Supplementary Information

Low-bias phosphopeptide enrichment from scarce samples using plastic antibodies

Jing Chen^[a]*, Sudhirkumar Shinde^[b]*, Markus-Hermann Koch^[a], Martin Eisenacher^[a], Sara Galozzi^[a], Thilo Lerari^[a],Katalin Barkovits^[a], Prabal Subedi^[a], Reijko Krüger^[c, d], Katja Kuhlmann^[a],Börje Sellergren^[b]*, Stefan Helling^[a]* and Katrin Marcus^[a]*

Synthesis of molecularly imprinted polymers

N-(9-Fluorenylmethoxycabonyloxy) succinimide (Fmoc-OSu) and serine ethyl ester hydrochloride (Ser-OEt HCI) were obtained from Bachem; benzyl alcohol (99%) was obtained from Across Organics, and N,N-diisopropylethyl amine (DIEA), tert-butyl hydroperoxide (5.0-6.0 M solution in decane), and tetrazole solution were obtained from Fluka. The base 1,2,2,6,6-pentamethylpiperidine (PMP) was purchased from Fluka (Buchs, Switzerland). The initiator *N,N'*-Azo-bis-(2,4-dimethyl)valeronitrile (ABDV) was purchased from Wako Chemicals (Neuss, Germany). HPLC-grade methanol (MeOH) and MeCN were purchased from Acros (Geel, Belgium). Fmoc-Ser(PO₃H₂)-OH and Fmoc-Tyr(PO₃H₂)-OH were purchased from Bachem AG Switzerland and had a declared purity of >97%. Pentaerythritol triacrylate (PETA) was purchased from Sigma-Aldrich (Steinheim, Germany).

N-(9-Fluorenylmethyloxycarbonyl) serine ethyl ester (Fmoc-Ser-OEt)

Fmoc-OSu (5 g, 14.82 mmol) and serine ethyl ester hydrochloride (2.514 g, 14.822 mmol) were added to 20 ml of dry dichloromethane and stirred under nitrogen atmosphere. Afterwards, N,N-diisopropylethyl amine (2.579 g, 14.86 mmol) was added to the reaction mixture at 0°C and subsequently stirred at room temperature for 12 hours followed by washing steps with 1 M hydrochloric acid, saturated sodium bicarbonate, water and brine; the reaction was then dried over sodium sulfate. The solvent was evaporated, and the compound precipitated from n-hexane yielded 3.69 g of white product (68.6% yield). ¹H NMR (400 MHz CDCl₃): δ 1.21-1.31 (t, 3H), 3.94-3.99 (d, 2H), 4.21 (m, 3H), 4.43-4.44 (m, 3H), 5.76-5.78 (d, 1H), 7.30-7.78 (m, 8H, Aromatic). ¹³C NMR (100 MHz CDCl₃): δ 14.28, 47.25, 56.22, 62.14, 63.52, 67.31, 120.12, 120.14, 125.20, 127.19, 127.22, 127.87, 141.41, 141.45, 143.77, 143.93, 156.38, 170.58. LCMS observed mass m/z: M+18 (355.14+18) 373.17.

Di-benzyl-N,N-diisopropylphosphoramidate

Di-benzyl-N,N-diisopropylphosphoramidate was synthesized according to the procedure reported by Perich *et al.*¹ A solution of benzyl alcohol (0.02 mol) and triethyl amine (0.04 mol) in absolute diethyl ether (20 ml) was added slowly to a solution of (diisopropylamino) dichlorophosphine (0.01 mol) in 10 ml of absolute diethyl ether while maintaining the reaction temperature at 0°C. After complete addition, the solution was stirred at room temperature for 3 hours. The reaction mixture was then consecutively washed with 5% sodium bicarbonate and brine. After drying with anhydrous sodium sulfate, the solution was filtered and evaporated under reduced pressure, yielding 3.12 g of colorless liquid (90% yield). The obtained crude product was used for the subsequent reaction without further purification. ¹H NMR (400 MHz CDCl₃): δ 1.20-1.22 (d, 12H), 3.66-3.75 (m, 2H), 4.67-4.89 (m, 4H), 7.24-7.38 (m, 10H). ¹³C NMR (100 MHz CDCl₃): 24.60, 24.67, 43.00, 43.12, 65.25, 65.43, 126.95, 127.19, 128.20, 139.45, 139.53. ³¹P NMR (CDCl₃): δ 148.55.

