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SI Methods
In SI Methods and SI Text, the symbol b refers to the conventional
TL population exponent, the symbol bR refers to the conventional
TL sample exponent, and the generalized TL exponents are in-
dicated with the symbol bjk (the distinction between sample and
population exponents will be clear from the context). Both sample
and population exponents were indicated as b (or bjk) in the main
text to simplify the notation. The calculations reported in Methods
(main text) identify the logarithmic dependence of x+ on the
number of realizations R, but rely on a number of approximations:
the definition of x+ (which, in a given realization, is a random
variable), the computation of Laplace integrals (Eq. 11), and the
expansion of the rate function around xmin (Eq. 12). Such calcu-
lations can be made more rigorous if we consider the independent
identically distributed random variables XiðtÞ=Li

tðrÞ; that is, XiðtÞ
is the frequency of occurrence of the first state up to time t in the
ith realization of the Markov chain (i= 1, . . . ,R). We now define
x+ =maxfX1ðtÞ, . . . ,XRðtÞg and observe that
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[S1]

Note that all logarithms here and in the main text are to the base
e. For fixed R [or, more generally, logR= oðtÞ] and x> 1=2, tak-
ing the limit (limt→∞) in Eq. S1 and knowing that LtðrÞ satisfies a
LDP, one has

lim
t→∞

1
t
logP½x+ > x�= sup

y∈ðx, 1�
− IΠðyÞ=−IΠðxÞ. [S2]

Because 0< IΠðxÞ≤∞, Eq. S2 implies that limt→∞Pðx+ > xÞ= 0 for
any x> 1=2. An analogous calculation for x− =minfX1ðtÞ, . . . ,XRðtÞg
shows that limt→∞Pðx− < xÞ= 0 for any x< 1=2. In this context, we
can approximate the sample exponent at time t with an analog of
Eq. 13:

bRðλ, tÞ ’
supx∈½x− , x+�½2GðxÞ− IΠðxÞ�
supx∈½x− , x+�½GðxÞ− IΠðxÞ� . [S3]

In the narrow interval ½x−, x+� centered around xmin, IΠðxÞ ’ 0
and as a consequence bRðλ, tÞ  ’   2 (Fig. 5). More precisely,
jbRðλ, tÞ− 2j goes to 0 in probability as t tends to infinity. In fact,
for every e> 0, we have

P½jbRðλ, tÞ− 2j> e�≤P
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, [S4]

where ηðeÞ is a function that goes to zero for e→ 0. Because of
Eqs. S1 and S2, it follows that

lim
t→∞

P½jbRðtÞ− 2j> e�= 0. [S5]

Analogous considerations hold for the generalized TL describing
the scaling of any pair of moments.
We now look at some generalizations of the stochastic mul-

tiplicative process considered above. The sample exponent in a
finite set of R independent realizations of the process is b ’ 2

also for nonsymmetric transition matrices Π. In the asymmetric
case, the transition matrix is

Π=
�
1− λ λ
μ 1− μ

�
, [S6]

with 0< λ, μ< 1. The rate function IΠðxÞ is convex and attains
its minimum at xmin = πð1Þ= μ=ðλ+ μÞ, where π = ðπð1Þ, πð2Þ=
λ=ðλ+ μÞÞ is the invariant measure for Π and IΠðxminÞ= 0. Only
the value of the rate function at xmin and not the value of xmin is
relevant for our argument. Due to asymmetries of IΠ, “left” (i.e.,
x< x−) rare events could be easier to see than “right” (i.e., x> x+)
rare events or vice versa. In all cases, an exponentially large in t
number of replicates is needed to sample the tails with the cor-
rect weights. In this context, Eqs. 9, 10, 13, and 14 and Eq. S3 are
still valid and give, respectively, the asymptotic population and
sample exponents.
The previous considerations can also be extended to multi-

plicative processes NðtÞ in more general Markovian environments
with w states and state space χ = fr1, . . . , rwg, where all ri are strictly
positive and at least two ri are different. We label the state space
χ = f1↔ r1, . . . ,w↔ rwg. Let the transition matrix Π be twofold
irreducible (i.e., Π irreducible and Π Π⊤ irreducible, where Π⊤ is the
transpose of Π). The rate function in Eq. 4 reads (theorem IV.7
and section IV.3 of ref. 1 or theorem 3.1.6 of ref. 2)

