Supplementary Data

Jiang *et al.*, Crucial roles of the pentatricopeptide repeat protein SOAR1 in *Arabidopsis* response to drought, salt and cold stresses

Fig. S1. Postgermination growth of the *SOAR1*-overexpression lines under salt stress. Postgermination growth of the wild-type Col, three *SOAR1*-overexpression lines (OE1, OE3 and OE6) and an *ABI2*-overexpression line (ABI2-OE) in the MS medium containing, 130, 150, 175, and 200 mM NaCl, was recorded 18 d after stratification. The entire experiment was replicated three times with similar results. Bars indicate 5 mm.

Fig. S2. Test of the extremity of the NaCl concentrations under which seeds of the *SOAR1*-overexpression lines germinate and continue to grow (pictures in plates). Germination and postgermination growth of the wild-type Col, an *ABI2*-overexpression line (ABI2-OE) and three *SOAR1*-overexpression lines OE1, OE3 and OE6 in the MS medium containing 250, 300, 350, 422, and 513 mM NaCl, were investigated two weeks after stratification. The entire experiment was replicated three times with similar results.

Fig. S3. Expression of *SOAR1* under salt stresses. RNA samples were prepared from the 2-week-old wild-type Col seedlings treated with the NaCl-free (control) or NaCl-containing (200 mM) medium at the indicated time after the treatments. Expression levels of *SOAR1* were analyzed by quantitative real-time PCR. The gene expression levels are presented as relative units normalized relative to the value from the sample of the wild-type Col plants treated with the control solution after the treatments. Each value is the mean \pm SE of three independent determinations, and different letters indicate significant differences at *P*<0.05 (Duncan's multiple range test) within the same time point.

Fig. S4. Expression of *SOAR1* under cold stress. RNA samples were prepared from the 2-week-old wild-type Col seedlings grown under cold conditions at 4 °C or 0 °C at the indicated time point. Gene expression was analyzed by quantitative real-time PCR, of which the levels were relative units normalized relative to the value from the sample of the wild-type Col plants at the <0> time point (as 1). Each value is the mean ±SE of three independent determinations, and different letters indicate significant differences at P<0.05 (Duncan's multiple range test).

Fig. S5. Changes in *SOAR1* expression alter expression of *CBFs* and *COR15A* under cold condition. The 2-week-old seedlings of wild-type Col, *soar1-2* mutant and a *SOAR1*-overexpression line OE1 were subjected to cold treatment at 0 °C, and sampled for quantitative real-time PCR analysis at the indicated time points after the treatment. The gene expression levels were relative units normalized relative to the value from the sample of the wild-type Col plants (as 1). Each value is the mean \pm SE of three biological determinations, and different letters indicate significant differences at *P*<0.05 (Duncan's multiple range test) within the same time point.

Fig. S6. Changes in *SOAR1* expression alter expression of a subset of ABA biosynthesis- and catabolism-related genes. RNA sample was extracted from the germinating seeds of different genotypes treated with the ABA-free (0 μ M) or 1 μ M-ABA-containing solution 24 h after three-day stratification, and the gene expression levels of ABA biosynthetic enzyme-encoding genes *AAO1*, *AAO3*, *AAO4*, *ABA1-4* and *NCED3*, as well as ABA catabolic enzyme-encoding genes *AtCYP707A1*, *AtCYP707A2*, *AtCYP707A3* and *UGT71B6* were analyzed by quantitative real-time PCR. The gene expression levels were relative units normalized relative to the value from the sample of the wild-type Col plants (as 1). Each value is the mean ±SE of three biological determinations, and different letters indicate significant differences at *P*<0.05 (Duncan's multiple range test) among the treatments within the same gene.

