ONLINE SUPPLEMENTAL MATERIAL

Karlin et al., http://www.jgp.org/content/full/jgp.201511380/DC1

Figure S1. Simulation of time courses of V_m (A–C), Ca_{in} (D–F), and Ca_{NSCstr} (G–I) with normal parameters from t = 0–300 s. Insets show time courses from t = 150–155 s. Intravascular pressure is 20 mm Hg (A, D, and G), 60 mm Hg (B, E, and H), and 100 mm Hg (C, F, and I).

Figure S2. Simulation of time courses of I_{NSCstr_ALL} (A–C), I_{ClA} (D–F), and I_{CaV_ALL} (G–I) with normal parameters from t = 0–300 s. Insets show time courses from t = 150–155 s. Intravascular pressure is 20 mm Hg (A, D, and G), 60 mm Hg (B, E, and H), and 100 mm Hg (C, F, and I).

Figure S3. Simulation of time courses of I_{PMCA} (A–C), I_{NaK} (D–F), and I_{SERCA_ALL} (G–I) with normal parameters from t = 0–300 s. Insets show time courses from t = 150–155 s. Intravascular pressure is 20 mm Hg (A, D, and G), 60 mm Hg (B, E, and H), and 100 mm Hg (C, F, and I).

Figure 54. Simulation of time courses of Ca_{SRcen} (A–C), Ca_{SRper} (D–F), and Ca_{jun} (G–I) with normal parameters from t = 0–300 s. Insets show time courses from t = 150–155 s. Intravascular pressure is 20 mm Hg (A, D, and G), 60 mm Hg (B, E, and H), and 100 mm Hg (C, F, and I).

Figure S5. Simulation of time courses of I_{RyR_ALL} (A–C), I_{BK_ALL} (D–F), and I_{Kv} (G–I) with normal parameters from t = 0–300 s. Insets show time courses from t = 150–155 s. Intravascular pressure is 20 mm Hg (A, D, and G), 60 mm Hg (B, E, and H), and 100 mm Hg (C, F, and I).

Figure S6. Sensitivity of the fit of $\langle V_m \rangle$ to V_{exp} on variation in the number of molecules of each component. The total number of molecules or the maximum current of each component of relevance in the absence of chemical effectors was changed one at a time by a factor of 0 (or 0.001 in some cases to avoid dividing by zero), 0.8, 0.9, 1.1, and 1.2 times their normal values. (Most enzymes were excluded because they are assumed to be in 1:1 complexes with their targets.) At each of six intravascular pressures (as in Fig. 2), ($\langle V_m \rangle - V_{exp}$)/ V_{exp} was calculated; these relative differences were squared, the six values were averaged, and the square root was taken to obtain the rms-relative error in $\langle V_m \rangle$. With the normal parameters, this was 1.25% (dashed red line). The rms-relative error in $\langle V_m \rangle$ simulated with the parameters relevant to BK channel function in the absence of its β 1 subunit (see Fig. 8) is 16.7% (black dashed line). Abbreviations are defined in Table S6.

Figure S7. Sensitivity of the fit of of $\langle Ca_{in} \rangle$ to Ca_{exp} on variation in the number of molecules of each component. The rms-relative error in $\langle Ca_{in} \rangle$ was calculated as in Fig. S6. With the normal parameter set, this was 3.21% (dashed red line). The rms-relative error in $\langle Ca_{in} \rangle$ simulated with the parameters relevant to BK channel function in the absence of its β 1 subunit (see Fig. 8) is 21.0% (black dashed line).

Figure S8. Sensitivities of $\langle V_m \rangle$, $\langle Ca_{in} \rangle$, and components to parameters. Sensitivity is calculated as the mean over six intramural pressures, and for $\pm \varepsilon$, of $|\langle Z \rangle - \langle Z_{norm} \rangle |/|\varepsilon|$, where Z is $\langle V_m \rangle$, $\langle Ca_{in} \rangle$, or the immediate output of the cognate component, e.g., $\langle I_{BK,ALL} \rangle$ for the parameters relevant to BK channel function. The subscript "norm" indicates the value obtained with normal parameters. ε is the fractional change in the parameter, which in these cases are ± 0.1 . Sensitivity so defined is approximately the mean of the absolute values of the parameters.