IΠðμÞ= sup
u>0

"Xw
v=1

μv log
uv

ðΠuÞv

#
, [S7]

where u is a strictly positive vector in Rw. Here,
Pw

v=1μv = 1, and
μv represents the proportion of v after t steps (for large t). The
rate function is convex and IΠðμminÞ= 0, with μmin the most prob-
able state for large t (theorems 3.1.2 and 3.1.6 of ref. 2 and
section 4.3 of ref. 3). Eq. 9, with x in the standard w− 1 simplex
in Rw and GðxÞ=Pw

i=1xi log ri, gives the population scaling expo-
nent of E½NðtÞ2� with E½NðtÞ�. The twofold irreducibility of Π plus
the condition that ri ≠ rj for some i≠ j is the sharpest sufficient
assumption that is presently known (4) to guarantee that the
limiting growth rate of the second moment equals the limiting
growth rate of the variance; thus, Eq. 9, with x in the standard
w− 1 simplex in Rw and GðxÞ=Pw

i=1xi log ri, gives the population
scaling exponent of Var½NðtÞ� with E½NðtÞ�. Analogously, Eq. 10,
with x in the standard w− 1 simplex in Rw andGðxÞ=Pw

i=1xi log ri,
gives the population scaling exponent of E½NðtÞk� with E½NðtÞj�.
As far as the scaling of moments is of interest, the ergodicity (i.e.,
irreducibility and aperiodicity) of Π (as opposed to the twofold
irreducibility) and GðxÞ not identically equal to zero (which hap-
pens only if ri = 1 ∀i) are sufficient to compute the scaling expo-
nents via Eqs. 9 and 10, modified as stated above. This is true
because the ergodicity of Π ensures that the empirical measure Lt
satisfies a LDP (theorems 3.1.2 and 3.1.6 of ref. 2). Therefore,
one can apply Varadhan’s lemma (theorem III.13 of ref. 1)
to compute the limiting growth rate of the moments of NðtÞ via
Eq. 8, with x in the standard w− 1 simplex in Rw and GðxÞ=Pw

i=1xi log ri. The computation of the sample exponents bR and
bjk is similar to that in the two-state case and the sample expo-
nents approximate bR = 2 and bjk = k=j asymptotically in time;
the proof is as follows. We consider the independent identi-
cally distributed random variables Y iðtÞ= jLi

t − μminj, where
Li
t = ðLi

tðr1Þ, . . . ,Li
tðrwÞÞ and the superscript i indicates the ith
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independent realization of the chain (i= 1, . . . ,R). We now define
y+ =maxfY 1ðtÞ, . . . ,YRðtÞg and observe that, for every e> 0,

Pðy+ > eÞ≤R  P
�
Y 1ðtÞ> e

	
. [S8]

For fixed R and «, taking the limit (limt→∞) in Eq. S8 and know-
ing that L1

t satisfies a LDP (in particular, limt→∞PðY 1ðtÞ> eÞ= 0),
one has

lim
t→∞

Pðy+ > eÞ= 0. [S9]

In this context, we can approximate the sample exponent with

bRðλ, tÞ ’
supjμ−μmin j<y+ ½2GðμÞ− IΠðμÞ�
supjμ−μminj<y+ ½GðμÞ− IΠðμÞ� . [S10]

In the narrow region jμ− μminj< y+ centered around μmin, IΠðμÞ ’ 0
and as a consequence bRðλ, tÞ  ’   2. More precisely, jbRðλ, tÞ− 2j
goes to 0 in probability as t tends to infinity. In fact, for every δ> 0,
we have

PðjbRðλ, tÞ− 2j> δÞ≤Pðy+ > ηðδÞÞ, [S11]

where ηðδÞ is a function that goes to zero for δ→ 0. Because of
Eq. S9, it follows that

lim
t→∞

PðjbRðtÞ− 2j> δÞ= 0. [S12]

Analogous considerations hold for the generalized TL describing
the scaling of any pair of moments. A standard saddle-point cal-
culation suggests that the limiting growth rate of the variance is
equal to the limiting growth rate of the second moment also for
ergodic transition matrices, apart from peculiar cases (see ref. 4
for a discussion of a counterexample). The same argument sug-
gests that the limiting growth rate of the kth cumulant equals
that of the kth moment (t−1 logE½NðtÞk�) for large t. The sug-
gested equivalence between the scaling exponents of cumulants
and moments for ergodic Π would allow extending the result on
the sample TL (b= 2) and generalized TL (b= k=j) to the scaling
of cumulants in m-step Markov chains, whose transition matrix is
ergodic but not twofold irreducible. However, pathological coun-
terexamples may exist.