At Vy	MNSLFTAFRRNLLLNPNPHRNFFLHRLLSSSRRSSPLIPVEPLIQRIQSPAVPDSTCTPPQQNTVSKTDLSTISNLFENTDVVPGSSL MKALFILDKHRFILSITSLFHTNPNPNINFORDPFHKLIN BPPSVRHWDLDIPTLKOSLNPNPNPNFSOSDFSTICALITTDALSSCAPL	88 90
Rc	MK YLIKEVR TSLSTASKPTACERT.SSSPDSP RHHRRRKWTPDI.DEKI.SSPTAN DNYSHSDESILCNIISDDNI.KP I	76
Pt	MKSSLINFHKNTTLLYVELTTEKPPHNEHFSAVSSAESWLAVOGNPLIKWPHNENLAPSPSADOONSSPTSNSNENYHONDEF LCNIKKDEKIOLGPSL	100
Sb	MAYEMLP PTPTAAAEVLSTIRGADAARL	28
Os.	MLARPGRLAASTLENDSAAAAASTVLSTIRGEDPAS	36
Consensus	1	
At	ESALDETCTEPSVETVHALFDRLSSSEM.LTHSVFKWAEMKPGFTLSPSLFDSVVNSTCKAREBETAWSTVDDRVRSDEGSNLVSADTETVTTRRVARAG	187
Vv	EDAINRTCHKECSG LQAIFSHFDASEK.P FTLFRWMKQPGFESSMTLFNSMIDVHAKSRADSAML V DRIEGGEEPELVSSNTF VIIRWARAG	189
Rc	ETAIDQTCHKEETS LNAVFDHFNSSEK.L HSLFVWDKQPEFESSTLFNSVINAIGKMKEEDSAWC VDRTGLVSSDTEA IDTRWTRAG	169
Pt	RTAPDRTCHEPELG IQSVFDHFDSSPR.L HSVFLWEKKPGFQSSAALFNSWNFVGKAREIGSAWCID DRIGGNEGCDLVSSDTFADTRAWTAC	199
50	PASCHTYTPE I CALRPALPTIEDSA PALARWAG	113
Os	PARCIDECTAVEQUERPSEPTVEDSAFPALARWEGEATAVSEPTSKELIAAAWREFFAPSPTPPPLAATTVEVKSKERA	11/
Consensus		
At	MVQQAIRABEFARSYEPVCKSATE	278
Vv	MTLSATRTEFAFSLDSIRDRDSEWSIFKILLDSLCKEGIVRVASEYFDQQR.GLPSSVFSIRVAVILVGAFRS.KUKRADQDARTXKR	279
Rc	MPQSATETTEYAISLDFICDYNCDATLEILLDSICKFERWWAKEYFDSRK.QDFSCATEHWRTANTANIMINEAFRS:WKHAFRIALDSKK	258
Pt	MSEAATETTEYASSLDLIHNSEAGTS FEILL SICKEEFVRVATDYFDRKV.EK PONVESVRIVALUINENFRS KUKHA-RAALBIKK	289
Sb	RTDSARAGRELQRHPGCYAVESDDGAPAAEAAVSPLLLTVDAGCKEGEIPRAGARLVAQVR.REIGGVAPDVRVINILIINKKSKA/RHDKVIKNAAARD	212
Os	RAPAAUSABOPLEREHPDRYMAGGDIPAAASTLMMAVDAIGGEBIEKAAVELFERWE.REPEDSPEDEKAMAUHHEMSKAGKUDKVERUTABORL	211
Consensus	s arr dickegnra prnigwri iw m	
At	MNVKETVVTYCHI LEGYERARRVQIAMEVLEBYKMARKEINFMYFNPIIDCLEBACRISEALGMERSFVCESCETUVTYNNSKKRCKACDIPCASKII	378
Vv	ENVKPTVVTYGT/VEGYORMRRSEKAIE/VGBYRGKG/EPNVIVYNPIIDSLAFAGREKEAMGMMERCLVSETGPTISTYNSLVKGFGKAGDLVGASKVL	379
Rc	NNVSPSVVTYGTIVEGYORMRRVERAIETVDVYRKEGTEPNALVYNPIIDALAEEGREKEVSGMEYELOSESGPTISTYNSLVKCYCKAKDFVGASKVL	358
