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Supplementary Discussion S1. Electrochemical characterization of the RF/RFH2 couple on 

a glassy carbon RDE: 

The cyclic voltammograms (CV) recorded on a GC RDE at 5 mV.s-1 in anaerobic salt solution 

with 140 μM RF showed 2 well-defined peaks centered around ⎼ 396 ± 4 mV vs. Ag/AgCl (n = 

3), with a peak to peak separation ΔEp of 41 ± 2 mV (Fig. S1(A), thin line). These features are in 

good agreement with a reversible two-electron step electrochemical process with an apparent 

formal potential E0’
RF/RFH2 of ⎼ 400 ± 2 mV vs. Ag/AgCl (recalculated from 1 and 2 for pH 6.5 and 

37 °C) and a theoretical ΔEp of 31 mV 3. The polarization curve recorded at 2000 rpm (Fig. 

S1(A), thick line) confirmed the electrochemical reversibility with a half wave potential E1/2 of 

394 ± 5 mV vs. Ag/AgCl (n = 3) similar to E0’
RF/RFH2 and a Tomeš criterion value │E3/4⎼E1/4│ of 

36 ± 1 mV (n = 3) close to the theoretical 29.3 mV (two-electron exchange, 37 °C3). The plateau 

current density of ~ 170 µA.cm-2 is quickly reached below ~ ⎼ 0.45 V vs. Ag/AgCl. The 

evolution of this cathodic limiting current jlc with the electrode rotation speed ω has been 

recorded by CA at ⎼ 0.6 V (Fig. S1(B)). The corresponding Levich plot (jlc = f(ω1/2), Fig. S1(C)) 

presents an excellent linearity as predicted by Levich equation for RDE3: 

][102.6 2/16/13/24 RFDFnj RFlc              

where n = 2 is the number of electrons exchanged, F the Faraday constant, DRF the diffusion 

coefficient of RF, ν the kinematic viscosity of water (6.92 × 10-3 cm2.s-1 at 37 °C), ω the rotation 

speed (rad s-1) and [RF] the dissolved RF concentration (M). From the Levich slopes of 3 

independent measurements, the diffusion coefficient DRF at 37 °C was determined at (6.32  ± 

0.22) × 10-6 cm2.s-1. This value is in good agreement with a literature value of 6.13 × 10-6 cm2.s-1 

2 (recalculated for 37 °C with the Stokes-Einstein equation). The Levich plot has also been 
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obtained for a fully reduced RFH2 solution (Fig. S2) and provided a very similar diffusion 

coefficient (6.46 × 10-6 cm2.s-1) as expected for only 2 hydrogen atoms addition without 

conformation change for this large molecule (MRF = 376 g.mol-1). The more accurate mean value 

of DRF (for the oxidized state RF) will be kept for calculating either [RF] or [RFH2] as RF 

solutions were made from analytical-grade powder without further treatment. 

   

 

Supplementary Figure S1. Electrochemical properties of RF/RFH2 couple on a GC RDE. (A) 

CV at 5 mV s-1, 140 µM RF, 37 °C at 0 rpm (thin line) and 2000 rpm (thick line). (B) CA 

recorded at ⎼ 0.6 V vs. Ag/AgCl with increasing rotation speed ω from 200 rpm to 5000 rpm. (C) 

Corresponding Levich plot of data recorded in (B). 
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Supplementary Figure S2. Levich plot for 138 µM RFH2, recorded at − 0.25 V vs. Ag/AgCl 

(RFH2 was obtained after full reduction of 138 µM RF by F. prausnitzii in 11 mM glucose non-

growing medium).  
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Supplementary Figure S3. Evolution of the platinum counter electrode potential (ECE, black 

line) over the complete reduction of RF by F. prausnitzii recorded by CA at − 0.25 V vs. 

Ag/AgCl and 2000 rpm (thin grey line). Medium with 11 mM glucose, 130 µM RF and 1.0 × 108 

cells.mL-1 F. prausnitzii. ECE slightly decreased over time while more counter current was needed 

and less RF was available. Around 90 % of the RF could be reduced even before ECE reached the 

potential of mass transfer limitation for RF reduction (~ − 0.45 V on Pt, similar than on GC). 