Analysis of the Discontinuity in b as a Function of r and s. A dis-
continuity in the population TL exponent b (Fig. 1 and Eq. 9) is
present when the limiting growth rate of the mean abundance is
zero; i.e., limt→∞ð1=tÞlogE½NðtÞ�= 0. Let us consider Fig. 5 and fix
r and s with r≠ s. The value of λ shapes the form of IΠðxÞ (black
curve in Fig. 5); in particular, the second derivative can be easily
calculated from Eq. 5 and shown to increase for larger λ. A
discontinuity may eventually appear for the value λ= λc such that
the curve IΠðxÞ and the line GðxÞ (blue line in Fig. 5) are tangent.
In other words, limt→∞t−1 logE½NðtÞ�= supx∈½0,1�½GðxÞ− IΠðxÞ�= 0
for λ= λc such that

log


1
2
½ð1− λcÞðr+ sÞ

+
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ð2λc − 1Þrs+ ðλc − 1Þ2ðr+ sÞ2

q ��
= 0,

[S13]

with constraints r, s> 0 and 0< λc < 1. λc exists only for certain
values of r and s, and thus a discontinuity in the population TL
exponent b is not always possible. Solving Eq. S13 with respect to
λc gives λc = ð1− r− s+ rsÞ=ð−r− s+ 2rsÞ; thus, for any given s,
λc = 0 for r= 1 and λc = 1 for r= 1=s. For fixed s≠ 1 one has

dλc=dr> 0 (except for r= s where dλc=drjr=s = 0); thus, λc exists
for 0< r≤ 1=s and r≥ 1 if s> 1 and for 1≤ r≤ 1=s if s< 1 (Fig. S3).
Fig. S4 schematically illustrates the behavior of bðλÞ for different
pairs fr, sg of multiplicative factors. Discontinuities analogous
to that of bðλÞ appear for certain values of r, s, and λ in the
population exponents bjk (Eq. 10), when limt→∞t−1 logE½NðtÞj�=
supx∈½0,1�½jGðxÞ− IΠðxÞ�= 0.

Transient Agreement Between Sample and Population Exponents.
Sample and population exponents may display transient agree-
ment in the regime 1 � t � logR (e.g., black solid lines and
black solid circles in Fig. 1 or the red solid curve in Fig. 2B), if
the number of replicates R is not too small. However, population
exponents were proved to obey Taylor’s law only asymptotically
in time (compare Eqs. 8 and 9 here and theorem 1 of ref. 4). To
understand the cause of such an agreement, one needs to con-
sider two different asymptotic regimes:

i) The first regime, discussed in the main text, is the asymptotic
regime t � logR. In such a regime, rare events are not ac-
cessible and the sample exponents are not representative of
the population exponents. We call this regime the asymptotic
sample regime, which we have proved to result in a constant
sample TL exponent b= 2.

ii) The second asymptotic regime concerns the fact that popu-
lation exponents were proved to obey Taylor’s law only as-
ymptotically in time. We refer to the second regime as the
asymptotic population regime. Population exponents take in-
to account all possible realizations of the process, including
rare events. If R (fixed) is not too small, increasing t from
t= 1, the asymptotic population regime may occur earlier in
time than the asymptotic sample regime. In this case one can
observe rare events with proper statistics and Eqs. 9 and 10
give a good prediction of both sample and population TL
exponents, as long as t � logR.

The red solid curve in Fig. 2B exemplifies the above discussion:
Initially, the sample TL exponent is different from the theoret-
ical asymptotic prediction for the population TL exponent (Fig.
2B, dashed upper horizontal line). For 3≤ t≤ 12, the asymptotic
prediction for the population TL exponent (Fig. 2B, dashed
upper horizontal line) gives a good prediction for the sample TL
exponent. Finally, for large t, the sample TL exponent approxi-
mates the asymptotic prediction b ’ 2.