Figure S9. Sensitivities of $\langle V_m \rangle$, $\langle Ca_{in} \rangle$, and components to parameters. Sensitivity is calculated as the mean over six intramural pressures, and for $\pm \varepsilon$, of $|\langle Z \rangle - \langle Z_{norm} \rangle |/|\varepsilon|$, where Z is $\langle V_m \rangle$, $\langle Ca_{in} \rangle$, or the immediate output of the cognate component, e.g., $\langle I_{BK,ALL} \rangle$ for the parameters relevant to BK channel function. The subscript "norm" indicates the value obtained with normal parameters. ε is the fractional change in the parameter, which in these cases are ± 0.1 . Sensitivity so defined is approximately the mean of the absolute values of the parameters.

Figure S10. Sensitivities of $\langle V_m \rangle$, $\langle Ca_{in} \rangle$, and components to parameters. Sensitivity is calculated as the mean over six intramural pressures, and for $\pm \varepsilon$, of $|\langle Z \rangle - \langle Z_{norm} \rangle |/|\varepsilon|$, where Z is $\langle V_m \rangle$, $\langle Ca_{in} \rangle$, or the immediate output of the cognate component, e.g., $\langle I_{BK_ALL} \rangle$ for the parameters relevant to BK channel function. The subscript "norm" indicates the value obtained with normal parameters. ε is the fractional change in the parameter, which in these cases are ± 0.1 . Sensitivity so defined is approximately the mean of the absolute values of the parameters.

		Lijjeeto, applicati	parametero		
Parameters	Units	Values	Parameters	Units	Values
$\overline{\alpha A.0^{a}}$	μΜ	0	к.βА1	1/s	2
αΑ.1	μM	0	к.βА2	1/s	2
τ.αΑ1	8	4.00E + 01	BP.0	mm Hg	0.00E + 00
τ.αΑ2	8	5.00E + 01	BP.1	mm Hg	10
τ.αΑ3	8	3.00E + 02	τ.BP1	S	1.00E + 01
к.αА1	1/s	2	τ. BP2	s	1.50E + 01
κ.αΑ2	1/s	2	τ. BP3	S	3.00E + 02
ATP.0	μM	0	к.BP1	1/s	2
ATP.1	μM	0	к.ВР2	1/s	2
τ.pulse_init	8	100	EET.0	μM	0
$\Delta \tau. pulse_on$	8	1	EET.1	μM	0
$\Delta \tau. pulse_off$	8	9	τ .EET1	s	4.00E + 01
n.cycles		20	τ.EET2	s	6.00E + 01
τ.ATP1	8	4.00E + 01	τ.EET3	s	3.00E + 02
τ.ATP2	8	5.00E + 01	к.EET1	1/s	2.00E - 01
τ.ATP3	8	3.00E + 02	к.EET2	1/s	2.00E + 00
к.ATP1	1/s	2	NO.0	μM	0
к.ATP2	1/s	2	NO.1	μM	0
βΑ.0	μΜ	0.00E + 00	τ.ΝΟ1	S	4.00E + 01
βΑ.1	μM	0	τ.ΝΟ2	S	5.00E + 01
τ.βΑ1	8	4.00E + 01	τ.ΝΟ3	S	3.00E + 02
τ.βΑ2	8	5.00E + 01	к.NO1	1/s	2
τ.βΑ3	S	3.00E + 02	к.NO2	1/s	2