When only ~ 2 % of initial RF is remaining, ECE reached − 0.6 V, onset potential of H2 evolution 

on Pt. This result show that even if the RFH2 oxidation on the RDE would not be significant (here 

consuming a maximal amount of 29 nM.h-1 RFH2 for the final current according to the Faraday 

law), it is completely compensated by the CE reaction until an almost complete RF consumption. 
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Supplementary Figure S4. Controls: glucose, RF and F. prausnitzii are simultaneously required 

for current generation. CAs recorded at – 0.25 V vs. Ag/AgCl, 2000 rpm. (A) Addition of 11 mM 

glucose in 120 µM RF and 8.7 × 106 cells.mL-1 F. prausnitzii. (B) Addition of 0.27 µM RF in 11 

mM glucose and 4.6 × 106 cells.mL-1. (C) Addition of 1.9 106 cells.mL-1 in 11 mM glucose and 

140 µM RF.  
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Supplementaty Discussion S2. Validation of the Levich model to monitor the metabolic 

reaction rate and [RFH2]. 

The Levich model for RDE formally allows the monitoring of the concentration of an 

electroactive specie when the latter is not consumed/produced in the diffusion layer of the RDE 

(Fig. S5, top). In our case, the monitored RFH2 is also continuously produced in the diffusion 

layer by F. prausnitzii metabolism, which could modify the current recorded on the RDE for a 

specific RFH2 concentration in the bulk (Fig. S5, bottom). The aim of the following model is to 

assess this putative impact to formally prove the relevance of using the Levich equation to 

accurately monitor [RFH2] and its production rate. For that, we shall solve the diffusion equation 

in the case of an homogeneous production of RFH2, which allows to obtain the evolution of the 

current density over time.   

 

Supplementary Figure S5. Schematized concentration profiles for RFH2 in the diffusion layer δ 

without local homogeneous reaction (Levich model, top) or with F. prausnitzii reducing RF 

(bottom). The possible impact of the metabolic homogeneous reaction on the concentration 

profile is largely amplified for clarity. x: normal distance from the electrode surface.  
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Supplementary Table S1. Symbols and units used in the model 

Symbols Description Units 

x Normal distance (cm) from the electrode surface (x = 0) cm 

t Time from starting point of the reaction (t = 0) s 

C(x,t) Concentration of RFH2 mol.cm-3 

r Maximal homogeneous reaction rate of RFH2 production mol.cm-3.s-1 

δ Diffusion layer thickness cm 

ω Rotation speed of the RDE  rad.s-1 

jla Anodic mass transfer limiting current density A.cm-2 

J(x,t) Diffusive flux of RFH2  mol.cm-2.s-1 

D Diffusion coefficient of RFH2 at 37 °C  6.32 × 10-6 cm2.s-1 

ν Kinematic viscosity of water at 37 °C 6.92 × 10-3 cm2.s-1 

F Faraday  96485 C.mol-1 

 

The model is developed assuming these hypothesizes:  

1) t = 0 is defined as the starting point of the reaction and so the initial concentration of 

product is nil: C(x, t=0) = 0 ; 

2) the RDE potential is sufficiently high to record the anodic mass transfer limiting current 

density jla, i.e. the maximal consumption of RFH2 on the electrode surface: C(x = 0, t) = 0; 

3) the homogeneous metabolic reaction rate r is assumed to be maximal and time 

independent (zero order, saturation in glucose and RF) from the starting point; and the 

concentration of bacteria and their activity are identical in the diffusion layer and in the 

bulk: r(x,t) = constant = r, 
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4) RDE diffusion-convection model3: the mass transfer in the diffusion layer is only 

diffusional and unidirectional with respect to the normal of the electrode surface (x = 0), 

and the concentration C(x,t) in the diffusion layer is therefore described by a one-

dimensionaldiffusion equation; the convection maintains all concentrations uniform and 

equal to the bulk values beyond the diffusion layer thickness δ, implying C(δ,t) = rt. 