Compatibility of Eq. 9 here and Equation 8 in Ref. 4. We show here
that Eq. 9 coincides with equation 8 in ref. 4, under the assumption
(stronger than in ref. 4) that the transition matrix Π is positive
and r≠ s. The rate function Eq. 4 can be written as (section 4.3 of
ref. 3 or theorem 3.1.7 of ref. 2) IΠðxÞ= supqfqx− log ζðΠqÞg,
where Πq is the matrix with elements Πqði, jÞ=Πði, jÞexpðqδj,1Þ,
and ζð · Þ indicates the spectral radius (i.e., the Perron–
Frobenius eigenvalue). ζðΠqÞ is unique and analytic in q; thus,
ξðqÞ≡ log ζðΠqÞ is differentiable and the rate function can be
expressed as IΠðxÞ= qðxÞx− ξðqðxÞÞ, where qðxÞ is the unique
solution of ξ′ðqÞ= x. Eq. 8 for the kth moment of NðtÞ then reads
limt→∞ð1=tÞlogE½NðtÞk�= supx∈½0,1�½kGðxÞ− qðxÞx+ ξðqðxÞÞ�. The ar-
gument of the supremum is maximum at x* such that k logðr=sÞ−
qðx* Þ= 0; that is, x* = ξ′ðk logðr=sÞÞ. Thus, evaluating the sup-
remum, one has limt→∞ð1=tÞlogE½NðtÞk�= k log s+ ξðk logðr=sÞÞ=
log½skζðΠk logðr=sÞÞ�= log ζðΠ  diagðr, sÞkÞ, which coincides with equa-
tions 13 and 14 of ref. 4 [equations 13 and 14 in ref. 4 are expressed
in terms of the column-stochastic matrix Π⊤ that corresponds to the
row-stochastic matrix Π; because ζðdiagðr, sÞkΠ⊤Þ= ζðΠ  diagðr, sÞkÞ,
the equations coincide]. The compatibility of Eq. 9 here with
equation 8 in ref. 4 follows directly.

Software and Numerical Analysis. Simulation of the multiplicative
process in Eq. 1 in software with finite precision is subject to
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numerical underflow and overflow. This may result in errors in
the estimation of exponentially growing or declining abundances
after very few steps, if simulations are not performed carefully.
For simulations performed in this study we used a symbolic soft-
ware that allows infinite precision calculations and thus simulates
correctly the multiplicative process in Eq. 1 and computes exactly
the moments at every time t. Therefore, all numerical calculations
in this study are free of underflow and overflow issues.

Generalized TL for Tree Abundance in the Black Rock Forest (USA).We
tested the predictions of the multiplicative growth model by using
a dataset of tree abundance from six long-term plots in the Black
Rock Forest (BRF), Cornwall, New York. We computed the
moment ratios h½NðtÞ=N0�ki, where the symbol h · i identifies the
sample mean across the six plots of BRF and N0 is the number of
trees at the start of the census in 1931. Following ref. 5, we tested
whether the moments of the spatial density ratio NðtÞ=N0 in the
five most recent censuses satisfied TL and the generalized TL
with bjk = k=j. Table 1 reports the slopes of the least-squares
linear regressions of h½NðtÞ=N0�ki vs. h½NðtÞ=N0�ji, which are all
compatible with the model prediction bjk = k=j. The BRF dataset
thus provides an empirical example where the multiplicative
model satisfactorily describes the underlying dynamics and the
generalized TL holds asymptotically as the model predicts.

