Supplementary information for *Mosaic genome of endobacteria in arbuscular mycorrhizal fungi: trans-kingdom gene transfer in an ancient mycoplasma-fungus association*

Gloria Torres-Cortés, Stefano Ghignone, Paola Bonfante and Arthur Schüßler

Supporting Online Material

Table of Contents

1. MATERIAL AND METHODS (Text S1)

- 1.1. Endobacteria DNA extraction for sequencing
- 1.2. Semiquantitative analysis of *Dh*MRE phylotypes I and II abundance
- 1.3. Illumina sequencing and assembly
- 1.4. Phylogenetic analyses
- 1.5. Identification of horizontal gene transfer
- 2. SUPPLEMENTARY TABLES: Tables S1 to S7

3. SUPPLEMENTARY FIGURES: Figures S1 to S8

4. REFERENCES

Text S1

1. MATERIAL AND METHODS

1.1 Endobacteria DNA extraction for sequencing

For *Dh*MRE genomic preparation, *Dentiscutata heterogama* spores were crushed in 1 ml extraction buffer (250 mM sucrose, 10 mM MES pH 6.5, 25 mM KCl, 20 mM MgCl₂, 1 mM dithiothreitol) at 4°C by using a glass homogenizer. The major spore debris was pelleted by centrifugation at 500 g for 2 min, the supernatant was then again centrifuged at 1,000 g for 2 min to remove nuclei and other high density debris. The newly formed supernatant was filtered through an 8 µm and then a 3 µm polycarbonate filter (Whatman). The resulting bacteria suspension was centrifuged at 25,000 g for 15 min to pellet the bacteria; the pellet was re-suspended in re-suspension buffer (10 mM Tris-HCl pH 8, 250 mM sucrose) and treated for 60 min with DNase at 4°C to remove free DNA. After inactivating DNase activity by heat treatment, DNA was extracted with the MasterPure Gram-positive DNA purification kit (Epicentre) according to the manufacturer's recommendations.

1.2 Semiquantitative analysis of DhMRE phylotypes I and II abundance

For the semiquantitative analysis of *Dh*MRE phylotypes, DNA was extracted from 20 *D*. *heterogama* spores and from the suspension resulting after the endobacteria DNA extraction protocol. These DNA samples were used in the construction of each clone library. PCR was performed using MRE specific primers and the Phusion High-Fidelity DNA Polymerase (New England Biolabs). PCR products were TOPO cloned (Invitrogen) and transformed into Top10 chemically competent *Escherichia coli*. Colonies were then PCR-screened for phylotype-specific insert length differences and *Rsa*I digestion (phylotype I); 498 clones were analyzed.

1.3 Illumina sequencing and assembly

Three different sequencing libraries were constructed using the transposon-based Nextera[™] DNA Sample Prep Kit (Illumina), with 50 ng of DNA as starting material. One additional

library was produced with the transposon-based NexteraTM XT kit (Illumina). After library production, Illumina sequencing was performed using the Illumina MiSeq platform at the Genomics Service Unit of the Ludwig-Maximilian-University Munich Biocenter, generating 41×10^6 paired end 150 bp raw reads.

The paired-end reads were quality trimmed using CLC workbench v5 (CLC Bio), under the default parameters. Trimmed reads were mapped against the main bacterial contaminant genomes, to remove contaminant reads. The remaining, cleaned reads were assembled using the CLC de novo assembly algorithm, with a kmer size of 23, resulting in 3,655 contigs, which were then filtered according to two criteria: all contigs that had a G+C content > 45% and a coverage < 20 were discarded. This resulted in 119 contigs (1.17 Mb; *SI Appendix*, Table S1) used for further analyses. To identify the putative *Dh*MRE sequences from the resulting 119 contigs we performed BLASTX searches against the NCBI database.

To determine possible contamination by sequences from the fungal host, raw reads obtained after *Dh*MRE spore metagenome sequencing were mapped (>60% identity in 0.5 of sequence length) against the published *Rhizophagus irregularis* genome assembly (1), with only 0.18% of the reads mapping to it.

To further validate the CLC assembly, two additional strategies were followed. Firstly, raw data reads were mapped against the scaffolds with 90 % sequence similarity and length coverage as criteria, using CLC Genomics v. 5.2. Areas with low coverage were also included and manually inspected. Secondly, we tracked and visualized the paired-end connections between scaffolds, following the instructions of Albertsen *et al.* (2) and cytoscape for the visualization (3).