Pt	KNVKESVVTYGTIVEGYSRMRVERAIEIVDBYKREGIKSNAIVYNPIIDALAFAGREKEVLGMEHEFLCEEGETISTYNSLVKCYCKAGDIVGASKII	389
Sb	EGVRPTVVTYGTFIDAYCVMRRPDQAMTILDOVREEGIQANLLTONPIVYALAQAGR=GDAHKVLEK=PLYGVSENISTENSLVFCYCKHGDLAGASGVL	312
Os	AGVRETVVTYGTI ISEI OVKRRPDOAIAI LDBYREEGIEANLLTONPIVYALAOAGREODAHKVIEKEPIYGVAENISTENSIVMEYCKHEDIAGASSVI	311
Consensus	s v p vvtygt rr a m n npil gr e pit nslv ck d gas l	
At	KMMMTREVDENTTTVNHERKYFSKHNKTBEGMNLYFKLIEACHSEDRITYHLILKMLCEDCKLSLAMOVNKEMKNRCIDEDILTTTMLIHLICRLEMLEE	478
Vv	KMMISRCFDPILTTYNYFERYFERCGKTEEGMNLYTKMLESCHTPDRLTYHLLIKMMCDEERLDLAVOVSKEMFARCCDLDLATSTMLVHLLCKMHRLEE	479
Rc	KMMISRCFVPTPTTYNYFFRHFSKFGMIBEGMNLYTKMIESCYTPDRITFHLILKMLCBEERIDIAVOISKEMRSRCCDMDLATSTMLIHLFCRMHRFBE	458
Pt	KMMISREVFPIPTTYNYFFRHFSKCRKIEEGMNLYTKMIESCYTPDRITYHLIIKMLCEEERUDIAVOISKEMRARCCDMDLATSTMFTHLICKMORFEE	489
Sb	KAMLGRCISPIARTYNYFFMVFSRNRSIBIGMNIYVKMVSNGYAPDOFTYHLIIKMLCBANRUEITLOMLOEMRNNGFEPDOATSTMLIHLICRRHHFBE	412
Os	KWITERCISETTRIYN FEMTEAKNSDVESCMNFISKMIGNCYSEDOLTYVLLYKMISRANKUEIVVOMIQEMRTHCFEEDLATSTMIIHHICRRHOFEE	411
Consensus	skm r pt tyn ff f e gmn y k g pd t l km ll q em g d t tm hlc ee	
At	A BEFT NAVR CLIPPY INFKMIDNG RSKCMSDMAKRISSIN SUPHSKKLENTYREAVDAPPDKDRRKST HRDBAMSDVIKCOR ERKUVKMRGSHK	578
Vv	A 5AEF DMIR CIVPOYLEFERMINAURKRCLTEMARKECDWAASVPHSSKLENTYSCDCDASRARKTSTIORAFAMSDIKTON PREDVKRSSFE	577
Rc	A "MEF" D. IQKGI VEQULAFQRINDE "RKRCMVERARKI SDMYSSVPHSTNIENTYSVEGDALRR. ARRSST QKABAMSKI IKTON BREIVKI KSSSQ	557
Pt	A BEFOD LRRGIVEONIEFHRINDE BROCLTELARRICKIMSSVSHSKNIENTYNVDRDASRH. ARRKSTIQKAGVMSEILKTON BREIVKHRSSSQ	588
Sb	AFAEF-Q-FERGIVEQTIFYRMIMKE KRICIVKIVQKIADIYRSVPHSTKIFGSYR.DKEGDDAIEKKKSTIIKAQ-VSDVIKDCK-EKKFEKIKDPEE	511
Os	ACAPED DIFKRGIVEONIEVCKIMRE KRICIVHLIQKITNINKSVPHSTKILGSUR. DKEGDDSMEKRKI I QKAQ-VSDVIKECKDEKERCKLKEDEE	510
Consensus	a ef gipqyt g l mshslpy i a slkcplk	
At	KAVGED IN IDDINERNGDAGDFE	602
Vv	NTVLV_DQ_IED_KR_ANKT	597
Rc	NPITS IQ IENTRK VNKI	577
Pt	NPESSING IED KKRAKT	607
Sb	TDVQV-DRIVANIRREVYGDVLRIVPSV	539
Os	TDVEV DR VAN RRSVYGGASTSSVMAPL	540
Consensus	i i	