Generalized TL for Carabid Beetles Abundance. Here, we test the
multiplicative growth model hypotheses on the carabid beetles
dataset. The carabid beetles dataset consists of abundance data of
carabid beetles ranging from a minimum of three to a maximum
of six sites and from a minimum of 4 to a maximum of 6 con-
secutive years, depending on the species. We computed the
multiplicative factors Aðp, tÞ=Nðp, tÞ=Nðp, t− 1Þ separately for
each species, site p, and pair of consecutive years. We tested
some of the assumptions of the multiplicative growth model,
namely the independence and identical distribution of multipli-
cative factors over sites and over time. Each test was performed
separately for each species. The tests used rely on assumptions,
such as normality of data, which were tested before performing
the hypothesis testing. We excluded from such tests the species
for which the test assumptions were not met. Tables S3 and S4
report the percentage of species for which a P value smaller than
0.05 was returned, when testing for the identical distribution
of multiplicative factors over sites and time, respectively. The
number of species used in each test, that is, the number of
species that met the test assumptions, is reported in the third
column of Tables S3 and S4. The first four tests in Tables S3 and
S4 test for identical mean and the last four tests test for identical
variance. The high percentages of rejection of the null hypoth-
eses of equal mean and equal variance of multiplicative factors
over sites and time in the carabid beetles dataset suggest that the
carabid beetles population dynamics do not conform to the
Markovian multiplicative growth model. Nevertheless, the pre-
dictions of the analysis regarding the higher-order sample ex-
ponents of the generalized TL were substantially confirmed.
That the generalized TL pattern holds in the carabid beetles
dataset, despite the disagreement with the assumptions of the
Markovian multiplicative model, suggests that the results of our
theoretical investigation might hold far beyond the population
growth model considered in the main text.

SI Text
Comparison with Other Demographic Models. The multiplicative
growth model is one of numerous demographic models that
predict TL. The exponent b= 2 for the scaling of the variance vs.
the mean is typical of deterministic dynamics. For example, an
exponential model of clonal growth (6), where clones grow ex-
ponentially with different growth rates (variability enters here
only through the different growth rates and initial densities), and

the above symmetric model for λ= 0 or λ= 1 both predict TL
with exponent b= 2. Although found in deterministic models, the
exponent b= 2 is also observed in stochastic models such as the
continuous-time birth–death process and the Galton–Watson
branching process (4). Such models yield population exponents
b= 2 and b= 1, respectively, for asymptotically growing and de-
caying populations (4).
The theoretical investigation of multiplicative population

processes showed that the generalized TL sample exponents
bjk satisfy bjk ’ k=j asymptotically for large t for a broad en-
semble of transition matrices Π and sets of positive multipli-
cative factors. Additionally, our large-deviation approach and
our small-sample argument suggest that the entropic term in
Eq. 13 dominates over the other terms that contain the specifi-
cations of the demographic process. Thus, the result might be
more general than the class of multiplicative population growth
models. We show here that bjk = k=j holds for the population
exponents of other population growth processes, such as the
birth–death process in the case of expanding populations.
The moments of the birth–death process with constant birth

rate λ and constant death rate μ can be computed via the asso-
ciated moment-generating function M, which is equal to (7)

Mðθ, tÞ=
�
μvðθ, tÞ− 1
λvðθ, tÞ− 1

�N0

, [S14]

where vðθ, tÞ= ðeθ − 1Þeðλ−μÞt=ðλeθ − μÞ and N0 is the initial popu-
lation size. The kth moment of population size can be com-
puted as hNki= ð∂kMðθ, tÞ=∂θkÞjθ=0. Here, we assume N0 = 1 (but
the result holds for any N0) and an expanding population;
i.e., λ− μ> 0. Because vð0, tÞ= 0, ð∂v=∂θÞðθ, tÞ= ðλ− μÞeðλ−μÞt
ðeh= ð− ehλ+ μÞ2Þ∝ eðλ−μÞt, and ð∂kv=∂θkÞðθ, tÞ∝ eðλ−μÞt, the leading
term in the partial derivatives of Mðθ, tÞ with respect to θ, eval-
uated in θ= 0, can be written as

∂kM
∂θk

ðθ, tÞ





θ=0

= ð−1Þk+1ðλ− μÞλk−1 ð∂v=∂θÞk
ð−1+ λvÞk+ 1






θ=0

+  o

"�
∂v
∂θ

�k




θ=0

#

= ðλ− μÞ1−kλk−1ekðλ−μÞt + o
�
ekðλ−μÞt

�
,

[S15]

