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ABSTRACT  Combining a realistic model of inositol 1,4,5-
trisphosphate (IPs)-induced Ca2* oscillations with the diffusion
of IP; and buffered diffusion of Ca?*, we have found that
diffusion of Ca2* plays only a minor role in a class of agonist-
induced Ca?* wave trains. These waves are primarily Kine-
matic in nature, with variable wavelengths and speeds that
depend primarily on the phase differences between oscillators
at different spatial points. The period is set by the steady-state
value of IP;, while the wave speed approximately equals the
wavelength /period. Ca+ diffusion, which is much slower than
that of IP; because of endogenous buffers, is shown to have only
a small effect on the wave trains and not to be necessary for the
apparent wave propagation. Diffusion of IP; sets the phase
gradient responsible for these wave trains, which consist pri-
marily of localized cycles of Ca%* uptake and release. Our
results imply a possible previously undisclosed role for IP; in
cell signaling.

Repetitive Ca2* waves have been observed with fluorescent
dye microscopy in a number of cell types (1, 2). In immature
Xenopus oocytes (3), these waves are associated with the
inositol 1,4,5-trisphosphate (IPs;) signal transduction path-
way, and Clapham, Lechleiter and colleagues (4) have doc-
umented a rich variety of dynamical patterns and spiral
waves generated by nonhydrolyzable analogues of IPs. In
hamster eggs, experiments have demonstrated that inactivat-
ing the IP; receptor/Ca2* channel (IP;R) with monoclonal
antibodies is sufficient to eliminate fertilization-induced Ca2*
waves (5). These and other results imply a key role for IP; in
Ca?*-wave generation in oocytes and egg cells. Recent
experiments with pituitary gonadotrophs (6) and pancreatic
acinar cells (7, 8) suggest that similar mechanisms also may
be functioning in these secretory cells.

Although the biological function of Ca?* waves is not
known, their ubiquity in certain cell types, including fertilized
egg cells (5), makes understanding their mode (or modes) of
propagation an important problem. Because the effective
diffusion constant for Ca2* is much smaller than that of IP;
(9), it has been argued that diffusion of Ca2* can explain the
speed of the wave (10), and recently mathematical models
have been used to explore the role of diffusion in these waves
(4, 11, 12). Here we report calculations with a realistic model
of IPs;-induced Ca2* oscillations (13), which when combined
with the diffusion of Ca?* and IP; can generate wave trains
that are primarily kinematic in nature—i.e., they do not
require bulk movement of Ca2* (14-16). As we describe in the
following sections, the reason for this, perhaps surprising,
result is the slow rate of Ca2* diffusion caused by endogenous
Ca?* buffers.

The Model

We have based our computer simulations on a kinetic model
of the biphasic Ca?*-activation and -inhibition of the IP;R
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(13). When combined with a sarcoplasmic or endoplasmic
reticulum Ca?*-ATPase (SERCA-type Ca2*-ATPase) and a
slow leak from the endoplasmic reticulum (ER), the model
gives rises to spontaneous cytoplasmic Ca2* oscillations at
fixed, physiological levels of IP; (13). We use a simplified
version of that model (17) [along with buffered diffusion of
cytoplasmic Ca?* (18) and the diffusion, generation, and
removal of IP;] to explore the behavior of planar Ca2* waves.
It is known that buffers greatly reduce the rate of diffusion of
Ca?* in the cytoplasm (9), and our model includes the effect
of buffers in both the cytoplasm and ER (18). Fig. 1 shows a
diagram of the model of Ca2* handling by the ER. Ca?* enters
the cytosol from the ER via IP;Rs and a leak flux, with the
ER being refilled by SERCA-type Ca%*-ATPases. In addition
to these processes, we include Ca2* diffusion in the cytosol
and ER as modified by mobile and stationary Ca?*-binding
proteins (18). The flux into the ER is given by

v3[Ca2+]2
pump = [Ca2* P + k% ’

and the flux through the IP;R and the leak from the ER are
given by

JipR+1eak = (V2 + VX310 ([Ca®* Jgr — [Ca?*]),

(1]