Fig. S7. Alignment of amino acid sequence of SOAR1 in different plant species. The homologous sequence was aligned by ClustalX2 (http://www.clustal.org/). The abbreviation of plant species: *At, Arabidopsis thaliana; Vv, Vitis vinifera; Rc, Ricinus communis; Pt, Populus trichocarpa; Sb, Sorghum bicolor; Os, Oryza sativa*. The black background represents the identical amino acid residues, and the dark grey background represents the similarity more than 75%, and the light grey background represents the similarity more than 50%. The numbers in the left of the sequence indicate the number of predicted amino acid residues. The dot represents the gap in order to maximize alignment.

Table S1. Primers for q	uantitative	real-time	PCR	used in	this	study.
-------------------------	-------------	-----------	-----	---------	------	--------

A 1 1 · · ·	C	0 1	•			•
Abbreviations:	for,	forward	primer;	rev,	reverse	primer

Gene	Primer sequence
Actin2/8 for	5'-GGTAACATTGTGCTCAGTGGTGG-3'
Actin2/8 rev	5'-AACGACCTTAATCTTCATGCTGC-3'
SOAR1 for	5'-TACGGAACTTAGGTTGCTTGAG-3'
SOAR1 rev	5'-AACAACAGTCGGCTTCACATTC-3'
ABI1 for	5'-AGAGTGTGCCTTTGTATGGTTTTA-3'
ABI1 rev	5'-CATCCTCTCTCTACAATAGTTCGCT-3'
ABI2 for	5'-GATGGAAGATTCTGTCTCAACGATT-3'
ABI2 rev	5'-GTTTCTCCTTCACTATCTCCTCCG-3'
RD29A for	5'-ATCACTTGGCTCCACTGTTGTTC-3'
RD29A rev	5'-ACAAAACACACATAAACATCCAAAGT-3'
RD29B for	5'-CTTGGCACCACCGTTGGGACTA-3'
RD29B rev	5'-TCAGTTCCCA GAATCTTGAACT-3'
P5CS1 for	5'-CGACATGGGAGTGCACACACAGAC-3'
P5CS1 rev	5'-CCTCTCATTATCCATCTCGTTG-3'
SOS1 for	5'-GGCAGCATGGTTAATGTGTAC-3'
SOS1 rev	5'-TTCATCTTCTTCATCGCTTG-3'
SOS2 for	5'-ATTTGACAGGCGACAGGATTTTG-3'
SOS2 rev	5'-GCCACCTCGTAAATCTCTATC-3'
SOS3 for	5'-TCATCGAGCGAGAAGAATTG-3'
SOS3 rev	5'-CGTCCTATTTATGTCCTTTAG-3'
OST1 for	5'-GATCCCGAGGAACCAAAGAA-3'
OST1 rev	5'-ATCCTCTTTGCAGGGTCAGC-3'
ABF4 for	5'-AACAACTTAGGAGGTGGTGGTC-3'
ABF4 rev	5'-CTTCAGGAGTTCATCCATGTTC-3'
DREB2A for	5'-AAGGTAAAGGAGGACCAGAG-3'
DREB2A rev	5'-ACACAACCAGGAGTCTCAAC-3'
CBF1/DREB1B for	5'-GCATGTCTCAACTTCGCTGA-3'
CBF1/DREB1B rev	5'-ATCGTCTCCTCCATGTCCAG-3'
CBF2/DREB1C for	5'-TGACGTGTCCTTATGGAGCTA-3'
CBF2/DREB1C rev	5'-CTGCACTCAAAAACATTTGCA-3'
CBF3/DREB1A for	5'-GATGACGACGTATCGTTATGGA-3'
CBF3/DREB1A rev	5'-TACACTCGTTTCTCAGTTTTACAAAC-3'
COR15A for	5'-GCTTCAGATTTCGTGACGGATAAAAC-3'
COR15A rev	5'-GCAAAACATTAAAGAATGTGACGGTG-3'
COR15B for	5'-AAAGCAGAGTGGTGTTGGTACCGT-3'
COR15B rev	5'-TCATCGAGGATGTTGCCGTCACTT-3'
COR47 for	5'-CAGTGTCGGAGAGTGTGGTG-3'
COR47 rev	5'-ACAGCTGGTGAATCCTCTGC-3'
<i>COR414</i> for	5'-AGCATTCTTGGCGCTTATTGCTCG-3'
<i>COR414</i> rev	5'-TCCCTGCTCGTGAGAAATGTTGGA-3'
ICE1 for	5'-TCCTAAAGGCCAGCAAGCTA-3'