where the lowercase-o notation indicates that the remaining
terms are negligible in the limit t→∞. Derivation of the
equation for ð∂kM=∂θkÞðθ, tÞ (first line of Eq. S15) shows
that the leading term in ð∂k+1M=∂θk+1Þðθ, tÞjθ=0 is equal to
ðλ− μÞkλkeðk+1Þðλ−μÞt + o½eðk+1Þðλ−μÞt�, which coincides with replac-
ing k by k+ 1 in Eq. S15. Eq. S15 can be obtained by considering
that, because ∂kv=∂θk ∝ eðλ−μÞt and vð0, tÞ= 0, the leading term in
ð∂M=∂θÞðθ, tÞ= ðλ− μÞðð∂v=∂θÞ=ð−1+ λvÞ2Þ evaluated at θ= 0 is
the second term in the quotient rule ðf=gÞ′= ðf ′  g− fg′Þ=g2, that
is, the term that raises the exponent of ∂v=∂θ by 1 unit. For
subsequent derivatives, the quotient rule is applied to the leading
term. All other terms in ð∂kM=∂θkÞðθ, tÞjθ=0 contain products of
partial derivatives; for example,

∂2M
∂θ2






θ=0

= ðλ− μÞ
�
2λ

∂v
∂θ






2

θ=0
+
∂2v
∂θ2






θ=0

�
, [S16]

∂3M
∂θ3






θ=0

= ðλ− μÞ
�
6λ2

∂v
∂θ






3

θ=0
+ 6λ

∂v
∂θ

∂2v
∂θ2






θ=0

+
∂3v
∂θ3






θ=0

�
, [S17]

i.e.,
Qk

j=1ð∂jv=∂θjÞqj, with
Pk

j=1qj < k (with qj ∈N), and are thus
negligible in the limit t→∞. From Eq. S15 it follows that
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limt→∞ð1=tÞloghNki= kðλ− μÞ; thus, the generalized TL holds with
bjk = k=j.
The asymptotic behavior of exponents limt→∞ð1=tÞloghNki=

kðλ− μÞ can also be computed via the continuous approximation
of the birth–death process. Although such calculations do not
provide further understanding of the birth–death process (we
have already calculated the limiting behavior of hNki for large t),
the fact that the continuous approximation of the birth–death
process coincides with that of the Galton–Watson branching
process (8–10) suggests an even broader validity for the gener-
alized TL result bjk = k=j. The detailed calculation of exponents
in the continuous approximation of the birth–death process and
the Galton–Watson branching process is provided in the fol-
lowing section.

Moments of Population Density in the Continuous Approximation of
the Birth–Death Process and the Galton–Watson Branching Process.
The forward Kolmogorov equation for the continuous approxi-
mation of the birth–death process reads (8–10)

∂pðx, tÞ
∂t

=−α
∂½xpðx, tÞ�

∂x
+
β

2
∂2½xpðx, tÞ�

∂x2
, [S18]

where pðx, tÞ is the probability density function for the population
density x at time t (here, x∈R is the population density and
should not be confused with the frequency of multiplicative fac-
tors used in the rest of the paper). Eq. S18 is the continuous
approximation of a birth–death process with birth rate λ and
death rate μ such that α= λ− μ and β= λ+ μ. Eq. S18 also arises
as the continuous approximation of the Galton–Watson branch-
ing process for large populations (8–10). The solution of Eq. S18
with initial condition xð0Þ= x0 is known (7) and is equal to

pðx, tÞ= 2α
βðeαt − 1Þ

ffiffiffiffiffiffiffiffiffi
x0eαt

x

r
e−2αðx0e

αt+xÞ=βðeαt−1ÞI1

"
4αðx0xeαtÞ1=2
βðeαt − 1Þ

#
,

[S19]

where I1 is the modified Bessel function of the first kind. Dif-
ferentiation with respect to γ of the identity

R∞
0 dxI1ðxÞe−γx2 =

e1=ð4γÞ − 1 gives the equation

C
Z∞
0

dxxkx−ð1=2ÞI1
�
x1=2A

�
eBx

= 2CA−ð2k+1Þ
�
−

d
dγ

�k




γ=−ðB=A2Þ

�
e1=ð4γÞ − 1

	
,

[S20]

which allows calculating the moments of Eq. S19 with A=
4αðx0eαtÞ1=2=βðeαt − 1Þ, B= 2α=βðeαt − 1Þ, and C= ð2αðx0eαtÞ1=2=
βðeαt − 1ÞÞexp½−ð2αx0eαt=βðeαt − 1ÞÞ�. For an expanding popula-
tion, α> 0; thus asymptotically for large t,

A∝ e−ðαt=2Þ,
B∝ e−αt,
C∝ e−ðαt=2Þ.