(2]

where [Ca?*] is the calcium molar concentration; vy, v2, and
vy are the maximum Ca?* channel flux, Ca2* leak flux
constant, and Ca?*-ATPase maximum Ca?* uptake rate,
respectively; k; is the activation constant for the Ca2+*-
ATPase; and the term Xj;4 represents the fraction of subunits
of the IP;R that are activated by IP; and Ca?* and not
inhibited by Ca2* (see Fig. 1). Diffusion of Ca2* is described
by

32[C32+]
ax?
2yDcam #qCa?*]
“\k, +[Ca?"] )

where D¢, and D¢,y are diffusion constants for free Ca2* and
Ca?* bound to mobile endogenous buffers, respectively, and
x is position in um. The factor
 KufBukr
(K + [Ca?*])?

62[C32+]

+ ¥Dcam )

Juit = Dca

31

Y 4]

in the second and third terms in Eq. 3, where [Bml] is the total
concentration of mobile buffer and K, is the dissociation
constant of Ca2* from the mobile buffer, accounts for the

Abbreviations: IP;3, inositol 1,4,5-trisphosphate; IP;R, IP; receptor/
Ca?* channel; ER, endoplasmic reticulum; SERCA, sarcoplasmic
and endosplasmic reticulum Ca2*-ATPase.
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FiG. 1. Schematic diagram of the model. Ca2* enters the cytosol
from the ER via a passive leak and via the IP3R, which is activated
by both Ca2* and IP; on a fast time scale and inhibited by Ca2* on
a slow time scale, all at the cytoplasmic face. The ER is refilled by
a SERCA-type Ca2*-ATPase pump. Diffusion of Ca2* in both the
cytosol and ER is modulated by mobile and stationary buffers (not
illustrated).

transport of Ca2* bound by the mobile buffers (18). Adding
these terms together and multiplying by the factor
KBl Ku[Bulr !
B=11+ : s2+2 2z (0 ]
(Ks + [Ca®™"])*  (Kp +[Ca®™)
where K and [B;]y refer to dissociation constant of Ca2* from
the stationary buffer and the total concentration of the

stationary buffer, to account for the remaining effects of
buffering (18) yields the balance equation for [Ca2+]:

a[Ca**]
at

= B(c1J1p,R +leak — Jpump * Jaif)s (61

with c; as the fraction of cell volume that is ER and ¢ as time
of the simulation in s. Similarly the balance equation for
[Ca?*]gr is

3[C32+]ER

o = Ber(—JipR+teak + Jpump/C1 + J5), (7]
where the superscript ER refers to comparable quantities in
the ER. The concentration of IPs, [IP], relaxes to its steady-
state value [IP;]*® at the rate I;, where [IP;]* is the IP; level
where production balances degradation. Thus, the balance
equation for IP; is

o[IP3]
dat

B . 3[1P;]
= —I([IP;] - [IP;]*) + Dyp, PR (8]

To a good approximation, the time rate of change of the IP;R
subunit state, X119, that determines the flux of Ca2* through
the IPs;R in Eq. 2 can be written (17) as follows:

dX100

o —20.2[Ca**] X100 + 1.67X110 9]
dx
d;“’ = —(0.2 + 1.67[Ca®*]) X130 + 20[Ca?* ] X100

+ 0.05[IP;]J*¢, [10]

where X is the fraction of subunits of the IP;R with only IP;
bound. In these equations, the unit of time is s, and unless
otherwise noted, initial values of variables are [Ca2*] = 0.054
}LM, [IP;] = (.28 }LM, [Ca“]BR = 10.95 ;LM, X100 = 0.33, and
Xuo = (0.22.

The parameter values in these equations are given in the
legend of Fig. 2 unless stated otherwise and are based on
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F1G.2. Waves and fluxes generated by a 10-uM rectangular pulse
of IP; in the left 5 um of the domain; [IP;]** = 0.26 uM. Arrows
indicate the direction of propagation when shown. (A) Wave form
and fluxes calculated with Ca2* diffusion at ¢t = 70 s. (B) Same as A
except there is no Ca2+ diffusion and ¢t = 90 s. Parameter values for
fluxes (13): vi = 300571, v = 2.0 871, v3 = 45 uM's~1, k3 = 0.1 uM,
and c¢; = 0.18S; for buffering (9, 17, 19): Km = 6 uM, [BmlT = 75 uM,
K, = 10 uM, [Bslr = 225 uM, KER = 6 uM, [BulfR = 250 uM, K,
= 1 mM, and [B,Jf* = 100 mM; for diffusion (9, 18): Dip, = 283
pm>s~!, Dc = 223 pm?s~), Deam = 75 pum>s~1, DER = 223
um?s~1, and DERy = 75 um?s~1; and for IP; (13): [IP5]** = 0.26 uM,
I; = 0.05 s~1. Calculations in the absence of Ca2* diffusion were
carried out with all diffusion constants set equal to zero.

