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If X is a real-valued random variable with finite mean E(X) and finite variance var(X), and if a real-valued function f of real x is twice
differentiable at E(X), then the delta method (ref. 1 and ref. 2, pp. 355–358) gives the approximations
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In practice, we compute sample moments from observations of X, plug them in to replace the population moments, and accept the
result as approximations to the left sides.

Lemma 1. Suppose Y is a nonnegative real-valued random variable with finite mean E(Y) = M > 0 and finite variance var(Y) = V > 0.
Assume sampled observations are iid and the sample size in block j is nj (j= 1;   2;   . . . ;  N) and N is the number of blocks. If mj is
the sample mean of observations in block j, then the approximations given by the delta method are logmj ≈ logM + ðmj −MÞ=M, EðlogmjÞ≈
logM −V=ð2njM2Þ, varðlogmjÞ≈V=ðnjM2Þ.

Proof: In the approximations from the delta method, we set X = mj, f(x) = log(x), x > 0. Therefore, f ′ðxÞ= 1=x and f ″ðxÞ=−1=x2.
Because E(mj) = M and var(mj) = V/nj,
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The proof is complete.

Lemma 2. Under the assumptions of Lemma 1 also assume the third and fourth central moments of the random variable Y are finite and
positive, that is, μh = E([Y − M]h) > 0, h = 3, 4. Suppose vj is the unbiased sample variance of observations in block j and E(vj) =
V > 0. Then the approximations given by the delta method are log vj ≈ logV + ðvj −V Þ=V , varðlog vjÞ≈
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Proof: Setting X = vj and following the same arguments as in the proof of Lemma 1 give the results.

Lemma 3. Under the assumptions of Lemmas 1 and 2, the covariance of the sample mean and sample variance is covðvj;mjÞ= μ3=nj.
Zhang (3) gives a proof of this classical formula, which has been known at least since 1903 (ref. 4, p. 279, equation xiii; ref. 5, p. 7,

equation xxvi; ref. 6, p. 479, equation 67; and ref. 7, p. 402, equations 3 and 4).
Proof of Theorem:When all blocks are weighted equally, the least-squares estimators of slope b and intercept logðaÞ, and SE of the slope

estimator sðb̂Þ are, respectively (8, p. 155),
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The notations mean+ð · Þ, var+ð · Þ, and cov+ð ·; · Þ are to be read as the mean, variance, and covariance across all blocks and not as
referring to any single block j. Explicitly, the sample estimators are defined by
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They are all consistent by the law of large numbers: as N→∞, mean+ðlogmjÞ→P EðlogmjÞ, mean+ðlog vjÞ→P Eðlog vjÞ, var+ðlogmjÞ→ P
varðlogmjÞ, var+ðlog vjÞ→P varðlog vjÞ, and cov+ðlog vj; logmjÞ→P covðlog vj; logmjÞ. Here the symbol “→P” means convergence in prob-
ability.
To find the limits in probability of b̂ and sðb̂Þ, we approximate the above estimators by the delta method using Lemmas 1, 2, and 3.

We first approximate the numerator and the denominator of b̂ separately. For the numerator of b,̂ namely, cov+ðlog vj; logmjÞ, the first
term is approximately
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The second term of the numerator of b ̂ is approximately
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Similarly, the denominator of b̂ is approximately
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Consequently, for large nj, j= 1; 2; . . . ;N; b̂≈ cov+ðmj;vjÞ
MV =

var+ðmjÞ
M2 : By consistency, for large N, using Lemma 3 in the numerator,
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Using the consistency of estimator mean+ð · Þ and existing expressions for EðlogmjÞ, Eðlog vjÞ and b̂, for large N and nj,
j= 1; 2;   . . . ;  N,
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The derivation of var+ðlog vjÞ is the same as that of var+ðlogmjÞ. Replacing mj with vj and M with V yields var+ðlog vjÞ≈ var+ðvjÞ=V 2. For
large N and nj, j= 1;   2;   . . . ;  N, substituting into the formula for sðb̂Þ the estimators corresponding to var+ðmjÞ, var+ðvjÞ, and b̂ yields

s


b̂
�
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N − 2

�
μ4
V 2 − 1

�� V
M2 −

�
μ3M

�
V 2�2�s

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2
�
μ4V −V 3 − μ23

�
ðN − 2ÞV 4

s
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
κ− 1− γ21

ðN − 2ÞðCV Þ2
s

;

where κ = μ4/V
2 is the kurtosis. This completes the proof.

1. Oehlert GW (1992) A note on the delta method. Am Stat 46(1):27–29.
2. Hosmer DW, Lemeshow S, May S (2008) Applied Survival Analysis: Regression Modeling of Time-to-Event Data (Wiley, New York), 2nd Ed.
3. Zhang L (2007) Sample mean and sample variance: their covariance and their (in)dependence. Am Stat 61(2):159–160.
4. Pearson K (1903) On the probable errors of frequency constants. Biometrika 2(3):273–281.
5. Pearson K (1913) On the probable errors of frequency constants part II. Biometrika 9(1/2):1–10.
6. Neyman J (1925) Contributions to the theory of small samples drawn from a finite population. Biometrika 17(3/4):472–479.
7. Neyman J (1926) On the correlation of the mean and the variance in samples drawn from an “infinite” population. Biometrika 18(3/4):401–413.
8. Snedecor GW, Cochran WG (1980) Statistical Methods (Iowa State Univ Press, Ames, IA), 7th Ed.

A B

C D

E F

Fig. S1. Comparison of TL slope estimator b̂ predicted from theory and computed using linear regression for (A) Poisson (λ = 1), (B) negative binomial (r = 5,
p = 0.4), (C) exponential (λ = 1), (D) gamma (α = 4, β = 1), (E) lognormal (μ = 1, σ = 1), and (F) shifted normal [5 +N (0,1)] distributions. Gray histogram shows the
distribution of point estimates of b from 10,000 linear regressions. For each distribution, the black solid line and dashed lines give, respectively, the median and
95% CI of b calculated from 10,000 random copies of n × N iid samples using the theoretical formula (Eq. 3).
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Fig. S2. Comparison of TL intercept estimator dlogðaÞ predicted from theory and computed using linear regression for (A) Poisson (λ = 1), (B) negative binomial
(r = 5, p = 0.4), (C) exponential (λ = 1), (D) gamma (α = 4, β = 1), (E) lognormal (μ = 1, σ = 1), and (F) shifted normal [5 + N (0,1)] distributions. Gray histogram
shows the distribution of point estimates of log(a) from 10,000 linear regressions. For each distribution, the black solid line and dashed lines gave, respectively,
the median and 95% CI of log(a) calculated from 10,000 random copies of n × N iid samples using the theoretical formula (Eq. 4).
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Fig. S3. Comparison of SE of the slope estimator [sðb̂Þ] predicted from theory and computed using linear regression for (A) Poisson (λ = 1), (B) negative
binomial (r = 5, p = 0.4), (C) exponential (λ = 1), (D) gamma (α = 4, β = 1), (E) lognormal (μ = 1, σ = 1), and (F) shifted normal [5 + N (0,1)] distributions. Gray
histogram shows the distribution of point estimates of the SE of b̂ from 10,000 linear regressions. For each distribution, the black solid line and dashed lines
gave, respectively, the median and 95% CI of the SE of b̂ calculated from 10,000 random copies of n × N iid samples using the theoretical formula (Eq. 5).
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