[S21]

Therefore, γ =−ðB=A2Þ tends to a constant and one has

�
xk
�
∝CA−2k+1 ∝ ðeαtÞk, [S22]

which implies that, asymptotically, the generalized TL holds with
exponent bjk = k=j.
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Fig. S1. TL exponent b=b12 and generalized exponent b23 for different values of the transition probability λ (A and B are as in Fig. 1). The sample exponents
computed in simulations of a two-state multiplicative process with symmetric transition matrix in the two regimes 1 � t � logR (black solid circles, R= 106 up
to time t = 10) and t � logR (red open squares, R= 104 up to time t = 400) are in good agreement with predictions for the asymptotic population (black solid
line, Eq. S6) and sample (red dashed line, b=b12 = 2 and b23 = 3=2) exponents. In the simulations, the sample exponent b=b12 was computed by least-squares
fitting of logVar½NðtÞ� as a function of logE½NðtÞ� for the last 6 (black circles) and 200 (red squares) time steps. The sample exponent b23 was computed by least-
squares fitting of logE½NðtÞ3� as a function of logE½NðtÞ2� in the same fashion. In A, which has the plotted theoretical result from ref. 1, and C, χ = fr, sg= f2, 1=4g
(b=b12 and b23 display discontinuities); in B and D, χ = fr, sg= f4, 1=2g (in such a case, b12 and b23 display no discontinuities).

1. Cohen JE (2014) Taylor’s law and abrupt biotic change in a smoothly changing environment. Theor Ecol 7(1):77–86.
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Fig. S2. Frequency histogram for the exponent bjk in the intraspecific generalized TL hNki= ahNjibjk , computed for each species [carabid beetles (1)] across
similar sites (woodland or heath). The dashed black line shows the value of the exponent bjk = k=j as the asymptotic model predicted. The binning of data
points is determined by using Scott’s rule (2). Shown in each panel are the number of observations n of bjk, the test statistic for the t test of the null hypothesis
that the sample mean of the values of bjk did not differ significantly from the theoretically predicted mean k=j, and the corresponding P value.

1. den Boer P (1977) Dispersal Power and Survival, Miscellaneous Papers 14 (Landbouwhogeschool Wageningen, Wageningen, The Netherlands).
2. Scott D (1979) On optimal and data-based histograms. Biometrika 66(3):605–610.

Fig. S3. The critical transition probability λc as a function of r (with s fixed). Below the black horizontal line at λc = 0 and above the black horizontal line at
λc = 1, λc does not exist. The red (solid for 0≤ λc ≤ 1 and dashed otherwise) and blue (dash-dotted for 0≤ λc ≤ 1 and dotted otherwise) lines λc =
ð1− r − s+ rsÞ=ð−r − s+ 2rsÞ were calculated by solving Eq. S13 with respect to λc with, respectively, s= 2 and s= 1=4. For any given s, λc = 0 for r = 1 and λc = 1
for r = 1=s.
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Fig. S4. Existence of a critical transition probability λc. Small panels show the population exponent bðλÞ (Eq. 9) for various choices of the multiplicative factors
in different regions of the plane ðr, sÞ (large panel). Only in the interior of the gray region of the plane ðr, sÞ, λc exists. The solid black line represents the curve rs= 1.

Giometto et al. www.pnas.org/cgi/content/short/1505882112 7 of 10

www.pnas.org/cgi/content/short/1505882112


Fig. S5. Generalized TL for interspecific patterns of abundance of carabid beetles, data from ref. 1. (A–L) Double logarithmic plots of hNki vs. hNi for all species
in separate years and site type (black symbols). The red lines show the least-squares regressions of loghNki vs. loghNi (Tables S1 and S2). Offsets are introduced
in the data and in the linear regressions to aid visual inspection. (M and N) Double logarithmic plot of hNki vs. hNi for all species, years, and site type, with
integer (M) and noninteger (N) k. Each data point refers to sample moments computed for a single species in 1 y and site type. The color and symbol code
identifies data relative to the same year: 1961 (black open circles), 1962 (purple solid circles), 1963 (blue open squares), 1964 (green solid squares), 1965 (orange
solid diamonds), and 1966 (red open diamonds). The color and symbol code does not distinguish site type. Dashed black lines of slope b1k = k=1= k (asymptotic
model prediction for the sample exponent) and arbitrary intercept are shown in each plot. Offsets are introduced in the data to aid visual inspection.