N-(9-fluorenylmethyloxycarbonyl)-O-phosphoserine ethyl ester (Fmoc-Ser(PO₃H₂)-OEt)

Di-benzyl-N,N-diisopropylphosphoramidate (1.22 g, 3.532 mmol) dissolved in 5 ml of anhydrous tetrahydrofuran was added to a solution of Fmoc-Ser-OEt (0.5 g, 1.40 mmol) and tetrazole (9.38 ml, (0.45 M in acetonitrile, 4.22 mmol) in 15 ml of anhydrous tetrahydrofuran under nitrogen. The resulting solution was stirred at room temperature for 12 hours. t-Butyl hydroperoxide (1 ml of a 5-6 M solution in decane, 5 mmol) was added to this mixture at 0°C, and it was stirred for another 2 hours at 0°C. The reaction was further stirred at room temperature for an additional hour. After aqueous workup, the residue was dried and dissolved in 30 ml ethanol. A 10% Pd (weight %) on carbon (0.5 g) catalyst was then added, and the mixture was stirred under a hydrogen atmosphere more than 12 hours. The catalyst was removed over Celite, and the residue was further purified by silica gel column chromatography, eluted with chloroform:methanol:acetic acid 98:2:1. The purification yielded 0.302 g of a white compound (49% yield). ¹H NMR (400 MHz DMSO): d6; 1.15-1.20 (t, 3H), 4.10-4.32 (m, 6H), 4.87-4.89 (m, 1H), 5.66 (s, 1H), 7.33-7.91 (m, 8H, aromatic). ¹³C NMR (100 MHz, DMSO d6): 14.06, 46.58, 54.62, 60.97, 64.32, 66.02, 120.15, 125.32, 127.13, 127.69, 128.28. δ ³¹P NMR (DMSO d6): δ 0.12 (s). δ ³¹P NMR ((CD3)₂CO+CD₃OD): δ 0.66 (s). MALDI-TOF observed m/z, M+K⁺+H⁺, M+2Na+, M+Na⁺+K⁺, M+3Na⁺: 475.01, 481.1, 497.2 and 503.4, respectively; DESI-MS, M, M+H⁺, M+2H⁺, M+3H⁺: 435.2, 436.12, 437.1 and 438.12, respectively.

Polymer preparation

The pY-MIP and pS-MIP were prepared following a similar protocol to that previously published.² In brief, the pS-MIP was prepared in the following manner. The bis-pentamethylpiperidine salt of Fmoc-pSer-OEt (template) (0.5 mmol), urea monomer (1

mmol), acrylamide (1 mmol) and pentaerythritol triacrylate PETA (13.3 mmol) were dissolved in tetrahydrofuran THF (5.6 ml) and the initiator azobis(2,4-dimethyl)valeronitrile (ABDV) (1% w/w of total monomers) was added to the solution. The solution was then transferred to a glass ampoule at 0°C, and the solution was purged with dry nitrogen for 10 minutes. The tubes were then flame-sealed while kept on ice, and polymerization was initiated by placing the tubes in a temperature-controlled water bath pre-set at 50°C. After 24 hours, the tubes were broken and the polymers were lightly crushed. They were thereafter washed 3 times with MeOH and extracted in a soxhlet apparatus with 1:1 methanol: 0.1 N HCl for 24 hours. This step was followed by further crushing and sieving, and the fraction from 36-50 µm was used for packing HPLC columns. A non-imprinted polymer (NIP) was prepared in the same manner as described above, but with the omission of the template molecule from the prepolymerization solution. The polymers were characterized by nitrogen sorption analysis, swelling ratio measurement and by scanning electron microscopy (Supplementary Fig. 12) as reported elsewhere²⁻⁴.