To identify the hypothesized existence of divergent genomes we carried out BLAST searches of putative *Dh*MRE contigs against the total of all contigs obtained. We could not identify any contigs with > 75% identity for > 1,500 bp length with the query, indicating that the assembled data are not composed of multiple closely related genomes. To analyze the expected presence of both 16S rRNA gene phylotypes in the raw reads, we mapped the raw data against both major 16S phylotypes known from Sanger sequencing approaches, but we mainly identify one of them (only 24 reads in total mapped the phylotype II; Fig. S4). To exclude the possibility of reads belonging to different phylotypes binding together in the assembly, a QualitySNPng analysis (4) was performed on the contig containing the 16S rRNA gene.

In addition to these analyses, an additional assembly was done with MIRA (5). Using this approach, we obtained the same sequence information as with the CLC assembly, but with a higher fragmentation.

Correlations between Z-scores of tetranucleotide composition were assessed using TETRA (6). For the circular and linear representation of the scaffolds the software DNAPlotter was used (7).

1.4 Phylogenetic analyses

To study *Dh*MRE proteins candidate for HGT by phylogenetic analyses, homologous sequences were selected after BLAST searches. For this, 40 BLASTP hits were selected for each *Dh*MRE query protein, represented by the five best BLASTP hits of the i) non-redundant protein sequences (nr) database from the NCBI ii) -nr database excluding *R. irregularis* iii) - nr database including fungi sequences only, but excluding *R. irregularis* and iv) -nr database including bacteria sequences only. Redundant hits were removed.

1.5 Identification of horizontal gene transfer

BLASTP analyses of the *Dh*MRE proteome against the non-redundant protein sequences (nr) database from the NCBI using the software Blast2GO were conducted to identify protein sequences with similarity to proteins from the AMF *R. irregularis*, which lacks endobacteria. BLASTP affiliation was based on the best-hit with a cut-off value of e^{-03} . Eukaryotic domains

were identified by analyzing the results obtained in Interpro and SUPERFAMILY databases integrated in MicroScope platform (8). The presence of genomic islands in the *Dh*MRE genome draft was studied using the software IslandViewer.

2. SUPPLEMENTARY TABLES

 Table S1. Metagenome assembly data.

	Reads (bp)	2x150
Raw data	No. of reads	41×10^{6}
	Primary sequence data (Gb)	6
	No. of reads	15.8×10^{6}
	Contigs sequence data Mb-No. of contigs	15/3655
Cleaned data	No. of contigs with $G+C < 45\%$	1494
	No. contigs $G+C < 45\%$ and coverage > 20	119
	Cleaned sequence data (Mb)	1.17
	DhMRE sequence data	0.702
	No. of <i>Dh</i> MRE contigs	24
DhMRE	Average <i>Dh</i> MRE contig length (bp)	29,244
sequences	DhMRE average coverage	172x
	N50 contig size (bp)	147,306
	Longest scaffold (bp)	222,151

Contigs recovered after removing the main contaminants from the raw data were filtered according to GC content and coverage. All contigs presenting a G+C content higher than 45% and coverage below 20 were discarded. *Dh*MRE contigs were identified from the resulting contigs performing BLASTX searches against NCBI non-redundant protein sequences database.

		DhMRE			7	Fenericute	'S		Firm	icutes
	Sca.A	Sca. B	Sca. C	Mgen	Upar	Mhyo	Mflo	CaPhy	Linn	Saga
Length	0.649	0.0604	0.0038	0.580	0.752	0.840	0.793	0.602	3.01	2.13
(Mb)										
G+C	34.06	32.3	34.06	32	25	25.88	27.02	21.39	37.4	35.65
ratio										
CDS ^a	606	58	6	482	613	663	683	482	3141	2196
Coding	80.96	83.69	57.13	92.14	93	85.3	93.3	78.75	89.3	86.8
region ^b										
RNA	1	0	0	1	1	1	2	2	6	7
operons										
tRNAs	35	0	0	36	39	30	29	32	66	80
Lifestyle		0		Р	Р	Р	FL	Р	FL	Р
(Host) ^c		(F)		(A)	(A)	(A)		(Pl)		(A)

Table S2. Genome features of DhMRE in comparison to members of the Tenericutes	s and
Firmicutes.	

