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If X is a real-valued random variable with finite mean E(X) and finite variance var(X), and if a real-valued function f of real x is twice
differentiable at E(X), then the delta method (ref. 1 and ref. 2, pp. 355-358) gives the approximations

FOO) =FEX)) + (X =EGD] (0 Lo

E(() ~F(E(X) + {f )

X=E(X>} -var(X),

var(f(X { (f'x) } var(X).

In practice, we compute sample moments from observations of X, plug them in to replace the population moments, and accept the
result as approximations to the left sides.

Lemma 1. Suppose Y is a nonnegative real-valued random variable with finite mean E(Y) = M > 0 and finite variance var(Y) =V > 0.
Assume sampled observations are iid and the sample size in block jis nj (j=1, 2, ..., N) and N is the number of blocks. If m; is
the sample mean of observations in block j, then the approximations given by the delta method are logm; ~logM + (m; —M) /M, E(logm;) ~
logM -V /(2m;M?), var(logm;) =V / (n;M?).

Proof: In the approximations from the delta method, we set X = mj, f(x) = log(x), x > 0. Therefore, f'(x)=1/x and f"(x) =—1/x%.
Because E(m;) = M and var(m;) = Vin,,

logm; ~f(M)+ (mj —M) -Ai/[=logM+ (mj—M) /M,

E(logmy) zf(M)+(—L2) n—j_logM v/ (2nM?),

var(logmj)z(]\l/l) ,% v/ ().

The proof is complete.

Lemma 2. Under the assumptions of Lemma 1 also assume the third and fourth central moments of the random variable Y are finite and
positive, that is, u, = E(Y — M]") > 0, h = 3, 4. Suppose v; is the unbiased sample variance of observatzons in block j and E(v)) =

V> 0. Then the approximations given by the delta method are logv;=logV + (v; =V)/V, var(logv;) = (/44 - V2> / (nV'?), E(logv)) ~

n—l

Proof: Setting X = v; and following the same arguments as in the proof of Lemma 1 give the results.

Lemma 3. Under the assumptions of Lemmas 1 and 2, the covariance of the sample mean and sample variance is cov(vj, mj) =3 /n;.
Zhang (3) gives a proof of this classical formula, which has been known at least since 1903 (ref. 4, p. 279, equation xiii; ref. 5, p. 7,
equation xxvi; ref. 6, p. 479, equation 67; and ref. 7, p. 402, equations 3 and 4).
Proof of Theorem: When all blocks are weighted equally, the least-squares estimators of slope b and intercept log(a), and SE of the slope
estimator s(b) are, respectively (8, p. 155),

b=cov, (logvj, logmy;) /var, (logm;),

log(a) =mean. (logv;) —b - mean.. (logm;),

s (15) = \/[var+ (logv;) /var, (logm;) — {cov, (logv;, logm;) }* / {var, (logm;) }*] /(N = 2).

The notations mean. (- ), vary(-), and cov, (-, -) are to be read as the mean, variance, and covariance across all blocks and not as
referring to any single block j. Explicitly, the sample estimators are defined by

mean., (logm;) = Z logm;,
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mean., (logv;) = Zlogv/,

1 1 (Y ’
var, (logmj) _—1 Z (logmj)z —m(z logm]) s
Jj=1 Jj=1
1 & 2 1 S ’
var, (10gV]) =m Z (lOgV1> —]\7(1\]_1)<Zlogvj> ;
f= =

N N N
cov, (logv;, logm;) = Z logm; -logv;) — (Nl_ 0 (Zlogmj) (Zlogvj).
j=1 j=1 j=1

They are all consistent by the law of large numbers: as N — oo, mean..(logm;) —p E(logm;), mean..(logv;) —p E(logv;), var, (logm;) — p
var(logm;), var, (logv;) —p var(logv;), and cov (logv;,logm;) —p cov(logv;,logm;). Here the symbol “ —p” means convergence in prob-
ability.