HPLC Evaluation

The 36-50-µm particle size fraction was sedimented repeatedly in 80:20 (v:v) MeOH:water to remove fine particles, and the slurry was then packed into HPLC columns (30 x 4.6 mm) using the same mixture as the pushing solvent. Subsequent analyses of the polymers were performed using an Agilent HP1050 or HP1100 system equipped with a diode array-UV detector and a workstation. Analyte detection was performed at 260 nm with a flow rate of 0.5 ml/min washing solution after injecting 5 µl of analyte stock solutions. The retention factor (k) was calculated as $k = (t-t_0)/t_0$, where t is retention time of the analyte and t_0 = retention of the void marker (acetone). Prior to each run, the columns were washed with MeOH (supplemented with 0.1% TFA) for at least 2 hours and equilibrated for at least 20 minutes with the mobile phase.

References

- Perich J.W., Alewood P.F., Johns R.B. Synthesis of casein-related peptides and phosphopeptides. VII. The efficient synthesis of ser(P)-containing peptides by the use of Boc-SerPO₃R₂)-OH derivatives. *Aust. J. Chem.* 44 (2), 233-252 (1991).
- Shinde, S., Bunschoten, A., Kruijtzer, J.A.W., Liskamp, R.M.J. & Sellergren, B. Imprinted polymers displaying high affinity for sulfated protein fragments. *Angew. Chem. Int. Ed. Engl.* 51, 8326-8329 (2012).
- 3. Helling, S. *et al.* Ultratrace enrichment of tyrosine phosphorylated peptides on an imprinted polymer. *Anal. Chem.* **83**, 1862-1865 (2011).

4. Emgenbroich, M. *et al.* A phosphotyrosine-imprinted polymer receptor for the recognition of tyrosine phosphorylated peptides. *Chemistry.* **14**, 9516-9529 (2008)

Supplementary Figures

Supplementary Fig. 1 | Synthesis of the template Fmoc-pSer-OEt. [I] Di-benzyl-N,N-diethylphosphoramidate/tetrazole. [II] t-BuOOH, 0 °C. [III] H₂/ 10% Pd on charcoal.

Supplementary Fig. 2 | Proposed prepolymerization complex of bis pentamethyl piperidinium of Fmoc-pSer-OEt (2) and urea monomer (1) in tetrahydrofuran.

Supplementary Fig. 3 | HPLC binding test of the phosphoserine derivative Fmoc-pSer-OH on MIP and NIP polymers in acidic buffered mobile phase (MeCN:water:TFA=95:5:0.1). Injection volume: 5 µl; flow rate: 0.5 ml/min; DAD: 254 nm.

Supplementary Fig. 4: | Retention factor (k) of Fmoc-protected amino acids injected onto pS- and pY- MIP and NIP columns using different mobile phases. (A) (MeCN:water:TFA=95:5:0.1) (B) (MeCN:water:TFA = 50:50:0.1). Injection volume: 5 μ l; flow rate: 0.5 ml/min; DAD: 254 nm.

Supplementary Fig. 5 | MALDI-TOF/TOF-MS spectra of pS-MIP-treated SPE fractions of 2 pmol SpS peptide spiked into 1.68 μ g digested mouse brain lysate. (a) Elution fraction; (b) flow-through fraction. The presence of SpS indicates overloading.

Supplementary Fig. 6 | MALDI-TOF/TOF-MS spectra of pS-MIP SPE fractions of 1 pmol SpS peptide spiked into 1.68 μ g digested mouse brain lysate. (a) Elution fraction; (b) flow-through fraction.