TABLE S1 Effector application parameters

The values shown are for application of intravascular pressure (BP) alone; the concentrations of all other effectors are zero. For each effector, X, two concentrations are given, X.0, the initial and base concentration, and X.1, the second concentration. X.0 is applied from t = 0 to $t = \tau$.X1, when the concentration rises (or falls) to X.1 with a rate constant of κ .X1 until $t = \tau$.X2. The concentration of X remains constant from τ .X2 to τ X3, when it begins to fall (or rise) to X.0 with a rate constant of κ .X2. One or more effectors can be thus added in the same run. In addition, multiple consecutive runs with different concentrations of any one of the effectors are initiated with a vector of consecutive concentrations of the effector (see supplementary equations, section A). All other effector parameters remain the same for each of these runs. For pulsatile addition of any effector, the first pulse starts at $t = \tau$.pulse_init, and each pulse is on for $\Delta \tau$.pulse_off, and repeated n.cycles times.

^aText preceded by a period in the table is subscripted in the program.

 TABLE S2

 Means of selected variables from 250 to 300 s in a run with normal parameters

bp	mm Hg	10	20	40	60	80	100
Variables	Units						
V.m	mV	-6.17E + 01	$-5.99E \pm 01$	$-5.18E \pm 01$	$-4.53E \pm 01$	-4.05E + 01	-3.73E + 01
Ca.in	uМ	1.99E - 01	1.32E = 01	1.63E - 01	1.95E - 01	9.91E - 01	9.38E - 01
Ca.NSCstr	uM	1.51E - 01	2.04E - 01	3.60E - 01	5.32E = 01	6.83E - 01	8.19E - 01
Ca.iun	uM	9.37E - 01	3.63E - 01	5.11E = 01	7.00E - 01	8.41E - 01	9.12E = 01
Ca SRper	иM	1.35E + 02	1.13E + 02	9.99E + 01	8.23E + 01	7.21E + 01	6.72E + 01
Ca.SRcen	uM	1.41E + 02	1.24E + 02	1.17E + 02	1.08E + 02	1.03E + 02	1.01E + 02
Cl.in	mM	6.19E + 01	6.16E + 01	6.02E + 01	5.65E + 01	5.21E + 01	4.86E + 01
K.in	mM	1.49E + 02	1.48E + 02	1.46E + 02	1.41E + 02	1.36E + 02	1.31E + 02
Na.in	mM	9.65E + 00	9.69E + 00	9.69E + 00	9.84E + 00	1.01E + 01	1.03E + 01
I.BK_ALL ^a	рА	3.10E - 02	1.40E - 01	1.09E + 00	2.34E + 00	3.79E + 00	4.67E + 00
I.CaV_ALL ^a	pA	-3.33E - 01	-4.70E - 01	-9.45E - 01	-1.64E + 00	-2.36E + 00	-2.89E + 00
I.ClA	pA	-1.23E - 01	-2.76E - 01	-1.24E + 00	-3.30E + 00	-5.52E + 00	-7.11E + 00
I.Kv	pA	3.80E - 02	8.97E - 02	3.92E - 01	1.13E + 00	2.11E + 00	2.84E + 00
I.NSCstr_ALL ^b	pA	-1.35E - 02	-3.33E - 02	-9.08E - 02	-1.55E - 01	-2.10E - 01	-2.61E - 01
I.NSCne_ALL ^b	pA	-2.12E - 01	-2.27E - 01	-2.60E - 01	-2.77E - 01	-2.79E - 01	-2.75E - 01
I_KATP_ALL ^a	pA	1.96E - 01	2.24E - 01	3.01E - 01	3.65E - 01	4.06E - 01	4.29E - 01