Gene	Primer sequence
ICE1 rev	5'-CTCTTGTCCTTCTTGGCATTG-3'
SIZ1 for	5'-ATAGCGCCTCTGGGAATCAT-3'
SIZ1 rev	5'-GCCTTGTCTTGTCTACTGTCATTCATAC-3'
<i>MYB15</i> for	5'-GGTGCGGATATCGATGAAAG-3'
MYB15 rev	5'-CATTATTAGCGGAGCCCAAG-3'
FAD2 for	5'-CCAAAGCAGAAATCAGCAATCA-3'
FAD2 rev	5'-GCAGCAGCGTAACGGTAAAGAC-3'
KIN1 for	5'-TGGAGCTGGAGCACAACA-3'
KIN1 rev	5'-GACCCGAATCGCTACTTGTTC-3'
SUS1 for	5'-TTCTGGAAGCATGTCTCGAA-3'
SUS1 rev	5'-GTGCAAGAGGAACAGCCTGA-3'
ABA1 for	5'-TCACTGACAAAGCCGATGACC-3'
ABA1 rev	5'-CGAAACGCAACAATCGTCG-3'
ABA2 for	5'-AAGCATGAAACATGCAGCTCG-3'
ABA2 rev	5'-AAGAATGTGGACCAACGCCTC-3'
ABA3 for	5'-TAGTGAAGAAATCCAATGAGCCCT-3'
ABA3 rev	5'-CTTCTTCCCCAACTCCAATCCAA-3'
ABA4 for	5'-GACTCTTGCTTCTGCTTGGATTC-3'
ABA4 rev	5'-AGAAGGCAAAGTGAAACCGAATG-3'
NCED3 for	5'-AGCCGCCATTATCGTCTTCTC-3'
NCED3 rev	5'-GGAGTGTGAAGCGCAGATGAA-3'
AAO1 for	5'-TGCTCTGTTTTTGTTGTGGGTTTG-3'
AAO1 rev	5'-CACAATCCATTGCCATCGACAT-3'
AAO3 for	5'-TCCATCATGGACTGCTCCTTC-3'
AAO3 rev	5'-CGAGACACTAGCGCCAAGAAA-3'
AAO4 for	5'-CAACAGTGGTCATCACAAGAACC-3'
AAO4 rev	5'-GGAACCGGTAACTCAAAACCAAG-3'
AtCYP707A1 for	5'-CAAAACCCAATACGTTCATGCCA-3'
AtCYP707A1 rev	5'-CTCGCTCCAACAATTGACCAAAC-3'
AtCYP707A2 for	5'-CAAGAAAAATGCCACTGACCACT-3'
AtCYP707A2 rev	5'-TCCAACCCTTTGGGATCAAGTAG-3'
AtCYP707A3 for	5'-TCTCAATACTCGGCAAAGACGAA-3'
AtCYP707A3 rev	5'-GAGCTTTCATGGCTTTGTGGAAT-3'
<i>UGT71B6</i> for	5'-GGTTCAGTGAGGAACAAGTGAGA-3'
<i>UGT71B6</i> rev	5'-TAACCTTTCCTCTGTTAGCCGTC-3'