Supplementary Fig. 7 | MALDI-TOF/TOF-MS/MS spectra for confirming the identity of SpS m/z=1155.556, as assisted by theoretical fragment interpretation and by reference examinations using MS/MS fragmentation of the pure peptide. (a) MS/MS fragmentation of the standard peptide precursor ion. (b) MS/MS fragmentation of the precursor ion in the elution fraction of the 2 pmol spiking experiment.

Supplementary Fig. 8 | NanoLC-ESI-MS/MS spectrum of the pS-MIP elution fraction after loading a sample with 100 fmol of SpS peptide spiked into 1.68 μ g of mouse brain lysate. SpS:lysate = 6.8:10,000 (w/w).

Supplementary Fig. 9 | NanoLC-ESI-MS/MS spectrum of the pS-MIP elution fraction after loading a sample with 50 fmol SpS peptide spiked into 1.68 μ g mouse brain lysate. SpS:lysate = 3.4:10,000 (w/w).

Supplementary Fig. 10 | NanoLC-ESI-MS/MS spectrum of the pS-MIP elution fraction after loading a sample with 10 fmol SpS peptide spiked into 1.68 μ g mouse brain lysate. SpS:lysate = 6.8:100,000 (w/w).

Supplementary Fig. 11 | Representative chromatogram after strong cation exchange (SCX) chromatography of tryptically digested HEK 293T cell lysates. The fraction eluting between 4 and 40 minutes was collected and used for subsequent pS-MIP SPE or for direct determination of the phosphopeptide content.

Supplementary Fig. 12 | Scanning electron micrographs (SEM) of the pS-MIP (A, B), pY-MIP (C, D) and nonimprinted polymer NIP (E, F) at 1000x (A, C, E) and 30000x (B, D, F) magnification. BET specific surface areas of the polymers: pY-MIP: 23 m²/g; pS-MIP: 11 m²/g. Swelling ratio in MeCN/water: 95/5: pY-MIP: 1.72; pS-MIP: 1.33; NIP: 1.66.

Supplementary Table 1 | Tyrosine- and serine-containing model peptides used to probe phosphopeptide selectivity by SPE using pY-MIPs and/or pS-MIPs.

Peptide Sequence VIL GpS PAHR	Abbreviation GpS	[<u>M+H]⁺¹</u> 1029.5241
DRVYIHPF	Y	1046.5418
DRV pS IHPF	pS	1050.4768
GADDSYYTAR	YY	1118.475
DRV pY IHPF	рΥ	1126.5081
AVP S PPPA pS PR	SpS	1155.5558
GADDS YpY TAR	ҮрҮ	1198.4412
GADDS pYpY TAR	рҮрҮ	1278.4076
WWG S GP S G S GG S GGGK	4S	1420.624
WWG S GP pS G S GG pS GGGK	2S2pS	1580.5567
TRDI Y ETD YY RK	3Y	1622.7809
TRDI pY ETD pYpY RK	ЗрҮ	1862.6799

Supplementary Table 2 | Motif-X result for pS-MIP- and TiO₂-specific phosphopeptides using a motif length of 7, occurrences of 20, a S central residue and significance of 0.0005.

Dataset	Motif	Motif	FG	FG size	BG	BG size	Fold	% FG
name		score	matches	at start	matches	at start	increase	explained
				of step		of step		
pS-MIP	SP	4.92	114	219	196	519	1.38	52
TIO ₂	SE	3.39	95	213	173	519	1.34	45
TIO ₂	SE	3.72	22	118	29	346	2.22	10

Supplementary Table 3 | \mathcal{X}^2 -testing ((FG/BG) versus (motif matches/motif does not match)) for all three motifs depicted in Supplementary Table 2. Counts were taken directly from Supplementary Table 2.