 

a) Evolution of RFH2 concentration profile in the diffusion layer 

 

The evolution of RFH2 concentration C(x,t) in the diffusion layer over time is therefore described 

by the following differential equation with these boundary conditions (diffusion equation with 

constant production):  
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This equation is homologous to an inhomogeneous heat equation with a time dependent boundary 
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General solutions of (S2) can be found in the form of a Fourier series4: 
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where the the series is convergent. 

The general solution of (S1) ),(),(=),( txhtxutxC   is then: 
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b) Validation of the Levich approximation for calculating the reaction rate 

 

The current density jla(t) is proportional to the RFH2 flux J(0,t) at the electrode surface (Faraday 

law):  

                                                            ),0(2)( tJFtjla                                              (S5) 

The factor 2 being the number of electrons exchanged per RFH2 molecules oxidized. 

And the RFH2 diffusive flux follows Fick’s first law at x = 0: 

 

                                                              0

),(
),0(

















xx

txC
DtJ                                                 (S6) 
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And the derivative of C(x,t) with respect to x: 
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Finally, at x = 0 (electrode surface), the complete solution for the current density is: 
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where we make appear the characteristic time constant  
2

D


   . 

The first term of this equation (series) is decreasing exponentially with time and since for 0t   , 
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 , the series is convergent (related to the Basel problem).  Moreover, the first term of 

the series (n=1) is the dominant term with the slowest decay rate. In practice at t  , we have 
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  of the order of 
55 10  for 1n  , 

1910
 for 2n  and 

3910
 for 3n  . So it means that for t 

= τ, the value of the biggest term  of the transient series (around  510  )  in (S9) is already more 

than 5 orders of magnitude smaller than the sum of the two following terms (equal at 
3

4
). 

Consequently, for t  a good approximation consists in neglecting the series with respect to the 

two other terms, and (S9) becomes: 
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The value of τ depends on δ which is well defined for a RDE3: 
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With our operational rotation speed of 2000 rpm: 
D

2
  = 128 ms. 

The transient series of equation (S9) is therefore completely negligible only a fraction of second 

after the metabolic reaction started, which is a short time scale with respect to our measurements 

time scale. 

The evolution of the current density with time for t ≥ τ is the derivative of (S10) with respect to t: 
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And by replacing δ (from (S11)): 
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Finally, the relation between the metabolic reaction rate r and the slope of the chronoamperogram  
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Which are indeed the equation (7) and (6) stated in the main text of the study, respectively, and 

used to determine r. 

The insignificant impact of the metabolic reaction in the diffusion layer was also confirmed 

experimentally (Fig. S6). There, the slope of the chronoamperogram monitoring a constant 

reaction rate increased proportionally with ω1/2, as predicted by (S14). Since the diffusion layer 
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thickness (and therefore the amount of RFH2 produced per second in the layer) decreases linearly 

with ω1/2, a significant impact of the local homogeneous reaction would have broken the 

proportional relationship observed in Fig. S6. 

 

c) Validation of the Levich approximation for monitoring [RFH2] 

  

In this study we assumed that [RFH2] could be continuously recorded by monitoring the current 

density according to the Levich model.  

We proved that very quickly after the reaction started, the current density follows: 
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Where the constant term 
3


 reflect the impact of the homogeneous reaction in the diffusion layer 

and the second term increasing linearly with t is the Levich current only due to the specie coming 

from the bulk. It is clear that the relative impact of the reaction in the diffusion layer decreases 

over time. This impact becomes less than 1 % of the Levich current for: 

 


 t

100

1

3
       i.e.     

3

100 
t     i.e.      t 4.25 s     (at 2000 rpm) 

 

This confirms that the Levich approximation is rigorous to monitor accurately [RFH2] (or [RF]) 

very quickly after the reaction started. Note that the accuracy of the approximation continuously 

increases after the reaction started (e.g. 0.1 % after 42.5 s). Note finally that the limited impact of 

the homogeneous reaction in the diffusion layer was rather expected regarding the typically small 



14 
 

thickness of the diffusion layer (~ 10 µm) which cannot contain a very large amount of bacterial 

cells (typical size ~ 1 µm).  
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Supplementary Figure S6. The metabolic rate measured is independent of the electrode rotation 

speed. (A) CA recorded at ⎼ 0.25 V vs. Ag/AgCl with increasing rotation speed from 500 rpm to 