previous work. Parameters for Ca2* buffering are in the range
suggested by experiments with cytoplasmic extracts from
Xenopus laevis oocytes (9) and give an effective diffusion
constant for Ca2* (17) of about 31 um>s~'in the cytoplasm and
6 um>*s~! in the ER. The smaller value in the ER results from
the higher concentration of buffers there, in agreement with
experimental estimates (19). Parameters for the kinetics of
Ca2?* uptake and release via the SERCA pump and the IP;R
are based on a variety of kinetic experiments as described (13).

Effect of Diffusion on Ca?* Waves

Our calculations started with spatially uniform initial condi-
tions on a domain consisting of a straight line 500 pm long.
[Numerical integration of the model was performed by using
an implicit finite difference method (dx = 0.1, dt = 0.01) on
a SGI Indigo work station. The time step was changed to dt
= 0.02 to calculate the fluxes in Fig. 4. Graphics were
generated by using Pv-WAVE by Precision Visuals.] The
steady-state concentration of IP;, [IP;]%¢, was set so that in
the absence of diffusion the entire domain would oscillate
synchronously. A 10 uM rectangular pulse of IP; was then
applied in the 5-um region at the left boundary. This initiates
the passage of the first wave of Ca2* that crosses somewhat
more than half of the domain and then terminates in a bulk
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oscillation on the right-hand side. As time progresses, this
transient behavior dies out, and each succeeding wave prop-
agates across the entire domain, forming one peak in a steady
wave train. A typical peak of the wave train is shown at ¢ =
70 s in Fig. 2A, along with the various contributions in Eq.
6 to the time derivatives (‘‘fluxes’’) of the Ca?* concentra-
tion. Note that the diffusive flux, Jgi, is small compared with
the other fluxes and changes sign twice, where the second
derivative of the Ca2* concentration vanishes. The small size
of Jgi led us to repeat these calculations with Ca2* diffusion
eliminated by setting the diffusion constants for Ca2* and
Ca?* bound to mobile buffer equal to zero. This produced a
very similar train of Ca2* waves (Fig. 2B) in spite of the fact
that Jgi is identically zero. These results are typical of many
calculations with differing pulse shapes and oscillatory con-
ditions. Thus, diffusion of Ca?* in the cytosol and in the ER
appears to be unnecessary for generation and propagation of
these wave trains.

If diffusion of Ca?* is not necessary for these waves, why
do they occur? The key is the rapidity of diffusion of IP;
compared with that of Ca2* (9). Indeed, when the diffusion of
IP; is eliminated from the same calculations, then neither the
Ca?*-diffusion-assisted nor Ca2*-diffusion-independent wave
trains in Fig. 2 are generated by pulses of IP;. To understand
the effect of IP; diffusion, we have calculated the time course
of Ca2* and IP; following a pulse of IP; at a fixed position in
space (Fig. 3 A and B). Within 50 s the [IPs] returns to its
steady-state value because of losses by diffusion and removal
(Fig. 3C) (N. L. Allbritton, personal communication). During
this period diffusion carries IP; across the spatial domain,
systematically perturbing the oscillations at each point. The
perturbation is largest near the left boundary where the pulse
was administered. After approximately 50 s, the amplitude and
frequency of the oscillations return to their initial values. Inthe
process, however, differences in the relative positions of
oscillators in their cycles (their ‘‘phases’’) occur, with points
on the left being ‘‘ahead’’ of neighboring points on the right.
This “‘phase gradient’ leads to an apparent wave train trav-
eling to the right, even in the absence of Ca2* diffusion. Recent
experiments (N. L. Allbritton, personal communication) sug-
gest that the rate of removal of IP; is slow enough for IP; to
diffuse across the length of a cell. This allows the phase
gradient described above to cover the entire domain.