^a Number of protein-coding sequences in the corresponding scaffold/chromosome.

^b Percentage of coding regions in the total scaffold/chromosome.

^c Lifestyle of local taxa; O: obligate endosymbiont; P: pathogen; FL: free-living; F: fungi; A: animal; Pl: plants.

Data for Mgen, Upar, Mhyo, Mflo and CaPhy were obtained from the Molligen (9) database and for Linn and Saga from the Microscope database (8) under the following accession numbers: Mgen: *Mycoplasma genitalium* G37 (NC_000908); Upar: *Ureaplasma parvum* serovar 3 ATCC 700970 (NC_002162); Mhyo: *Mycoplasma hyorhinis* HUB-1 (CP002170); Mflo: *Mesoplasma florum* L1 (NC_006055); CaPhy: *Ca.* Phytoplasma mali (NC_011047); Linn: *Listeria innocua* (NC_003212); Saga: *Streptococcus agalactiae* A909 (NC_007432). Sca.A, B and C: Scaffold A, B and C from *Dh*MRE draft genome.

	DhMRE A	DhMRE B	Mgen	Upar	Mhyo	Mflo	CaPhy	Linn	Saga	Rirr 523	Rirr 4192	Dacid
<i>Dh</i> MRE A	1											
<i>Dh</i> MRE B	0.89	1										
Mgen	0.59	0.52	1									
Upar	0.55	0.50	0.66	1								
Mhyo	0.43	0.38	0.47	0.83	1							
Mflo	0.41	0.35	0.60	0.80	0.83	1						
CaPhy	0.56	0.50	0.65	0.86	0.80	0.80	1					
Linn	0.65	0.61	0.58	0.70	0.69	0.71	0.74	1				
Saga	0.65	0.61	0.68	0.65	0.59	0.71	0.74	0.83	1			
Rirr 523	0.33	0.25	0.34	0.48	0.55	0.53	0.56	0.48	0.43	1		
Rirr 4192	0.43	0.38	0.36	0.62	0.65	0.62	0.64	0.51	0.46	0.65	1	
Dacid	0.06	0.001	0.19	0.35	0.39	0.46	0.33	0.27	0.25	0.34	0.30	1

Table S3. Pearson correlation coefficients for Z-score of tetranucleotide frequency.

Abbreviations and GenBank accession numbers: *Dh*MRE, *Dentiscutata heterogama* MRE scaffold; Mgen, *Mycoplasma genitalium* G37 (NC_000908); Upar, *Ureaplasma parvum* serovar 3 ATCC 700970 (NC_002162); Mhyo, *Mycoplasma hyorhinis* HUB-1 (CP002170); Mflo, *Mesoplasma florum* L1 (NC_006055.1); CaPhy, *Candidatus* Phytoplasma mali (NC_011047); Linn, *Listeria innocua* (NC_003212); Saga, *Streptococcus agalactiae* (NC_007432); Rirr, *R. irregularis* scaffold (523 = KE392324; 4192 = KE392320); Daci, *Delftia acidovorax* (NC_010002). The tetranucletotide correlation between the *Dh*MRE scaffolds A and B is marked in bold.

Table S4. Analysis of the proportion of different phylotypes found in *D. heterogama* spores, and in the bacterial suspension resulting after the MRE DNA extraction protocol, through clone libraries.

		Phylotyp	e 1	Phyloty	pe 2	
		Clone number	%	Clone number	%	Total Number
	Spore Clone library 1	74	86	12	14	86
	Spore Clone library 2	68	78	19	22	87
	Spore Clone library 3	74	90	8	10	82
	Spore Clone library 4	61	77	18	23	79
Spores	TOTAL SPORES	277	83	57	17	334
	MRE Clone library 1	78	95	4	5	82
	MRE Clone library 2	79	96	3	4	82
After DNA extraction protocol	TOTAL MRE preparation	157	96	7	4	164

