Supporting Information

HDL-mimetic PLGA nanoparticle for the targeting of atherosclerosis

plaque macrophages

Brenda L. Sanchez-Gaytan^{a*}, Francois Fay^{a*}, Mark E. Lobatto^{a,b*}, Jun Tang^{a,c}, Mireille

Ouimet^d, YongTae Kim^e, Susanne E.M. van der Staay^a, Sarian M. van Rijs^a, Bram

Priem^a, Liangfang Zhang^f, Edward A. Fisher^d, Kathryn J. Moore^d, Robert Langer^g, Zahi

A. Fayad^a, and Willem J. M. Mulder^{a,b**}

Affiliations

^a Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA. ^b Department of Vascular Medicine, Academic Medical Center, Amsterdam, 1105 AZ The Netherlands. ^c Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, 10029 USA. ^d Departments of Medicine (Cardiology) and Cell Biology, NYU School of Medicine, New York, NY, 10016 USA. ^e The George W. Woodruff School of Mechanical Engineering, Institute for Electronics and Nanotechnology, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology Atlanta, GA, 30332 USA. ^f Department of NanoEngineering and Moores Cancer Center, University of California, San Diego, La Jolla, CA, 92093 USA. ^g David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02139 USA.

*Equally contributed to this work

****** Corresponding author

Willem.Mulder@mssm.edu

Table of Contents

Figure S1. Structural parameters for PLGA-HDL nanoparticles containing DMPC/MHPC lipids.

Figure S2. Size exclusion chromatograms of PLGA-HDL solutions measured at 215 nm (A) and 260 nm (B). The retention time obtained is 8.67 minutes. A chromatogram of pure ApoA-I is shown in (C) for comparison.

Figure S3. Mean diameter change of PLGA-HDL nanoparticles incubated at 4 °C (red) and 37 °C (black) in PBS.

Figure S4. Percentage of Nile red contained in PLGA-HDL nanoparticles at 4 °C, n=3.

Figure S5. MTT metabolic assay on pancreatic endothelial cells, macrophages, smooth muscle cells and hepatocytes incubated for 24 hours with PLGA-HDL (a) and a control PEG-PLGA NP (b). The assay showed that the PLGA-HDL nanoparticles are non-toxic to the cell lines used in the present work.

Figure S6. Fluorescence microscopy images of DAPI-stained macrophages (a), pancreatic endothelial cells (b), smooth muscle cells (c), hepatocytes (d) and human umbilical endothelial cells (e) incubated with Rhodamine-labeled control HDL nanoparticles. Scale bar 25 μ m.

Figure S7. Fluorescence microscopy images of DAPI-stained macrophages (a, c) and human umbilical endothelial cells (b, d) incubated with Rhodamine-labeled control PLGA-HDL nanoparticles (a, b) and Rhodamine-labeled PEG-PLGA nanoparticles (c, d). Scale Bar 50 μ m. (e) Mean fluorescence of macrophages and human umbilical endothelial cells incubated with PEG-PLGA NP (white) and PLGA-HDL (black).

Figure S8. MTT metabolic assay on macrophages (a), and human umbilical endothelial cells (b) incubated for 24 hours with PLGA-HDL and a control PEG-PLGA NP.

Figure S9. Cholesterol efflux assay of native-HDL, PLGA-HDL and microfluidicsynthesized HDL on a) murine bone marrow-derived macrophages, and b) murine macrophage cell line J774A1 at $50 \mu g/mL$.

Figure S10. Circulation half-life calculated as $-\ln 2/\text{slope} = 12.8$ hours.

Figure S11. Biodistribution analysis on hearts, aortas, spleen, livers, kidney, brain and muscle and done by NIRF imaging.

a)		
Sample	Phospholipids/ApoA-I (moles)	
PLGA-HDL	180	
b)		
Weight Ratio PLGA/ Lipids	Diameter (nm)	Polydispersity
10	99.7	0.125
4	58.6	0.149
2	31.5	0.253

Figure S1. Structural parameters for PLGA-HDL nanoparticles containing DMPC/MHPC lipids.

Figure S2. Size exclusion chromatograms of PLGA-HDL solutions measured at 215 nm (A) and 260 nm (B). The retention time obtained is 8.67 minutes. A chromatogram of pure ApoA-I is shown in (C) for comparison.

Figure S3. Mean diameter change of PLGA-HDL nanoparticles incubated at 4 $^{\circ}$ C (red) and 37 $^{\circ}$ C (black) in PBS.

Figure S4. Percentage of Nile red contained in PLGA-HDL nanoparticles at 4 °C, n=3.

Figure S5. MTT metabolic assay on pancreatic endothelial cells, macrophages, smooth muscle cells and hepatocytes incubated for 24 hours with PLGA-HDL (a) and a control PEG-PLGA NP (b). The assay showed that the PLGA-HDL nanoparticles are non-toxic to the cell lines used in the present work.

Figure S6. Fluorescence microscopy images of DAPI-stained macrophages (a), pancreatic endothelial cells (b), smooth muscle cells (c) and hepatocytes (d) incubated with Rhodamine-labeled control HDL nanoparticles. Scale bar 25 μ m.

Figure S7. Fluorescence microscopy images of DAPI-stained macrophages (a, c) and human umbilical endothelial cells (b, d) incubated with Rhodamine-labeled control PLGA-HDL nanoparticles (a, b) and Rhodamine-labeled PEG-PLGA nanoparticles (c, d). Scale Bar 50 μ m. (e) Mean fluorescence of macrophages and human umbilical endothelial cells incubated with PEG-PLGA NP (white) and PLGA-HDL (black).

Figure S8. MTT metabolic assay on macrophages (a), and human umbilical endothelial cells (b) incubated for 24 hours with PLGA-HDL and a control PEG-PLGA NP.

Figure S9. Cholesterol efflux assay of native-HDL, PLGA-HDL and microfluidic-synthesized HDL on a) murine bone marrow-derived macrophages, and b) the murine macrophage cell line J774A1 at 50 μ g/mL.

Figure S10. Circulation half-life calculated as $-\ln 2/\text{slope} = 12.8$ hours.

Figure S11. Biodistribution analysis on hearts, aortas, spleen, livers, kidney, brain and muscle and done by NIRF imaging.