

Supplementary Figure 1

Generation and validation of mice carrying a series of miR-17~92 alleles

(a) *Top*, southern blot to EcoRV-digested genomic DNA extracted from neomycin-selected ES clones targeted with the $miR-17\sim92^{\Delta 17}$ construct; *Bottom*, genotyping PCR showing germline transmission of two $miR-17\sim92$ mutant alleles. (b,c) Scatter plots showing miRNA expression as determined by small RNA-seq in $miR-17\sim92$ -null (b) or $miR-17\sim92$ allelic series' embryos (c) versus a wild type control. Both strands of the miRNAs encoded by the $miR-17\sim92$ cluster are highlighted in color. Expression values are represented as log of normalized counts.

Heart and lung development in miR-17~92 mutant mice

(a) Hematoxylin-eosin stainings of transverse sections of hearts from E18.5 wild type (+/+) $miR-17\sim92$ -null (Δ/Δ) and homozygous embryos from the $miR-17\sim92$ the allelic series. Black arrow indicates a ventricular septal defect (n > 3). (b) Macroscopic view of representative lungs from $miR-17\sim92$ mutant animals and wild-type controls. (c) Weight of lungs as percentage of total body weight. Red bar represents average. Error bars represent s.d.

Skeletal defects in miR-179~2 mutant mice

(a,b) Alcian blue/alizarin red stainings of forelimb autopods of $miR-17\sim92^{+/+}$, $miR-17\sim92^{+/-}$ and $miR-17\sim92^{-\Delta/-}$ (a) or $miR-17\sim92^{+/+}$ and $miR-17\sim92^{-\Delta/-}$ (b). Black bar represents length of mesophalanx. Arrowhead indicates absence of phalanx. Fusion of carpal bones is indicated by doted line. (c) Schematic representation of vertebral patterning in wild type and $miR-17\sim92^{-\Delta/-}$ animals. (d) Ventral view of the skeletons shown in Fig.3. The position of vertebrae V1 to V27 is indicated. Vertebrae whose ribs attach to the sternum are indicated in red.

Peripheral Immune system in mice of the miR-17~92 allelic series

(a) Absolute pro-B cell number (b) *Left*, representative flow cytometry plots showing the percentage of cleaved caspase-3 positive Pre-Bl and Pre-BII cells from 5–7 week-old mice. Results from independent experiments are presented in the *right panel*. (c) Relative (*top*) and absolute number (*bottom*) of splenic B cells (B220+), T cells (TCRb+) and myeloid cells (CD11b+) from viable homozygous mutant animals. (d) Representative flow cytometry plots of splenic B cells (gated for B220+) showing that the maturation of B cells in all viable mutant mice is comparable to that in wild type controls. (e) *Top*, spleens from adult animals. *Bottom*, Hematoxylin and eosin staining of spleen sections from viable homozygous mutant mice at the age of 5–6 weeks showing an intact overall structure of the spleens. Black bar represents 100 μ m. Horizontal red bars indicate the median value for each strain (n > 8). * p < 0.05, ** p < 0.001 (2-tailed t-test).

Myc-driven lymphomagenesis in mice from the miR-17~92 allelic series

(a) Tumor free survival curve of *miR-19* deficient mice. (b) Immunophenotype of B cell lymphomas (gated for B220+) developing in the spleen of $E\mu$ -Myc;miR- $17\sim92^{\pm/+}$ and $E\mu$ -Myc;miR- $17\sim92^{\Delta19/\Delta19}$ mice. "Mixed" indicates tumors in which the fraction of IgM+ cells was between 30% and 70%. (n > 20 per genotype, p < 0.0001; χ^2 test). (c) Relative Myc expression in pre-B cells from wild type, $E\mu$ -Myc;miR- $17\sim92^{\pm/+}$, and $E\mu$ -Myc;miR- $17\sim92^{\Delta19/\Delta19}$ animals. (d) Survival curve of miR-17, -18 and -92 deficient $E\mu$ -Myc mice. p-values, Mantel-Cox test. (e) Quantification of the percentage of EdU positive pre-B cells in 5 week-old mice. (p-values, two-tailed t-test).

Hi-Myc driven prostate cancer in miR-19-deficient mice

(a) Masson's trichrome staining on prostate sections from 8 week-old mice. Arrows indicate foci of PINs. (b) Cleaved caspase-3 immunostaining on prostate sections from 8 week-old mice. (c) Bar plot showing the fraction of cleaved caspase-3 cells in $E\mu$ -Myc prostates (*miR-17~92*^{+/+} and *miR-17~92*^{\Delta 19/\Delta 19}). (d) H&E staining on prostate sections from 12 month-old mice. (e) Percentage of animals that developed invasive prostate adenocarcinomas up to 14 months of age. (f) MRIs showing transverse sections of the pelvic region of 12 month-old mice of the indicated genotypes. Prostates are indicated by red arrows. (g) Quantification of prostate volume (2-tailed t-test. Error bars = s.d.).

CDF plots of gene expression profiles from the miR-17~92 allelic series.

Cumulative Distribution Fraction plots of \log_2 -fold changes of genes without (black) or with (colored) 8-mers matches for members of the *miR-17~92* cluster in their 3'UTR. The plots were generated from the tail bud differential expression dataset.