Time (h)	Genotype	Mean	Significance of difference 0.05	Time (h)	Genotype	Mean	Significance of difference 0.05
	Col	5.3	c		Col	8.9	d
	soar1-2	6.8	c		soar1-2	11.8	с
1	soar1-3	10.2	b	2	soar1-3	16.9	b
1	OE1	4.5	cd	2	OE1	7.7	e
	OE6	3.5	d		OE6	6.4	e
	ABI2-OE	16.4	a		ABI2-OE	28.7	а
	Col	13.1	d		Col	16.4	d
	soar1-2	16.9	С		soar1-2	21.8	c
2	soar1-3	25.8	b	4	soar1-3	32.9	b
3	OE1	11.6	e	4	OE1	15.4	de
	OE6	9.8	e		OE6	12.4	e
	ABI2-OE	38.6	a		ABI2-OE	50.4	а
	Col	19.3	d	6	Col	23.1	d
	soar1-2	26.1	c		soar1-2	30.1	c
-	soar1-3	37.6	b		soar1-3	42.9	b
5	OE1	17.9	de		OE1	20.8	de
	OE6	15.2	e		OE6	17.4	e
	ABI2-OE	56.8	a		ABI2-OE	62.9	а
	Col	26.2	d		Col	29.1	d
	soar1-2	34.5	С		soar1-2	38.5	c
-	soar1-3	48.4	b	0	soar1-3	52.4	b
/	OE1	24.5	de	ð	OE1	27.8	de
	OE6	20.4	e		OE6	22.9	e
	ABI2-OE	67.8	a		ABI2-OE	69.7	a

Table S2. Duncan's multiple range tests for the data of the water loss rate presented in Fig. 1B. Different letters indicate significant differences at P < 0.05.

Time (h)	Genotype	Mean	Significance of difference 0.05	Time (h)	Genotype	Mean	Significance of difference 0.05
	Col	0	a		Col	8.1	d
	soar1-2	0	а		soar1-2	0	e
	soar1-3	0	а		soar1-3	0	e
0	OE1	0	а	24	OE1	20.1	b
	OE3	0	а		OE3	15.8	с
	OE6	0	а		OE6	55.7	а
	ABI2-OE	0	a		ABI2-OE	7.8	d
	Col	81.6	b		Col	95	a
	soar1-2	48.8	c		soar1-2	91.4	b
	soar1-3	42.7	d		soar1-3	76.3	c
36	OE1	91.2	a	48	OE1	95	a
	OE3	80	b		OE3	95.8	а
	OE6	92.3	a		OE6	96.1	a
	ABI2-OE	83.4	b		ABI2-OE	93	b
	Col	97.9	ab		Col	98.9	а
	soar1-2	97.6	ab		soar1-2	98.4	a
	soar1-3	97.2	ab		soar1-3	99.1	a
60	OE1	97	ab	72	OE1	98.3	a
	OE3	97.5	ab		OE3	98.3	a
	OE6	98.1	a		OE6	99.1	a
	ABI2-OE	96.5	b		ABI2-OE	98.2	a
	Col	100	a		Col	100	a
	soar1-2	100	a		soar1-2	100	a
	soar1-3	100	a		soar1-3	100	a
96	OE1	100	a	120	OE1	100	a
	OE3	100	а		OE3	100	a
	OE6	100	а		OE6	100	a
	ABI2-OE	100	a		ABI2-OE	100	a

Table S3. Duncan's multiple range tests for the data of the seed germination rate of the controls presented in Fig. 2A and 2C. Different letters indicate significant differences at P < 0.05.

Time (h)	Genotype	Mean	Significance of difference 0.05	Time (h)	Genotype	Mean	Significance of difference 0.05
	Col	0	а		Col	0	a
	soar1-2	0	а		soar1-2	0	a
0	soar1-3	0	а		soar1-3	0	a
	OE1	0	a	24	OE1	0	a
	OE3	0	a		OE3	0	a
	OE6	0	a		OE6	0	a
	ABI2-OE	0	a		ABI2-OE	0	a
	Col	0	d		Col	0	e
36	soar1-2	0	d		soar1-2	0	e
	soar1-3	0	d	48	soar1-3	0	e
	OE1	1.5	b		OE1	17.8	b
	OE3	0.8	c		OE3	15.6	c
	OE6	12.2	a		OE6	30.5	a
	ABI2-OE	0	d		ABI2-OE	5.5	d
	Col	13	e		Col	25	d
	soar1-2	0	f		soar1-2	3.8	e
	soar1-3	0	f		soar1-3	4.3	e
60	OE1	78.5	b	72	OE1	92.6	а
	OE3	55.5	c		OE3	76.6	b
	OE6	81.7	а		OE6	92.7	а
	ABI2-OE	36.7	d		ABI2-OE	63.3	c
	Col	82	d		Col	88	c
	soar1-2	20.9	f		soar1-2	22.8	e
	soar1-3	38.4	e		soar1-3	48.5	d
96	OE1	98.5	a	120	OE1	99.3	а
	OE3	89.8	c		OE3	93.8	b
	OE6	97.6	a		OE6	100	а
	ABI2-OE	93.6	b		ABI2-OE	98.2	a

