SUPPLEMENTARY FIGURES AND TABLE

Supplementary Figure S1: Synergistic growth suppression by lapatinib and imatinib combination. (A) MDA-MB-231 cells were treated with lapatinib (10μ M), imatinib (10μ M), or both for 72 hours. Western analysis of total cell lysates showed that phospho-Y1068-EGFR and phospho-Y207-CrkL were inhibited by lapatinib and imatinib, respectively. (B) Isobologram based on dose-response curves for lapatinib and imatinib. Data points below the line represent synergistic drug interaction; points on the line indicate an additive interaction; points above the line indicate antagonism. The table shows the combination indexes (CI) of different doses of lapatinib with 10 μ M of imatinib derived from three independent experiments. A combination index (CI) value of one indicates an additive interaction; a CI value greater than one indicates antagonism; and a CI value less than one indicates synergism.

Supplementary Figure S2: Expression of lncRNA BC200 and *MALAT-1* does not respond to the dual treatment. MDA-MB-231 (A) and SUM159 (B) cells were untreated or treated with lapatinib, imatinib, or lapatinib plus imatinib as indicated. The levels of *BC200* and *MALAT-1* were then determined by qRT-PCR and normalized with *GAPDH* and *18S*. There is no significant statistic difference of RNA expression comparing the no treatment control and the dual treatment (P > 0.05).

Supplementary Figure S3: *HOTAIR* expression in Figures 2B and 2C measured by qRT-PCR. (A) Relative *HOTAIR* expression in the stable clones of MDA-MB-231 used in Figure 2B. (B) Relative *HOTAIR* expression in the inducible clones used in Figure 2C. The qRT-PCR levels were normalized by 18S expression. *, P < 0.05; **, P < 0.01.

Supplementary Figure S4: *HOTAIR* expression in inducible *shHOTAIR* transfectants. MDA-MB-231 cells were engineered to expression shRNA of *HOTAIR* or the control shRNA of scrambled sequence under the control of the tetracycline-inducible promoter. Cells were induced by tetracycline of 10 ng/ml or 25 ng/ml for 96 hrs. The levels of *HOTAIR* were determined by qRT-PCR and normalized to *18S*. *, P < 0.05; **, P < 0.01.

Supplementary Figure S5: Dual treatment inhibits cell growth through targeting *HOTAIR*. In addition to the clones shown in Figure 2C, an additional pair of MDA-MB-231-derived clones of tet-shHOTAIR and tet-shCtrl were induced by tetracycline for 96 hrs then treated with indicated drugs for 48 hrs. Viable cells were then measured by MTT assays. ***, P < 0.005.

Supplementary Figure S6: Verification of \beta-catenin expression. (A) Expression of transfected HA-tagged β -catenin is determined by Western analysis using an anti-HA antibody for each indicated cell line treated separately but with the same conditions as described in Figure 3B. (B) Western analysis of HA- β -catenin expression in MDA-MB-231 cells treated separately but with the same conditions as described in Figure 3F.

Supplementary Figure S7: Dual treatment suppresses c-Myc expression. MDA-MB-231 and MDA-MB-468 and SUM159 cells were mock treated, or treated with lapatinib alone (10 μ M), imatinib alone (10 μ M), or their combination for 48 hours. HCC1806 cells were mock treated or treated with lapatinib alone (5 μ M), imatinib alone (10 μ M), or their combination for 48 hours. The levels of c-Myc RNA were determined by qRT-PCR and normalized to 18S. *, *P* < 0.05; **, *P* < 0.01; ***, *P* < 0.001.

Supplementary Figure S8: Expression of *HOTAIR* **is associated with TNBC.** RNA samples from primary breast cancer tumor tissues of TNBC and non-TNBC were extracted following the instruction of the manufacturer (Zymo; Irvine, CA) and the levels of *HOTAIR* were determined by RT-PCR. 18S was shown as the input control.

Weeks	Ctl vs Dual		Lap vs Dual		Ima vs Dual	
	Significance	P value	Significance	<i>P</i> value	Significance	<i>P</i> value
1	-	0.903099	-	0.885183	-	0.971655
4	-	0.605719	-	0.94504	-	0.935906
7	-	0.365714	-	0.777454	-	0.618999
10	-	0.320924	-	0.786416	-	0.551658
14	-	0.0721446	-	0.47566	-	0.368611
18	*	0.0130629	-	0.474232	-	0.250883
24	**	0.00950806	-	0.231792	-	0.0883949
27	***	0.00371837	-	0.0624445	*	0.0450856
30	***	0.00209735	*	0.0439888	***	0.00210895
33	***	2.0618E-05	*	0.0198929	***	6.7274E-05
37	***	3.1428E-11	*	0.0161623	***	2.2679E-05

Supplementary Table S1: Statistical analysis of Figure 1B

*, *P* < 0.05 **, *P* < 0.01 ***, *P* < 0.005