	WT (25%)	HET (50%)	KO (25%)	Corrected p Value	
∆ 17	50/144 (35%)	84/144 (58%)	10/144 (7%)	1.21x10 ⁻⁶	
∆ 18	30/94 (32%)	51/94 (54%)	13/94 (14%)	0.19	
∆ 19	62/222 (28%)	149/222 (67%)	11/222 (5%)	1.09x10 ⁻¹⁰	
∆ 92	21/84 (25%)	43/84 (51%)	20/84 (24%)	5.79	
∆ 17,18	37/97 (38%)	57/97 (59%)	3/97 (3%)	9.02x10 ⁻⁶	
∆ 17,18,92	27/67 (40%)	40/67 (60%)	0/67 (0%)	3.20x10 ⁻⁵	
∆ 17~92	24/60 (40%)	36/60 (60%)	0/60 (0%)	1.42x10 ⁻⁴	

Supplementary Table 1.

Allelic frequencies in C57BL/6J background.

p-value was calculate using the chi-square test and adjusted for multiple hypothesis testing. Genotypes were determined at postnatal day 10-12.

		vertebral fusion	carpal bone fusion	toe syndactyly	ossification delay		
miR-17~92	WT	0%	0%	0%	0%	0%	
	HET	72%	0%	0%	0%	0%	
	ко	100%	100%	100%	100%	100%	
Allelic series	WT	0%	0%	0%	0%	0%	
Δ17	HET	17%	0%	0%	0%	0%	
	KO	43%	25%	0%	0%	100%	
Δ18	HET	0%	0%	0%	0%	0%	
	ко	0%	0%	0%	0%	0%	
Δ19	HET	0%	0%	0%	0%	0%	
	ко	20%	0%	0%	0%	0%	
Δ92	HET	0%	0%	0%	0%	0%	
	КО	0%	0%	0%	0%	0%	
Δ17,18	HET	0%	0%	0%	0%	0%	
	KO	57%	21%	0%	0%	100%	
Δ17,18,92	HET	0%	0%	0%	0%	0%	
	ко	100%	100%	0%	100%	100%	

Supplementary Table 2

Summary of skeletal malformations in miR-17~92 mutant mice.

(a) Between 4^{th} and 5^{th} digits; n>5 mice

miR-17~92

Vertebral transformation	v	vt	h	let	ko				
V14 (T7 to T8)	0/18	(0%)	0/26	(0%)	10/10	(100%)			
V20 (T13 to L1a)	0/18	(0%)	0/26	(0%)	10/10	(100%)			
V26 (L6 to S1)	1/18	(6%)	12/26	(46%)	10/10	(100%)			

Supplementary Table 3

Homeotic transformations in *miR-17~92*^{Δ} animals.

T13 to L1a indicates the transformation of the 13th thoracic vertebra to a vertebra with rudimental or no ribs; T, thoracic vertebrae; L, lumbar vertebrae; S, sacral vertebrae.

		miR-17~92 Allelic Series												
Vertebral transformation	all wt Δ17		Δ18		Δ19		Δ92		Δ17,18		Δ17,18,92			
V14 (T7 to T8)	0/97	(0%)	5/9	(56%)	0/9	(0%)	0/9	(0%)	0/9	(0%)	7/7	(100%)	4/4	(100%)
V20 (T13 to L1a)	0/97	(0%)	7/9	(78%)	0/9	(0%)	0/9	(0%)	0/9	(0%)	7/7	(100%)	4/4	(100%)
V26 (L6 to S1)	10/97	(10%)	9/9	(100%)	0/9	(0%)	0/9	(0%)	1/9	(11%)	7/7	(100%)	4/4	(100%)

Supplementary Table 4

Homeotic transformations in mice from the miR-17~92 allelic series.

T13 to L1a indicates the transformation of the 13th thoracic vertebra to a vertebra with rudimental or no ribs; T, thoracic vertebrae; L, lumbar vertebrae; S, sacral vertebrae.

Supplementary Note

Reduction of miR-18 expression in miR-17~92_{Δ17/Δ17} mice.

RT-qPCR and small RNA-seq experiments to wild type and homozygous mutant mice from the *miR-17~92* allelic series revealed that deletion of the components of the miR-17 family is accompanied by a concomitant reduction of the expression of miR-18a (Fig. 1d and Supplementary Fig. 1). However, our analysis of the RNA-seq data described in Fig. 6 and Supplementary Fig. 6 suggests that this reduction has very limited, if any, functional consequences. In particular, we found that in *miR-* 17~92 Δ 17,18/ Δ 17,18 embryos many more genes are de-regulated compared to *miR-* 17~92 Δ 17/ Δ 17 mice. This shows that the expression of miR-18a in *miR-*17~92 Δ 17/ Δ 17 mice, albeit lower than in wild-type animals, is sufficient to repress miR-18a targets. This, combined with the interesting observation that even complete miR-18a ablation (as in *miR-*17~92 Δ 18/ Δ 18 mice) leads to de-regulation of only a handful of genes, suggests that miR-18a plays a largely ancillary role to miR-17.