Table S5. Li	st of hou	sekeeping	genes and	species	used for	the multilocus	analysis.
			()				

				infB	rplN	rplO	rplP	rpoB	rpsC	rpsD	rpsE	rpsH	rpsM	Total Length (aa)
	Phylum	Class	Order											
DhMRE	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3224
Ca. Phytoplasma asteris AYWB	Tenericutes	Mollicutes	Acholeplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3192
Ca. Phytoplasma asteris OY-M	Tenericutes	Mollicutes	Acholeplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3101
Ca. Phytoplasma australiense	Tenericutes	Mollicutes	Acholeplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3138
Ca. Phytoplasma mali	Tenericutes	Mollicutes	Acholeplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3170
Acholeplasma laidlawii	Tenericutes	Mollicutes	Acholeplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3174
Mesoplasma florum	Tenericutes	Mollicutes	Entomoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3222
Spiroplasma citri	Tenericutes	Mollicutes	Entomoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3231
Spiroplasma melliferum	Tenericutes	Mollicutes	Entomoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3232
Mycoplasma bovis	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3118
Mycoplasma synoviae	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3040
Mycoplasma agalactiae	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3118
Mycoplasma mobile	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3115
Mycoplasma haemofelis	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3286

Mycoplasma leachii	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3256
Mycoplasma hyorhinis	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3171
Mycoplasma gallisepticum	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3386
Mycoplasma genitalium	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3368
Mycoplasma hominis	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3142
Mycoplasma arthritidis	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3107
Mycoplasma hyopneumoniae	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3109
Mycoplasma conjunctivae	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3102
Mycoplasma mycoides	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3260
Mycoplasma crocodyli	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3147
Mycoplasma capricolum	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3256
Mycoplasma penetrans	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3512
Mycoplasma pulmonis	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3146
Mycoplasma pneumoniae	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3383
Ureaplasma urealyticum	Tenericutes	Mollicutes	Mycoplasmatales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3382
Lactobacillus plantarum	Firmicutes	Bacilli	Lactobacillales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3187
Streptococcus pneumoniae	Firmicutes	Bacilli	Lactobacillales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3383
Lactobacillus crispatus	Firmicutes	Bacilli	Lactobacillales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3185
Listeria monocitogenes	Firmicutes	Bacilli	Bacillales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3216

Staphylococcus aureus	Firmicutes	Bacilli	Bacillales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3136
Staphylococcus epidermidis	Firmicutes	Bacilli	Bacillales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3151
Bacillus pumilus	Firmicutes	Bacilli	Bacillales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3132
<i>Ca.</i> Desulforudis audaxviator	Firmicutes	Clostridia	Clostridiales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3314
Clostridium kluyveri	Firmicutes	Clostridia	Clostridiales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3166
Clostridium botulinum	Firmicutes	Clostridia	Clostridiales	Р	Р	Р	Р	Р	Р	Р	Р	Р	Р	3167

Sequences have been retrieved from the Molligen database and from NCBI. Gene abbreviations: *infB*, translation initiation factor IF-2; *rplN*, large subunit ribosomal protein L14; *rplO*, large subunit ribosomal protein L15; *rplP*, large subunit ribosomal protein L16; *rpoB*, DNA-directed RNA polymerase subunit beta; *rpsC*, small subunit ribosomal protein S3; *rpsD*, small subunit ribosomal protein S4; *rpsE*, small subunit ribosomal protein S5; *rpsH*, small subunit ribosomal protein S13. P: sequence available.

Table S6. Proteins from *Dh*MRE showing BLAST hit against proteins from *Rhizophagus irregularis*. Proteins with an identity > 30% and a query coverage > 35% are shown in the table.