3000 rpm, in presence of F. prausnitzii  (9.9 × 106 cells.mL-1) and 140 µM RF. Plotted lines are 

the corresponding tangent slopes. The experiment started once a constant slope was reached at 

500 rpm for 10 min. (B) Corresponding slope evolution with the square root of the rotation speed 

(n = 3); normalization with respect to highest slope (3000 rpm). Error bars are 2 standard 

deviations. 
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Supplementary Figure S7. Evolution of the maximal RF reduction rate for F. prausnitzii kept 

anaerobically at 37°C in absence of carbon sources. Fractions of a single F. prausnitzii 

suspension (“stock solution”) were successively tested. Normalized with respect to the initial rate 

recorded immediately after suspension preparation.  

 

 

 

 

 

.  
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Supplementary Figure S8. Evolution of carboxylates concentration over time when 130 µM RF 

is initially in presence (A) or in absence of RF (B) in 11 mM glucose and 1.0 × 108 cells.mL-1 F. 

prausnitzii; acetate (blue diamond), formate (green square), butyrate (red circle) and lactate 

(purple triangle). RF concentration over time was monitored by the RDE method and is plotted in 

black in (A), yellowish area indicates the presence of RF before total reduction (at t ~ 50 min). 

Note the 7-times difference in scale between (A) and (B). Initial carboxylate concentrations 

(before glucose addition at t = 0) were lower than 10 µM and subtracted in the figures.  
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Supplementary Figure S9. Sensitivity of the method. CA recorded at ⎼ 0.25 V vs. Ag/AgCl, 

2000 rpm, 11 mM glucose and 150 µM RF. Arrows indicate 3 successive additions of 10 µL 

F.prausnitzii suspension (i.e. 0.03 % vol/vol, final concentration: 5 × 105 cells.mL-1). Final grey 

area represents the 1 min acquisition for the value of the slope represented in red (24.0 nA.cm-

2.min-1), corresponding to a RF reduction rate r of 17.7 nM.min-1. 

 

Supplementaty Discussion S3. Spectrophotometric measurements  

a) Anaerobic incubations general 

Anaerobic incubations to determine the growth characteristics of F. prausznitzii and RF reduction 

based on spectrophotometry were performed in a 96-well microplate reader (Tecan Sunrise, 

Mechelen, Belgium) placed in the anaerobic workstation at 37 °C. Flat, transparent 96-well plates 

were filled with 200 µL suspension per well. Growth was analyzed at 620 nm and RF reduction 

was analyzed at 450 nm. RF absorbance did not interfere with analysis at 620 nm. 
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Supplementary Figure S10. Absorbance spectrum of 155 µM TF. Error bars indicate standard 

deviation (n = 8 wells).  

 

b) anaerobic 96-well plate incubations for RF reduction in non-growing conditions 

F. prausnitzii cell suspensions were prepared in the range of 5.2 × 106 - 1.7 × 1010 cells.mL-1 in 

the non-growing solution (see Method section) with and without 170 µM RF to achieve the 

highest RF concentration in the wells. These suspensions were diluted 1:1 in the non-growing 

solution with 170 µM RF to achieve a RF concentration range from 5.3 - 170 µM. In this way the 

optimal bacteria-RF combination for monitoring RF reduction kinetics spectrophotometrically 

can be found in one experimental run. The 96-well plate was incubated in the anaerobic 

workstation and read-outs were made were made every 30s for the first ~ 2 h and every 60 s for 

the next ~ 6 h to be able to capture enough data points to determine the fastest kinetics at the 

highest bacterial concentrations using Xfluor™  software. The bacterial concentration was stable 

over the time of incubation as determined by incidental measurement at OD620nm (Figure S18).  
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Supplementary Figure S11. Typical profiles of OD450nm decrease as a proxy for RF reduction. 

The method works for 5-170 µM RF and over 3 orders of magnitude of bacterial concentrations 

(2.6*106-2.6*109 intact cells.mL-1). Each line represents the data of a single well (indicated by a 

letter/number combination). Mind the differences in X- and Y-axis to show the linear decrease in 

OD-values. 
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Supplementary Figure S12. Impact of lactate concentration: CA recorded at – 0.25 V vs. 