To find the limits in probability of b and s(b), we approximate the above estimators by the delta method using Lemmas 1, 2, and 3.
We first approximate the numerator and the denominator of b separately. For the numerator of b, namely, cov.. (log v;, logmy;), the first
term is approximately

N

1 Y .
N_o1 ; logm; -logv;) ~ Z{logM+ —M)} . {IOgV‘Fv(Vj—V)}

Jj=1

N logl & logM & 1
=N_ logM 10gV+7Z(mj—M)+7VZ(Vj—V)+7M

The second term of the numerator of b is approximately

m (ilogmj> (Zlogvj> Nl 0 i{logM+Ai4 (m; —M)} -i{logV+% (v —V)}

N logl & logM &
= logM logV BT S (= M)+ B S (=)

N N
NN -1)MV Z Z vi=V).
j=
Therefore

1 N 1 N N
covy (logv;, logmy) zm > (mj—=M)(vi=V) " N(N-1)MV Z (m;—M) Z vi=V)
=

1 N 1 ul N cov.(mj,v))
_(N—l)MVjzzlmjvj_N(N—l)MVijZVj_ My

Similarly, the denominator of b is approximately

1 1 U 1 N ?
var+(logmj)zm{(N_l) ‘ Jz—m<2m,) }:var+(mj)/M2.

=1 =1

Consequently, for large n;, j=1,2,...,N, b NW/% By consistency, for large N, using Lemma 3 in the numerator,

cov(m;,vj) var(mj)_ s V
MV M2 uMV/ M2

b~ =M [V:=y, /CV.

Using the consistency of estimator mean,(-) and existing expressions for E(logmy;), E(logy;) and b, for large N and nj,
j=1,2, ..., N,
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st - Eam) < -3 (512

)} Ve L [logM -V / (20;M?)] NlogV—W logM.

The derivation of var, (logv;) is the same as that of var, (logm;). Replacing m; with v; and M with V yields var, (logv;) ~var, (v;) /2. For
large N and n;, j=1, 2, ..., N, substituting into the formula for s(b) the estimators corresponding to var, (m;), var,(v;), and b yields

AW 1 2 M2y4V V3—;4)
s(b)N N- 2[ /M2 usM/V2)° \/ N-2v+

where k = p4/V? is the kurtosis. This completes the proof.
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Fig. S1. Comparison of TL slope estimator b predicted from theory and computed using linear regression for (4) Poisson (1 = 1), (B) negative binomial (r = 5
p =0.4), (C) exponential (2 = 1), (D) gamma (e =4, p = 1), (E) lognormal (u = 1, 6 = 1), and (F) shifted normal [5 + N'(0,1)] distributions. Gray histogram shows the
distribution of point estimates of b from 10,000 linear regressions. For each distribution, the black solid line and dashed lines give, respectively, the median and
95% Cl of b calculated from 10,000 random copies of n x N iid samples using the theoretical formula (Eq. 3).
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Fig. S2. Comparison of TL intercept estimator log(a) predicted from theory and computed using linear regression for (A) Poisson (1 = 1), (B) negative binomial
(r=5, p=0.4), (C) exponential (A = 1), (D) gamma (a = 4, = 1), (E) lognormal (u = 1, ¢ = 1), and (F) shifted normal [5 + N(0,1)] distributions. Gray histogram
shows the distribution of point estimates of log(a) from 10,000 linear regressions. For each distribution, the black solid line and dashed lines gave, respectively,
the median and 95% Cl of log(a) calculated from 10,000 random copies of n x N iid samples using the theoretical formula (Eq. 4).
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Fig. $3. Comparison of SE of the slope estimator [s([))] predicted from theory and computed using linear regression for (A) Poisson (1 = 1), (B) negative
binomial (r =5, p = 0.4), (C) exponential (2 = 1), (D) gamma (a = 4, § = 1), (E) lognormal (x = 1, ¢ = 1), and (F) shifted normal [5 + A(0,1)] distributions. Gray
histogram shows the distribution of point estimates of the SE of b from 10,000 linear regressions. For each distribution, the black solid line and dashed lines
gave, respectively, the median and 95% Cl of the SE of b calculated from 10,000 random copies of n x N iid samples using the theoretical formula (Eg. 5).
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