Scaffold		DhM	IRE			R. irreg	ularis		Ι	BLAST resu	lt	Possible function/Domains ^c
	Gene	GC ^a	CAI ^b	Prot.	Acc.	GC ^a	CAI ^b	Prot.	Query	Е	Ident	
	number	%		lenght	number	%		lenght	cover	value	(%)	
				(aa)				(aa)				
А	0417	31	0.222	381	EXX74175	22	0.194	788	0.55	$4E^{-29}$	38	PUF_L domain like
А	0659	38	0.194	284	EXX58955	27	0.232	1437	0.97	3E ⁻³⁹	37	PUF_L domain like
А	0608*	31	0.233	507	EXX62832	28	0.349	571	0.41	2E ⁻²⁷	39	PUF_L domain like
А	0487	36	0.260	264	ESA21130	27	0.220	380	0.65	4E ⁻²¹	37	PUF-RNI-like domain
А	0002	38	0.225	391	ESA09032	35	0.247	433	0.92	2E ⁻¹²⁵	50	PUF
А	0032	31	0.234	279	ESA09071	32	0.221	292	0.82	3E ⁻⁴⁰	39	PUF-AIG1 domain
А	0522	30	0.236	564	ESA09071	32	0.221	292	0.45	2E ⁻³¹	34	PUF-AIG1 domain
А	0172	38	0.153	217	EXX59421	39	0.145	140	0.6	5E- ¹⁴	37	PUF
А	0345	34	0.209	353	EXX67517	36	0.240	219	0.49	5E- ⁶	27	PUF
А	0022	32	0.201	553	ESA03387	24	0.227	331	0.52	4E ⁻²⁰	31	PUF
А	0031	30	0.217	1,031	EXX75677	28	0.221	420	0.36	$5E^{-107}$	47	Non-specific protein-tyrosine kinase
А	0091*	33	0.196	812	EXX53579	28	0.189	446	0.47	8E-105	45	Non-specific protein-tyrosine kinase
А	0349	32	0.245	787	EXX62449	27	0.224	495	0.44	3E ⁻⁸¹	41	Non-specific protein-tyrosine kinase
А	0521	.31	0.227	1,119	EXX52799	28	0.196	692	0.44	6E ⁻⁸⁴	34	Non-specific protein-tyrosine kinase
А	0574	32	0.226	766	EXX57629	28	0.223	467	0.52	5E ⁻⁸⁵	40	Non-specific protein-tyrosine kinase
А	0602*	34	0.209	551	EXX75398	27	0.210	477	0.8	2E-125	46	Non-specific protein-tyrosine kinase

А	0673	33	0.196	812	EXX53579	28	0.189	446	0.47	$1E^{-104}$	45	Non-specific protein-tyrosine kinase
В	0015	33	0.244	204	ESA20877	34	0.291	434	0.84	7E ⁻³³	41	Conserved PUF-AIG1
В	0016	34	0.283	448	ESA07576	34	0.244	302	0.67	$8E^{-78}$	47	Conserved PUF-AIG1
В	0018	31	0.210	348	ESA09071	32	0.221	292	0.66	6E-53	44	PUF-AIG1
В	0019	32	0.204	479	EXX77776	30	0.204	844	0.9	2E ⁻⁵⁷	38	PUF-AIG1 domain
В	0026	32	0.247	535	EXX62915	25	0.201	434	0.68	5E ⁻⁸³	39	Non-specific protein-tyrosine kinase
В	0032	31	0.237	242	ESA18820	30	0.230	226	0.94	7E ⁻¹¹²	74	Conserved PUF
В	0035	32	0.184	189	ESA08495	41	0.247	103	0.53	6E ⁻¹⁰	36	PUF
В	0039	30	0.140	193	EXX54862	26	0.226	623	0.59	5E ⁻⁰⁷	38	PUF-L-Like domain
В	0041	32	0.267	337	EXX54859	26	0.226	740	0.57	6E ⁻²⁹	42	PUF-L-Like domain
В	0048	30	0.254	382	EXX54862	26	0.226	623	0.56	1E ⁻³¹	38	PUF-LRR domain

*Proteins located in putative genomic islands ^a The average GC content of the *Dh*MRE genome is 34% ^b CAI, codon adaptation index. The average CAI for a gene in *Dh*MRE is 0.210. GC content and CAI were calculated using the Mobyle platform at http://mobyle.pasteur.fr/cgi-bin/portal.py#welcome ^c PUF, protein of unknown function ^d GI, genes associated to genomic islands.