Ag/AgCl, 2000 rpm, 150 µM RF, 11 mM glucose, 3.5 × 106 cells.mL-1 F. prausnitzii. Arrows 

represent increasing additions from a 1 M sodium lactate stock solution leading to lactate 

concentrations presented in Fig. 6. Grey dotted lines stress the stability of initial and final slopes, 

which is a necessary condition for measurement validation. Punctual decreases in current for the 

last, largest additions reflect the corresponding small dilution of RFH2 (the final increase in 

volume with respect to the initial volume is 4.7%). This limited dilution of bacteria is taken into 

account for the calculation of the normalized rate presented in Fig. 6. No significant impact is 

expected nor taken into account from the small  dilution of glucose and RF since both are still at 

saturation for F. prausnitzii (see Fig. 3). Inset: zoom on the 3 first additions. 
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Supplementary Figure S13. Polarization curves recorded before (thick red line) and after (thin 

black line) 50mM sodium butyrate addition, 160 µM RF, 10 mV.s-1, 2000 rpm. The quasi-

invariance of the curves shows the very little impact of butyrate on the solution viscosity up to 50 

mM. 

 

Supplementary Figure S14. Evolution of RF reduction rate with sodium sulphate concentration 

(n = 2). Results from CAs recorded at – 0.25 V vs. Ag/AgCl, 2000 rpm, 150 µM RF, 11 mM 

glucose, 3.7 × 107 cell.mL-1 F. prausnitzii. Normalization is done with respect to the initial, stable 

rate before Na2SO4 addition. The non-significant impact of the salt concentration shows that 

neither the increase in ionic strength nor osmolarity were influencing the sodium carboxylates 

impacts presented in Fig. 6. 
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Supplementary Figure S15. (A) Impact of lactate addition on RF reduction in initial absence of 

glucose with 1.9 × 107 cells.mL-1 F. prausnitzii; (B) impact of formate with 9.4 × 106 cells.mL-1; 

(C) controls for lactate and formate in absence of F. prausnitzii; (D) Absence of impact of acetate 

and butyrate addition in absence of glucose (1.0 × 107 cells.mL-1). CAs recorded at – 0.25 V vs. 

Ag/AgCl, 2000 rpm, 150 µM RF. Glucose was added at the end of the recordings to control 

bacteria activity and show the much faster related kinetics. 
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Supplementary Figure S16. Metabolic reduction of RF by B. pullicaecorum. (A) CA recorded 

at − 0.25 V vs. Ag/AgCl and 2000 rpm, 150 µM RF initially, 11 mM glucose and 7.8 × 107 

cells.mL-1 B. pullicaecorum added at t = 5 min (see zoom in inset); (B) Corresponding CVs 

recorded at 10 mV.s-1, 2000 rpm, at t = 0 (thin black line) and t = 17 h (thick red line).  
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Supplementary Figure S17. Redox singularity: small undefined oxidation wave sometimes 

appeared at potential higher than – 0.25 V (see zoom in inset). CV at 10 mV.s-1 and 2000 rpm, 

recorded at an intermediate state of 150 µM RF reduction by F. prausnitzii in 11 mM glucose.   

The wave disappeared or was not anymore substantial once new RF solutions were made each 

day of experiment directly in the anaerobic closet and extra care to avoid substantial light (with 

aluminum foil) and O2 exposure. 
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Supplementary Figure S18. (A) Growth curve of F. prausnitzii under culture (M2GSC medium, 

37 °C), n = 12 (black line), the asterisk shows the time of transfer for electrochemical 

experiments. The growth rate which is 0.22 ± 0.01 h-1 leading to a doubling time of 4.61 ± 0.13 h 

was calculated using the software provided by Hall et al. (2013)5;  (B) absence of growth in the 

condition of the electrochemical experiments (dashed red line): 2.6 × 107 cells.mL-1 F. 

prausnitzii, 11 mM glucose, 150 µM RF in the salt solution described in the section Method. 
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