I.Ca leak	pA	-1.87E - 01	-1.80E - 01	-1.59E - 01	-1.41E - 01	-1.28E - 01	-1.20E - 01
I.Cl leak	pA	-2.72E - 01	-2.31E - 01	-2.48E - 01	-1.68E - 01	-1.57E - 01	-9.06E - 02
I.K_leak	pA	4.70E - 02	2.80E - 02	1.14E - 01	1.03E - 01	1.48E - 01	1.19E - 01
I.NaK	pA	7.21E - 01	7.57E - 01	8.46E - 01	9.79E - 01	1.13E + 00	1.27E + 00
I.PMCA	pA	1.93E - 01	2.54E - 01	4.84E - 01	8.34E - 01	1.20E + 00	1.49E + 00
I.NCX	pA	-8 56E - 02	-8.99E - 02	-9.89E - 02	-9.38E - 02	-7.95E - 02	-6.49E - 02
I.NaK Cl ^c	pA	3.33E + 00	3.39E + 00	3.74E + 00	4.54E + 00	5.58E + 00	6.51E + 00
I.IP3R_ALL ^a	pA	-3.47E - 02	-3.28E - 02	-4.75E - 02	-5.83E - 02	-6.77E - 02	-7.44E - 02
I.RyR_jun_ALL ^a	pA	-1.79E - 02	-3.56E - 02	-5.45E - 02	-7.80E - 02	-9.58E - 02	-1.05E - 01
I.SERCA_ALL ^a	pA	2.63E - 02	3.50E - 02	5.00E - 02	6.82E - 02	8.16E - 02	8.96E - 02
PLC_PIP	#	4.62E + 02					
IP3	μΜ	1.70E - 01					
DAG	μΜ	1.70E - 01					
cGMP	μΜ	2.12E - 01					
AC0	#	5.99E + 03					
AC_p	#	1.00E + 01					
cAMP	μM	2.12E - 01					
PDE_cA	μM	9.92E - 03					
PDE_cA_P	μΜ	7.72E - 05					
PDE_cG	μΜ	9.92E - 03					
PDE_cG_P	μM	7.72E - 05					
relPKA	none	2.80E - 03					
relPKG	none	4.99E - 03					
relPKC	none	6.86E - 02	7.70E - 02	1.01E - 01	1.24E - 01	1.40E - 01	1.49E - 01
relPKC	none	9.11E - 02					
BK	#	1.29E + 03	1.29E + 03	1.24E + 03	1.21E + 03	1.20E + 03	1.20E + 03
BK_PKA	#	3.61E + 00	3.60E + 00	3.45E + 00	3.39E + 00	3.36E + 00	3.35E + 00
BK_PKC	#	1.92E + 02	1.96E + 02	2.48E + 02	2.71E + 02	2.82E + 02	2.87E + 02
BK_PKG	#	1.29E + 01	1.29E + 01	1.23E + 01	1.21E + 01	1.20E + 01	1.20E + 01
CaV	#	2.78E + 03	2.76E + 03	2.70E + 03	2.65E + 03	2.61E + 03	2.59E + 03
CaV_PKC	#	1.91E + 02	2.12E + 02	2.73E + 02	3.27E + 02	3.64E + 02	3.86E + 02
CaV_PKG	#	2.78E + 01	2.76E + 01	2.70E + 01	2.64E + 01	2.60E + 01	2.58E + 01
NaKU NaKU	#	9.36E + 03	9.29E + 03	9.09E + 03	8.91E + 03	8.78E + 03	8.71E + 03
NaKU_PKU NSCote	Ŧ	0.38E + 02	7.10E + 02	$9.12E \pm 02$	$1.09E \pm 0.03$	$1.22E \pm 0.03$	1.29E + 03
INSUSU	#	9 292 - 09	9 /OE + 00	9 AAE + 00	9 /9E + 00	9 49E + 09	9 /1E + 00
NSCstr PKC	#	2.52E + 02 6 95F + 00	2.49E + 02 9.64F + 00	2.44E + 02 1 41F + 01	2.42E + 02 1.61E + 01	2.42E + 02 1.69F + 01	2.41E + 02 1.73E + 01

bp	mm Hg	10	20	40	60	80	100
PP_NaKCl	#	9.92E + 03					
PP_P_NaKCl	#	7.73E + 01					
IP3R	#	1.99E + 03					
IP3R_IRAG_PKG	#	9.93E + 00					
SERCA	#	9.29E + 02	9.22E + 02	9.02E + 02	8.84E + 02	8.72E + 02	8.64E + 02
SERCA_P	#	7.10E + 01	7.81E + 01	9.82E + 01	1.16E + 02	1.28E + 02	1.36E + 02
KATP	#	1.55E + 02					
KATP_PKA	#	4.24E + 00					
KATP_PKC	#	1.41E + 02					

#, the number of molecules.