COG	Code	COG's description	Dh MRE
COG0563	F	Adenylate kinase and related kinases	Р
COG0528	F	Uridylate kinase	А
COG0587	L	DNA polymerase III, alpha subunit	Р
COG2812	L	DNA polymerase III, gamma/tau subunits	А
COG0592	L	DNA polymerase sliding clamp subunit (PCNA homologous)	Р
COG0358	L	DNA primase (bacterial type)	Р
COG0084	L	Mg-dependent DNase	Р
COG0305	L	Replicative DNA helicase	А
COG0629	L	Single-stranded DNA-binding protein	Р
COG0188	L	Type IIA topoisomerase (DNA gyrase/topo II, topoisomerase IV), A subunit	Р
COG0187	L	Type IIA topoisomerase (DNA gyrase/topo II, topoisomerase IV), B subunit	Р
COG0202	К	DNA-directed RNA polymerase, alpha subunit/40 kD subunit	Р
COG0086	К	DNA-directed RNA polymerase, beta' subunit/160 kD subunit	Р
COG0568	К	DNA-directed RNA polymerase, sigma subunit (sigma70/sigma32)	Р
COG0571	К	dsRNA-specific ribonuclease	Р
COG0250	К	Transcription antiterminator	Р
COG0195	К	Transcription elongation factor	Р
COG0081	J	Ribosomal protein L1	P
COG0244	J	Ribosomal protein L10	Р
COG0080	J	Ribosomal protein L11	P
COG0102	J	Ribosomal protein L13	Р
0000000	Ĩ	Ribosomal protein L14	P
0000000	j	Ribosomal protein L15	P
COG0197	j	Ribosomal protein L16/L10F	P
0000107	J	Ribosomal protein L17	P
COG0205	J	Ribosomal protein L18	P
0000230	J	Ribosomal protein L19	P
000000	J	Ribosomal protein L2	P
COG0292	J	Ribosomal protein L20	P
COG00252	J	Ribosomal protein L20	P
000001	J	Ribosomal protein L22	ı D
COG0198	J	Ribosomal protein 123	ı D
COG0198	J	Pibosomal protein L24	r D
0000211	I	Ribosomal protein L27	r D
COG0087	I	Ribosomal protein L3	r D
COG0234	I	Ribosomal protein L31	r D
000008	I I	Ribosomal protein L4	P D
COG0094	J		r D
COG0097	J	Ribosomal protoin L7/L9E	г п
	I I	Ribosomal protein £7/£12	۲ ח
	L	Ribusomal protein S10	۲ م
0000100	L		۲ م
	J	Ribosomal protein S12	۲ ۲
COG0099	. 1	RIDOSOMAI PROTEIN S13	۲ ۲
CUG0184		RIDOSOMAI PROTEIN S15P/S13E	۲
CUG0228	J	Ribosomai protein S16	P
CUG0186	J	Ribosomai protein S1/	4
CUG0238		Ribosomai protein S18	P
COG0052	J	Ribosomal protein S2	Р
COG0268	J	Ribosomal protein S20	Р
COG0092	J	Ribosomal protein S3	Р
COG0522	J	Ribosomal protein S4 and related proteins	Р
COG0098	J	Ribosomal protein S5	Р
COG0360	J	Ribosomal protein S6	Р
COG0049	J	Ribosomal protein S7	Р

Table S7. Set of 100 essential COGs conserved in 99% of bacteria (10).

COG0096	J	Ribosomal protein S8	Р			
COG0103	J	Ribosomal protein S9	Р			
COG0233	J	Ribosome recycling factor	Р			
COG0858	J	Ribosome-binding factor A				
COG0013	J	Alanyl-tRNA synthetase				
COG0018	J	Arginyl-tRNA synthetase	Р			
COG0215	J	Cysteinyl-tRNA synthetase	Р			
COG0008	J	Glutamyl- and glutaminyl-tRNA synthetases	Р			
COG0124	J	Histidyl-tRNA synthetase	Р			
COG0060	J	Isoleucyl-tRNA synthetase	Р			
COG0495	J	Leucyl-tRNA synthetase	Р			
COG0143	J	Methionyl-tRNA synthetase	Р			
COG0016	J	Phenylalanyl-tRNA synthetase alpha subunit	Р			
COG0072	J	Phenylalanyl-tRNA synthetase beta subunit				
COG0193	J	Peptidyl-tRNA hydrolase	Р			
COG0442	J	Prolyl-tRNA synthetase	Р			
COG0172	J	Seryl-tRNA synthetase	Р			
COG0441	J	Threonyl-tRNA synthetase	Р			
COG0180	J	Tryptophanyl-tRNA synthetase	Р			
COG0162	J	Tyrosyl-tRNA synthetase	Р			
COG0024	J	Methionine aminopeptidase	Р			
COG0336	J	tRNA-(guanine-N1)-methyltransferase	Р			
COG0030	J	Dimethyladenosine transferase (rRNA methylation)	А			
COG0012	J	Predicted GTPase, probable translation factor	Р			
COG0216	J	Protein chain release factor A	Р			
COG0050	J	GTPases – translation elongation factors	Р			
COG0231	J	Translation elongation factor P (EF-P)/translation initiation factor 5A (eIF-5A)	А			
COG0264	J	Translation elongation factor Ts	А			
COG0480	J	Translation elongation factors (GTPases)	Р			
COG0361	J	Translation initiation factor 1 (IF-1)	Р			
COG0532	J	Translation initiation factor 2 (IF-2; GTPase)	Р			
COG0290	J	Translation initiation factor 3 (IF-3)	Р			
COG0465	0	ATP-dependent Zn proteases	Р			
COG0484	0	DnaJ-class molecular chaperone with C-terminal Zn finger domain	Р			
COG0533	0	Metal-dependent proteases with possible chaperone activity	Р			
COG0443	0	Molecular chaperone	Р			
COG0576	0	Molecular chaperone GrpE (heat shock protein)	Р			
COG0691	0	tmRNA-binding protein	Р			
COG0653	U	Preprotein translocase subunit SecA (ATPase, RNA helicase)	Р			
COG0201	U	Preprotein translocase subunit SecY	А			
COG0706	U	Preprotein translocase subunit YidC	А			
COG0481	М	Membrane GTPase LepA	Р			
COG0275	М	Predicted S-adenosylmethionine-dependent methyltransferase involved in cell	р			
00002,0		envelope biogenesis	•			
COG0536	R	Predicted GTPase	А			
COG1160	R	Predicted GTPases	Р			
COG0319	R	Predicted metal-dependent hydrolase	А			