A schematic diagram of this type of wave (a ‘‘phase’’ or
‘‘kinematic’’ wave) is drawn in Fig. 4, where the oscillation
at each point in space is represented by a clock. The period,
7, of the oscillation is the time required for the hand to make
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F1G.3. The time course of [Ca2*] (A) and [IPs] (B) flux for a point
5 pum from the left boundary. Same conditions as Fig. 2A except that
I = 0.01 s—1, (C) Spatial profile of [IP;] at ¢t = 1, 10, and 50 s (I; =
0.05 s~1).
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F1G. 4. Illustrating a kinematic wave with ‘‘clocks’’; the peak of
the wave is drawn to coincide with the hand of the ‘‘clock’’ pointing
at 12:00. The period (7) is the time it takes for the hand at a given
location to make one complete clockwise revolution, with adjacent
clocks out of phase one-quarter period. The minimum distance
between two different clocks with the same phase is the wavelength
(A). A wave takes 7 seconds to travel one wavelength, so that wave
speed ¢ = A/7. The wave at t = 0 (solid curve) progresses one-quarter
of a wavelength at ¢ = 7/4 (dashed line).

one revolution, and the wavelength, A, is the distance be-
tween clocks with hands pointing in the same direction. A
brief study of the figure shows that the time it takes a phase
wave to travel one wavelength is one period and that the wave
speed, c, is given by ¢ = A/7. Because the wavelength of a
phase wave is determined by the local phase gradient, both
A and the ¢ can vary from one region to another. In Fig. 4, the
phase gradient results in a wave train moving to the right.

Testing the Importance of Ca2* Diffusion

To test quantitatively the notion that these wave trains are
predominantly phase waves, we measured A and ¢ for waves
produced by an initial linear ramp of IP;. In contrast to
diffusion-dependent waves (14), these quantities can be
changed arbitrarily for phase waves by altering the phase
gradient. Fig. 5 shows that with other properties held fixed,
both the wave speed and the wavelength are determined by
the size of the ramp used to initiate them. The triangles and
circles give the value of the wave speed and wavelength
measured near the center of the domain. The value of [IP3] at
the left boundary was above that at the right boundary, which
was set at 0.25 um for the steady-state level of both 0.26 uM
(triangles) or 0.52 uM (circles). In both cases the higher the
initial value at the left boundary, the lower was the wave
speed and the shorter the wavelength. The correlation is
linear and agrees well with the relationship ¢ = A/, which is
expected for phase waves (see Fig. 4), where v = 43.7 s at
[IP;]*s = 0.26 uM and 20.6 s at [IP;]* = 0.52 uM. The range
of wavelengths and speeds in Fig. S is in agreement with that
reported in a variety of cells (1). Elimination of Ca2* diffusion
from the calculations (open symbols) had very little effect on
the wavelengths and increased the wave speed by <1 um-s~1.

We have also generated kinematic wave trains of CaZ*
using pulses of Ca2* (30 um wide, 0.4 uM). The initial pulse
of Ca?* starts a propagating wave train when [IP;]*¢ has a
value in the oscillatory range. While the first wave in the train
requires Ca2?* diffusion for its propagation, subsequent waves
continue to propagate in the absence of Ca2* diffusion (not
shown). For these waves it is the initial diffusion of Ca2* that
resets the phases of the oscillators, setting up conditions for
the kinematic wave train.

In experiments with Xenopus oocytes, a collision between
two Ca?* waves results in their annihilation. This behavior is
reproduced by our calculations in Fig. 6, which shows the
progress of waves resulting from a V-shaped ramp of IP; (5.25
pM at the edges and 0.25 uM at the middle). The ramp
initiates wave trains emanating from the boundaries and
traveling towards the center where they collide. The nature
of the collision provides another measure of the minor role
that Ca?* diffusion plays in the waves. Indeed, in pure phase
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F1G. 5. Wave speed is related to wavelength by ¢ = A/7. Waves
are generated by a linear ramp of initial [IPs] (high at left boundary,
steady state at right boundary). Triangles and circles represent [IP;]ss
= 0.26 and 0.52 uM, respectively, with filled symbols in the presence
and open symbols in the absence of Ca?* diffusion. Different
wavelengths were obtained by varying [IP3] at the left boundary.
Straight lines were drawn by using ¢ = A/7 with 7 = 20.6 s for [IP;]*
= 0.52 uM and 7 = 43.7 s for [IP;]*¢ = 0.26 uM.

