Detection and mapping of illicit drugs and metabolites in fingermarks by MALDI MS and compatibility with forensic techniques

G. Groeneveld^{1,2±}, M. de Puit^{1±}, S. Bleay³, R. Bradshaw² and S. Francese^{2*}

¹ Department of Fingerprint Research, Netherlands Forensic Institute, The Hague, Netherlands

² Biomedical Research Centre, Sheffield Hallam University, Sheffield, UK

³ Centre for Applied Science and technology, Home Office, Sandridge, UK

±These authors have equally contributed to the work being presented here

*Corresponding author, Dr Simona Francese, s.francese@shu.ac.uk

Supplemental material

Supplemental Figures

Fig. S1. MALDI MS/MS spectra of drug/metabolite precursor ions, showing distinct fragmentation pathways. The proposed fragmentation pattern and corresponding structures are shown. Red arrows indicate the one-step fragmentation of the parent ion, while blue and green arrows show two and three-step fragmentation respectively (progressive fragmentation of a fragmented ion).

Fig. S2. Reprocessing of the data shown in Figure 3 and illustrating MALDI MSI data of drug classes serial dilutions ranging from 10 μ g/mL – 1 ng/mL, spotted on top of a fingermark and subsequently spray-coated. Here images have been brightness-saturated to investigate if additional concentration spots were visible. Images were preliminarily normalised to the matrix peak at m/z 190. Out of all the species investigated, only MDA/MDMA, EME, Heroin, 6-MAM and morphin showed additional concentration spots with respect to Fig 3. In particular, with this reprocessing, MDA/MDMA becomes visible also in the spot at a concentration of 1 μ g/mL, whereas the remaining species could be mapped in the spots down to 100 ng/mL in concentration.