Presence (P) or absence (A) of the COG in the DhMRE genome are indicated.

3. SUPPLEMENTARY FIGURES

Fig. S1. Figure S1. PCR amplification of bacterial 16S rRNA genes from AMF belonging to the Gigasporaceae. DNA was amplified with MRE specific primers (A; 1.4 kb amplicon expected) and Ca. Glomeribacter gigasporarum (Burkholderia-related) specific primers (B; 0.7 kb amplicon). (M) marker; (1) Gigaspora decipiens AU102, (2, 3) two different Gigaspora margarita isolates, (4) Dentiscutata heterogama FL654. Dentiscutata heterogama spores are free from Ca. Glomeribacter gigasporarum, but contain the Mollicutes-related endobacteria which were target of this study. As the degenerate MRE primers used cause some unspecific products, MRE amplicons were cloned and sequenced to confirm their origin.

Fig. S2. Visualization of the *Dh*MRE genome draft assembly. Tracks from the outside to the inside represent: i) Contigs constituting the genome draft assembly, ii) location of gene models: in blue forward CDSs and in black reverse CDSs, iii) genomic islands in red, iv) *Dh*MRE candidate-genes for horizontal gene transfer between the AMF host and *Dh*MRE in dark blue, v) rRNA and tRNA genes in green, and in the inner tracks % GC plot and GC skew ([GC]/[G+C]). TE; transposable elements 1 and 2 are marked in yellow. *OriC predicted by GC skew in scaffold A.

Fig. S3. Phylogeny based on the 16S rRNA gene sequences obtained from AMF spores DNA extracts. *Dh*MRE 16S rRNA gene sequences are related to the *Mollicutes* (purple); *Cyanobacteria* sequences were used as outgroup. The tree shows two main groups of MRE (phylotype I and phylotype II). MRE used in this project are indicated with an arrow and are endosymbionts of *Dentiscutata heterogama* (syn. *Scutellospora heterogama*) FL654.

Fig. S4. Raw reads mapping against the 16S rRNA gene sequences of the two *Dh***MRE phylotypes used as a reference**. Raw data reads were mapped against the reference sequences with A) 95 % and B) 100 % sequence similarity and length coverage as criteria. Green, red and blue color corresponds to forward, reverse and paired-end reads respectively. Read coverage is shown in the upper part of the figure.

Fig. S5. Phylogenetic reconstruction based on the tyrosine kinase domain of the protein kinases described in the *Dh*Mre genome draft. Maximum likelihood phylogenetic tree computed using 100 bootstraps. SA, scaffold A; SB, scaffold B.

Fig. S6. Phylogenetic reconstruction based on the AIG domain of the proteins described in the *Dh*Mre genome draft. Maximum likelihood phylogenetic tree computed using 100 bootstraps. SA, scaffold A; SB, scaffold B.