^aALL here indicates the sum of the currents conducted by dephosphorylated and all phosphorylated species.

^bALL here indicates the sum of all ionic currents.

^cJust the Cl current; the total current carried by NaKCl is zero.

	Determ	unanus of oscillations			
Parameter/Variable	Normal value	Altered value	I.RyR_ALL, Ca. jun, Ca.SRper	I.BK_ALL, V.m, I.CaV_ALL	
			Frequency ^a	Frequency ^a	
			(1/s)	(1/s)	
NORM			2.9	2.9	
I.SERCA_max	0.8 pA	0.64 pA	2.2	2.2	
I.SERCA_max	0.8 pA	0.96 pA	3.3	3.3	
Ca.SRcen	variable	$97.2 \ \mu M$	0	0	
Ca.SRcen	variable	108 µM	3.0	3.0	
Ca.SRcen	variable	118.8 µM	5.3	5.3	
Ca.SRcen	variable	129.6 μM	0	0	
Ca.SRper	variable	65.8 μM	0	0	
Ca.SRper	variable	82.3 μM	0	0	
Ca.SRper	variable	98.8 µM	0	0	
VOL.SRper	0.56 fL	$0.45~\mathrm{fL}$	3.1	3.1	
VOL.SRper	0.56 fL	0.67 fL	2.8	2.8	
RyR.T	3,000 #/cell	3,600 #/cell	3.9	3.9	
RyR.T	3,000 #/cell	3,300 #/cell	3.4	3.4	
RyR.T	3,000 #/cell	2,700 #/cell	2.3	2.3	
RyR.T	3,000 #/cell	2,400 #/cell	0	0	
K.RyR_Ca_min;max	4 μM; 10 μM	6.0 μM	5.4	5.4	
K.RyR_Ca_min;max	4 μM; 10 μM	7.5 μM	2.2	2.2	
K.RyR_Ca_min;max	4 μM; 10 μM	9.0 μM	0	0	
Ca.jun input to RyR	variable	0.56 µM	0	0	
Ca.jun activation of RyR	variable	0.7 μM	0	0	
Ca.jun activation of RyR	variable	$0.84 \mu M$	0	0	
K.RyR_Ca_inh	3 µM	2.4 µM	3.1	3.1	
K.RyR_Ca_inh	3 µM	3.6 µM	2.9	2.9	
K.RyR_Ca_inh	3 µM	100 µM	2.8	2.8	
VOL.jun	0.13 fL	0.104 fL	3.2	3.2	
VOL.jun	0.13 fL	0.156 fL	2.6	2.6	
Ca.jun_fixed input to BK	variable	0.56 µM	4.8	0	
Ca.jun_fixed input to BK	variable	0.7 μM	4.0	0	
Ca.jun_fixed input to BK	variable	$0.84~\mu M$	2.8	0	

TABLE S3 Determinants of oscillations

 $^{\mathrm{a}}\mathrm{Frequency}$ in the interval from 150 to 155 s during a 300-s simulation at 60 mm Hg.