1. den Boer P (1977) Dispersal Power and Survival, Miscellaneous Papers 14 (Landbouwhogeschool Wageningen, Wageningen, The Netherlands).

Giometto et al. www.pnas.org/cgi/content/short/1505882112 8 of 10

www.pnas.org/cgi/content/short/1505882112


Table S1. Sample exponents for the interspecific generalized TL on carabid beetles abundances in woodland sites, data from ref. 1

j, k k=j

1961 1962 1963 1964 1965 1966

bjk ±SE R2 bjk ±SE R2 bjk ±SE R2 bjk ±SE R2 bjk ±SE R2 bjk ±SE R2

1, 2 2 2.03± 0.09 0.988 2.07±0.04 0.995 2.00±0.07 0.988 1.96± 0.09 0.977 2.01± 0.07 0.989 1.97±0.06 0.995
1, 3 3 3.04± 0.18 0.976 3.13±0.09 0.991 3.00±0.15 0.977 2.94± 0.20 0.957 3.00± 0.16 0.976 2.90±0.12 0.989
1, 4 4 4.03± 0.28 0.968 4.20±0.14 0.988 4.01±0.23 0.971 3.92± 0.29 0.947 4.00± 0.24 0.967 3.83±0.18 0.985
No. points 9 13 11 12 11 9

The column k=j gives the asymptotic model prediction for the exponent bjk. The estimates bjk (mean ± SE) are the least-squares slopes of loghNki vs. loghNi. R2

is the squared correlation coefficient. Nonlinearity was checked with least-squares quadratic regression on log–log coordinates. The coefficient of the second
power term did not differ significantly from 0 in any of the regressions; hence, the null hypothesis of linearity was not rejected.

1. den Boer P (1977) Dispersal Power and Survival, Miscellaneous Papers 14 (Landbouwhogeschool Wageningen, Wageningen, The Netherlands).

Table S2. Sample exponents for the interspecific generalized TL on carabid beetles abundances in heath sites, data
from ref. 1

1963 1964 1965 1966

j,k k=j bjk ±SE R2 bjk ±SE R2 bjk ±SE R2 bjk ±SE R2

1, 2 2 1.99± 0.05 0.993 2.02±0.04 0.995 1.98±0.08 0.982 2.02±0.06 0.986
1, 3 3 2.98± 0.09 0.987 3.03±0.08 0.990 2.97±0.17 0.965 3.05±0.13 0.974
1, 4 4 3.83± 0.18 0.985 3.96±0.14 0.983 4.04±0.12 0.987 3.98±0.26 0.956
No. points 16 16 13 17

Organized the same as Table S1.

1. den Boer P (1977) Dispersal Power and Survival, Miscellaneous Papers 14 (Landbouwhogeschool Wageningen, Wageningen, The Netherlands).

Table S3. Tests of whether multiplicative growth factors of
carabid beetle abundances have the same means and variances
over sites

Test % of P <0.05 No. species

Complete block F 4.3 23
Friedman rank 4.2 24
Kruskal–Wallis 0 24
K sample T 0 23
Bartlett 29.6 27
Brown–Forsythe 3.7 27
Conover 7.1 28
Levene 25.9 27

Shown is the percentage of P values smaller than 0.05 across all species,
for several statistical tests. The percentage refers to the number of species
used in the test, reported in the third column.
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Table S4. Tests of whether multiplicative growth factors of
carabid beetle abundances have the same means and variances
over years

Test % of P <0.05 No. species

Complete block F 14.3 14
Friedman rank 20.0 15
Kruskal–Wallis 53.3 15
K Sample T 35.7 14
Bartlett 48.1 27
Brown–Forsythe 7.4 27
Conover 14.3 28
Levene 51.9 27

Shown is the percentage of P values smaller than 0.05 across all species for
several statistical tests. The percentage refers to the number of species used
in the test, reported in the third column.
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