waves, a ‘‘collision’’ involves no mass transport and, there-
fore, no change of amplitude at the moment of collision (Fig.
6A) prior to annihilating each other. When the same calcu-
lation is repeated in the presence of Ca2* diffusion (Fig. 6B),
the collision is accompanied by only a slight increase in
amplitude that results from the additive contributions of Jai
in the wave fronts (see Fig. 2). We conclude that the existence
of the waves and their qualitative behavior do not depend
critically on the diffusion of Ca2*.

The occurrence of waves in which Ca2* diffusion plays a
minor role is not due to some peculiarity of our choice of
model. We have repeated these calculations using two other
models of IP;R-based Ca?* oscillations (6, 10), both of which
produce phase waves similar to those seen in Fig. 2. Those
calculations also included the disparity between the diffusion
coefficients of Ca2* and IPs, reinforcing our conclusion that
it is this difference that helps to create these waves. Nor are
these waves due to a specific choice of initial conditions.
When the initial conditions are varied to give spatial heter-
ogeneity of the initial states, waves can be produced by the
same protocols as before. Kinematic waves of a related sort
are well-known in other systems, including the Belousov—
Zhabotinskii reaction (15), where they are a consequence of
slow diffusion of one or more substances.} Based on these
results, we conclude that phase gradients, rather than CaZ*

#The underlying theory of these waves can be couched in terms of the
two-timing analysis of Murray (14), which suggests that slow
diffusion perturbs the amplitude of the oscillators only slightly.
Furthermore, at short times the distribution of phase is determined
by initial gradients, while at longer times the phase evolves accord-
ing to Burgers’ equation. In the present context, the rapid diffusion
of IP; can be thought of as setting the distribution of phases on the
short time scale.
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FiG. 6. Collision of waves initiated from a V-shaped ramp of
initial [IP3] of 1.5 uM at x = 0 um and x = 500 um that descend
linearly to 0.25 uM at x = 250 um and x = 250.1 um. The two waves
start at the edges, collide in the middle, and annihilate. (A) With no
diffusion of Ca2*, there is no reinforcement upon collision at ¢t = 161
s. (B) With Ca2* diffusion, there is a small increase in [Ca2+] when
waves collide at 7 = 144 s.

diffusion, may play a significant role in the propagation of
certain wave trains of cellular Ca2*, with diffusion of IP;
responsible for setting the gradient.

Other types of Ca?* waves also exist in excitable and
oscillatory models of Ca2* handling, including diffusion-
based solitary (or trigger) waves and wave trains (4, 10, 11).
These types of waves require diffusion of Ca?*, can be
initiated by Ca?* pulses, and have wave speeds that are
generally proportional to the square root of the Ca2+ diffusion
constant (14). We have verified that both types of these
diffusion-based waves can be generated by our model (not
shown). However, diffusion-dependent trigger waves can be
generated only at concentrations of IP; close to the threshold
for oscillations. Having explored a range of parameters in our
model, our experience is that repetitive waves, like those
seen in Figs. 2A and 6B for which Ca?* diffusion is not
necessary for propagation, are easily generated as long as the
medium is oscillatory.

Relation to Experiment

There are important differences between waves that are
dependent on Ca2?* diffusion and waves that are primarily
independent of Ca2* diffusion. For the latter class of waves,
we have shown that the wave speed can be varied by varying
the conditions that generate the waves. We have also shown
that the relationship ¢ = A/7holds for this type of wave. Since
this simple dispersion relation is not valid for diffusion-
dependent waves, it should be possible to distinguish the two
types of waves by modifying systematically the period of the
oscillations and measuring the wavelength and wave speed.
Although detailed experiments of this sort have not been
reported, Camacho and Lechleiter (20) have published data
on the effect of the expression of the SERCA-1 pump on Ca2*
waves in Xenopus oocytes. Given that this change decreased
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FiG. 7. Schematic representation showing how the phase of localized oscillations in Ca2* uptake and release from the ER can be set by the
rapid diffusion of IP;. Diffusion of Ca2*, which is of minor importance in the propagation of the wave, is not shown.