		Predicted 1	Length	
Scaffold	Gene number	function	(aa)	Structure
Α	0149	exported PUF	417	SP Ovarian tumour
Α	0093	PUF	322	L domain like
Α	0256	PUF	336	L domain like Col
Α	0265	PUF	381	L domain like Coil
Α	0490	PUF	136	Relike Col
Α	0606	PUF	794	L domain like Coll
Α	0608	PUF	507	L domain like Coll Coll
Α	0065	PUF	430	RNI like Coll Coll
Α	0133	PUF	315	L domain like Coll Coll
В	0046	PUF	770	RNI like Coll Coll Coll Coll Coll
В	0047	PUF	2107	L domain like RNI domain like RNI domain L domain like HET Col
В	0048	PUF	381	L domain like Coll
Α	0134	PUF	329	L domain like
Α	0136	PUF	406	L domain like Coll Coll
Α	0417	PUF	381	L domain like Coil
Α	0659	PUF	248	L domain like
В	0039	PUF	192	L domain like
В	0041	PUF	336	L comain like Coll
В	0015	PUF	1758	Con L domain like L domain likeCon
Α	0487	PUF	264	RMI like
В	0015	conserved PUF	203 F	.oop triphosphate hydrolases
В	0016	conserved PUF	447	Ptbop triphosphate hydrolases Coll Coll
В	0018	conserved PUF	347 Ploo	t triphosphate hydrolases Col Col
В	0019	PUF	478	L domain like P loop triphosphate hydrolases
Α	0091	Non-specific PTK	812	L domain like Protein Kinase like
Α	0623	PUF	107	Surpo Peptidase
Α	0580	Peptidase SUMO	753	Proteinase
Α	0603 s	exported Sentrin-specific protease	254	SP Cot Proteinases
В	0044	PUF	666	L domain like HET

Fig. S7. Proteins with eukaryotic domains in *Dh***MRE genome.** The structure of each protein was inferred from the domain description of the SUPERFAMILY database (11).

Fig. S8. Hierarchical clustering of KEGG metabolic pathways calculated for *Dh***MRE and other 29 bacteria.** *Dh***MRE** clusters with obligate endosymbionts of insects with reduced metabolic capacities due to its very low pathway completion values, similar to *Ca*. Carsonella rudii, *Ca*. Dulcia muelleri and *Ca*. Zinderia insecticola.

4. **REFERENCES**

- 1. Tisserant E, et al. (2013) Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. *Proc Natl Acad Sci USA* 110 (50):20117-20122.
- 2. Albertsen M, *et al.* (2013) Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. *Nat Biotechnol* 31(6):533-538.
- 3. Smoot ME, Ono K, Ruscheinski J, Wang PL, Ideker T (2011) Cytoscape 2.8: new features for data integration and network visualization. *Bioinformatics* 27(3):431-432.
- 4. Nijveen H, van Kaauwen M, Esselink DG, Hoegen B, Vosman B (2013) QualitySNPng: a userfriendly SNP detection and visualization tool. *Nucleic Acids Res* 41(Web Server issue):W587-590.
- 5. Chevreux B, et al. (2004) Using the miraEST assembler for reliable and automated mRNA transcript assembly and SNP detection in sequenced ESTs. *Genome Res* 14(6):1147-1159.
- 6. Teeling H, Waldmann J, Lombardot T, Bauer M, Glockner F (2004) TETRA: a web-service and a stand-alone program for the analysis and comparison of tetranucleotide usage patterns in DNA sequences. *BMC Bioinformatics* 5(1):163.
- 7. Carver T, Thomson N, Bleasby A, Berriman M, Parkhill J (2009) DNAPlotter: circular and linear interactive genome visualization. *Bioinformatics* 25(1):119-120.
- 8. Vallenet D, et al. (2013) MicroScope--an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. *Nucleic Acids Res* 41(Database issue):636-647.
- 9. Barré A, de Daruvar A, Blanchard A (2004) MolliGen, a database dedicated to the comparative genomics of *Mollicutes*. *Nucleic Acids Res* 32(suppl 1):307-310.
- 10. Merhej V, Royer-Carenzi M, Pontarotti P, Raoult D (2009) Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. *Biology Direct* 4(1):13.
- 11. Wilson D, Madera M, Vogel C, Chothia C, Gough J (2007) The SUPERFAMILY database in 2007: families and functions. *Nucleic Acids Res* 35(suppl 1):308-313.