Table S4. Duncan's multiple range tests for the data of the seed germination rates of the D-mannitol (300 mM) treatment presented in Fig. 2A. Different letters indicate significant differences at P < 0.05.

Time (h)	Genotype	Mean	Significance of difference 0.05	Time (h)	Genotype	Mean	Significance of difference 0.05
	Col	0	a		Col	0	a
	soar1-2	0	a		soar1-2	0	a
	soar1-3	0	а		soar1-3	0	a
0	OE1	0	a	24	OE1	0	a
	OE3	0	a		OE3	0	a
	OE6	0	a		OE6	0	a
	ABI2-OE	0	a		ABI2-OE	0	а
	Col	0	с		Col	0	e
36	soar1-2	0	с		soar1-2	0	e
	soar1-3	0	c		soar1-3	0	e
	OE1	3.4	b	48	OE1	24.1	a
	OE3	0	с		OE3	11.5	с
	OE6	9.3	a		OE6	21.6	b
	ABI2-OE	0	c		ABI2-OE	5.4	d
	Col	0	e		Col	9.8	d
	soar1-2	0	e		soar1-2	1.8	e
	soar1-3	0	e		soar1-3	1.4	e
60	OE1	82.7	a	72	OE1	92.2	а
	OE3	57.5	c		OE3	75.2	b
	OE6	78.3	b		OE6	92.8	а
	ABI2-OE	36.9	d		ABI2-OE	70	c
	Col	75.7	e		Col	84.8	d
	soar1-2	25.4	f		soar1-2	65.4	e
	soar1-3	35.9	f		soar1-3	66.1	e
96	OE1	99.1	a	120	OE1	100	а
	OE3	88.4	d		OE3	92.9	с
	OE6	96.9	b		OE6	96.9	b
	ABI2-OE	91.9	c		ABI2-OE	100	a

Table S5. Duncan's multiple range tests for the data of the seed germination rate under NaCl (175 mM) treatment presented in Fig. 2C. Different letters indicate significant differences at P < 0.05.

NaCl (mM)	Genotype	Mean	Significance of difference 0.05	NaCl (mM)	Genotype	Mean	Significance of difference 0.05
	Col	53	а		Col	6.8	d
	soar1-2	47	a		soar1-2	1.17	e
	soar1-3	49	a		soar1-3	1.18	e
0	OE1	50	a	120	OE1	28.8	b
U	OE3	53	a	130	OE3	34.4	a
	OE6	51	a		OE6	27.8	c
	ABI2-OE	49	a		ABI2-OE	28.7	b
	abi1-3/abi2-2	43	a		abi1-3/abi2-2	0.64	f
	Col	4.5	e	175	Col	1.02	d
	soar1-2	0.89	f		soar1-2	0.33	f
	soar1-3	0.87	f		soar1-3	0.39	f
150	OE1	23.05	a		OE1	15	b
150	OE3	20	b		OE3	16	a
	OE6	18	c		OE6	13	c
	ABI2-OE	16	d		ABI2-OE	13.5	c
	abi1-3/abi2-2	0.65	g		abi1-3/abi2-2	0.64	e
	Col	0.7	d				
	soar1-2	0.18	e				
	soar1-3	0.26	e				
200	OE1	7.9	a				
200	OE3	8.1	а				
	OE6	3.5	c				
	ABI2-OE	5.3	b				
	abi1-3/abi2-2	0.27	e				

Table S6. Duncan's multiple range tests for the data of the fresh weight presented in Fig. 3C. Different letters indicate significant differences at P < 0.05.