	0.00 !
OD30A	CD31FA	CD31FB	OD31E	0.2039	1	180.00 !
OD30A	CD31FA	CD31FB	OD31E	1.6691	2	180.00 !
0D30A	CD31FA	CD31FB	OD31E	1.6110	3	0.00 !
0D30A	CD31FA	OD305A	CD31FC	0.8447	1	0.00 !
0D30A	CD31FA	0D305A	CD31FC	1 8332	2	0 00 1
0D30A	CD31FA	003054	CD31FC	0 6738	3	
003054	CD31FA	0030311	CD33E	0 4818	1	180 00 1
003054	CD31FA	00303	CD33E	1 2301	2	
0D305A	CD31FA	OD30A	CD33E	1 0062	2	
JUJUJA	CDJIFA	ODJUA	1000	1.0002	5	0.00 :
NBFIX						
: 0D31a		0 17790	3 52190 1			
JUJIA		U • I / J U	\bigcirc			

OD31E ODW -0.17990 3.48690 !

END