	TABLE S4	
Fractional changes in V_m , C	Ca _{in} , and individual components pe	r change in parameter

Parameter	<v.m></v.m>	<ca.in></ca.in>	Local output	Local output
	Fractional changes ^a	Fractional changes ^a		Fractional changes ^b
	(1/mV)	(1/mV)		(1/mV)
V.Kv	0.59%	0.70%	I.Kv	8.13%
V.ClA	0.53%	0.58%	I.ClA	3.42%
V.CaV_act	0.66%	3.14%	I.CaV_ALL	10.16%
V.BK_closed	0.11%	0.05%	I.BK_ALL	3.11%
V.BK_open	0.34%	0.27%	I.BK_ALL	4.08%

^aV.m and Ca.in were simulated at six intravascular pressures with the parameters increased and decreased by 2 mV to obtain the perturbed values. The mean of the six values of {|(z,perturbed - z,normal)/z,normal|}/2, where z is either V.m or Ca.in, was calculated. The average of the means for 2 and -2 mV are presented.

^bAs in footnote a, except that z is the value of the individual component dependent on the parameter.

V Ca.in V Ca.in V Ca.in V	μM 0.27 0.41 0.20 0.22 2.73 2.79	mV or μM 15.1 0.103 14.9 0.100 12.3	1.36 1.20 1.28 1.26 1.46
V Ca.in V Ca.in V Ca.in V	0.27 0.41 0.20 0.22 2.73 2.79	15.1 0.103 14.9 0.100 12.3	1.36 1.20 1.28 1.26
Ca.in V Ca.in V Ca.in V	0.41 0.20 0.22 2.73 2.79	0.103 14.9 0.100 12.3	1.20 1.28 1.26
V Ca.in V Ca.in V	0.20 0.22 2.73 2.79	14.9 0.100 12.3	1.28 1.26
Ca.in V Ca.in V	0.22 2.73 2.79	0.100 12.3	1.26
V Ca.in V	2.73 2.79	12.3	1.46
Ca.in V	2.79		1.40
V		0.065	1.52
	1.67	14.4	1.34
Ca.in	2.22	0.092	1.29
V	0.93	15.3	1.30
Ca.in	1.30	0.101	1.24
V	1.59	11.2	1.33
Ca.in	1.68	0.079	1.36
V	1.16	14.0	1.42
Ca.in	1.25	0.103	1.23
V	0.72	15.1	1.39
Ca.in	0.73	0.103	1.25
V	0.83	-15.1	1.21
Ca.in	0.57	-0.064	1.23
V	0.54	-20.0	1.45
Ca.in	0.24	-0.057	1.39
V	0.46	-8.7	0.81
Ca.in	0.40	-0.046	0.79
	V Ca.in V Ca.in V Ca.in V Ca.in V Ca.in V Ca.in V Ca.in V Ca.in V Ca.in	V 1.67 Ca.in 2.22 V 0.93 Ca.in 1.30 V 1.59 Ca.in 1.68 V 1.16 Ca.in 1.25 V 0.72 Ca.in 0.73 V 0.83 Ca.in 0.57 V 0.54 Ca.in 0.24 V 0.46 Ca.in 0.40	V1.6714.4Ca.in 2.22 0.092 V 0.93 15.3 Ca.in 1.30 0.101 V 1.59 11.2 Ca.in 1.68 0.079 V 1.16 14.0 Ca.in 1.25 0.103 V 0.72 15.1 Ca.in 0.73 0.103 V 0.83 -15.1 Ca.in 0.57 -0.064 V 0.54 -20.0 Ca.in 0.24 -0.057 V 0.46 -8.7 Ca.in 0.40 -0.046

TABLE S5 Dose–response parameters for $\alpha A,$ αA + ATP, $\beta A,$ EET, and NO

Parameters of the Hill equation, $\Delta Z = \Delta Z_{inl}a^n/(Q^n + a^n)$, where $\Delta Z = Z - Z_0$, Z_0 = variable at 0 effector, Z_{inf} = variable at infinite effector concentration, a = [agonist], Q = EC50, and *n* = the Hill coefficient, were obtained by a nonlinear least-squares error fit of simulated data (see Fig. 6).

Table S6 is available as a Word document.

Model equations (Mathcad program) are available in a PDF file.

A PDF file of reaction schemes for α -adrenergic signaling, β -adrenergic signaling, NaKCl cotransporter, NCX exchanger, and P2XR is also available.