the period of the oscillations and had no effect on the wave
speed, ¢ = A/t correctly predicts the observed decrease in
wavelength. A more systematic way to test this relationship
might be to add a mixture of exogenous stationary and mobile
buffers to the cell. By choosing the correct combination, it
should be possible to decrease the buffering factor g8 in Eq.
6 without appreciably altering the diffusion term in Eq. 3. Our
calculations have shown that decreasing g in this fashion will
lengthen the period of the oscillations.

Recent experiments in pancreatic acinar cells have pro-
vided evidence that IPs-generated Ca2* waves (stimulated by
agonist applied to the apical pole) initiate at the basolateral
membrane (8). In these cells there is convincing evidence that
the concentration of IP; rises before that of Ca2* and that
rapid diffusion of IP; from the apical pole initiates these
waves. In the model of Ca2* handling by the ER used here,
it is known (13) that increasing the IP; concentration de-
creases the period of Ca?* oscillations, in general agreement
with previous observations (2). Using graded doses of agonist
and measuring the period, wavelength, and wave speed
would provide another way of testing ¢ = A/7. Finally, if a
Ca?* wave were predominately kinematic, then we predict
that differing initiating pulses or ramps of IP; should lead to
different wave speeds. It should be possible to test this
prediction by using photoreleased (caged) IP; in the presence
of oscillatory amounts of agonist. In that case, longer pho-
torelease pulses should lead to slower wave speeds if the
diffusion of Ca2* were of minor importance.

Conclusions

Our calculations, using a realistic model of Ca2* handling by
the ER and a description of Ca2* diffusion that is appropriate
to the highly buffered cytosolic and ER compartments, suggest
that Ca2* waves that occur under oscillatory conditions are
predominately kinematic. This implies that the diffusion of
CaZ?* is not necessary for propagation of the wave. Because the
diffusion constant of Ca?* in the cytosol is now known to be
smaller than that of IP; by about 1 order of magnitude (8, 9),
we propose that propagation of Ca2* waves can occur even if
there is only localized oscillatory release and reuptake of Ca?*
from the ER. In this scenario, adjacent spatial regions oscillate
with slightly different phases set by IP; as it diffuses from a
localized pulse. An illustration of this mechanism of propaga-
tion is given in Fig. 7.

We have used our calculations to test whether or not initial
spatial inhomogeneities in phase of these oscillations can be
reset by a pulse of IP; and find that after a short transient
period, the pulse of IP; succeeds in producing a coordinated
wave train. This would not be true, of course, if there were
significant inhomogeneities in the spatial distribution of the
Ca?* uptake and release channels in the ER. However, such
inhomogeneities, which appear to exist in acinar cell (7, 8),
might serve a similar function to IP; diffusion in coordinating
the phase of local oscillations. Indeed, if the density of uptake

and release channels varies throughout a cell, the period of
the local oscillators would differ from place to place. Simi-
larly a spatial gradient of IP3, caused by localized production
of IP; at restricted portions of the plasma membrane, could
conspire with diffusion and breakdown of IP; to produce a
spatial distribution of oscillator periods. Either of these
possibilities could, in principle, create a related type of
kinematic Ca?* wave of the sort described in the Belousov—
Zhabotinskii reaction by Kopell and Howard (15).

What implications do predominately kinematic waves have
for cell signaling? First, even when mass transport of Ca2* is
slow, they permit IP; to create a signal with all of the
potentially useful properties of a wave—i.e., a wave speed,
wavelength, and direction of propagation. Second, persis-
tence of the phase gradient might provide a short-term global
memory of the point of origin of the initiating IP; signal and
a simple way to erase the memory by initiation of a signal
from a separate location. Finally, because the wavelength
and speed of the wave train depend on the amplitude of the
initiating signal, this type of wave can encode amplitude
information about the initial stimulus, something that does
not occur with diffusion-dependent waves.
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