	Motif match	No motif match
FG (pS-MIP),SP	114	105
BG (all),SP	196	323
	$p_{yates} = 0.04\%$	$p_{FDR_{adjusted}} = 0.13\%$
FG (TIO ₂),SE	95	118
BG (all)SE	173	346
	$p_{yates} = 0.53\%$	$p_{FDR_{adjusted}} = 0.53\%$
FG (TIO ₂),SE	22	96
BG (all),SE	29	317
	$p_{vates} = 0.36\%$	$p_{FDR_{adjusted}} = 0.53\%$

Supplementary Table 4 | Repeatable nanoLC-ESI-MS/MS-identified phosphopeptides present in all pS-MIP and TiO₂ SPE experiments.

Sequence	Accession	PSM	Modification	PhosphoRS 3.1 Site probabilities*	lon score [§]	[M+H] ⁺¹
SSSPAPADIAQTVQEDLR	Q13283	69	S3(Phosp)	S(1): 0.4; S(2): 0.4; S(3): 99.2; T(12): 0.0	94	1964.89702
SASSDTSEELNSQDSPPK	O14745	47	S3(Phosp)	S(1): 0.4; S(3): 99.6; S(4): 0.0; T(6): 0.0; S(7): 0.0; S(12): 0.0; S(15): 0.0	113	1958.78569
EGEEPTVYSDEEEPKDESAR	O00264	45	S9(Phosp)	T(6): 0.0; Y(8): 0.0; S(9): 100.0; S(18): 0.0	49	2375.9395
HTGPNSPDTANDGFVR	P31943;P55795	44	S6(Phosp)	T(2): 0.0; S(6): 100.0; T(9): 0.0	81	1764.73381
FASDDEHDEHDENGATGPVK	P05455	39	S3(Phosp)	S(3): 100.0; T(16): 0.0	86	2249.8604
ESEDKPEIEDVGSDEEEEKK	P07900	36	S13(Phosp)	S(2): 0.0; S(13): 100.0	55	2400.98223
YGLQDSDEEEEEHPSK	P52948	32	S6(Phosp)	Y(1): 0.0; S(6): 100.0; S(15): 0.0	69	1971.74504
KPVTVSPTTPTSPTEGEAS	Q9Y6G9	32	S12(Phosp)	T(4): 0.0; S(6): 0.0; T(8): 0.0; T(9): 0.0; T(11): 0.0; S(12): 99.4; T(14): 0.6; S(19): 0.0	40	1965.90679
FEEESKEPVADEEEEDSDDDVEPITEFR	P54105	32	S17(Phosp)	S(5): 0.0; S(17): 100.0; T(25): 0.0	107	3394.35385
ESEDKPEIEDVGSDEEEEK	P07900	31	S13(Phosp)	S(2): 0.0; S(13): 100.0	48	2272.8897
NKPGPNIESGNEDDDASFK	O60841	30	S9(Phosp)	S(9): 100.0; S(17): 0.0	47	2113.87139
GNSRPGTPSAEGGSTSSTLR	P35269	25	S3(Phosp); T7(Phosp)	S(3): 100.0; T(7): 100.0; S(9): 0.0; S(14): 0.0; T(15): 0.0; S(16): 0.0; S(17): 0.0; T(18): 0.0	70	2078.85624
VFDDESDEKEDEEYADEK	O43719	23	S6(Phosp)	S(6): 100.0; Y(14): 0.0	91	2271.83306
FNDSEGDDTEETEDYR	Q9NYF8	21	S4(Phosp)	S(4): 100.0; T(9): 0.0; T(12): 0.0; Y(15): 0.0	112	2001.68633
SPVSTRPLPSASQK	Q8ND56	21	S1(Phosp)	S(1): 100.0; S(4): 0.0; T(5): 0.0; S(10): 0.0; S(12): 0.0	46	1534.76201
DHSPTPSVFNSDEER	Q6UN15	19	S3(Phosp)	S(3): 100.0; T(5): 0.0; S(7): 0.0; S(11): 0.0	61	1796.71306
SPVPSAFSDQSR	Q9UQ35	14	S1(Phosp)	S(1): 100.0; S(5): 0.0; S(8): 0.0; S(11): 0.0	50	1357.57854

PSM: peptide spectra match; *: probabilities of amino acid phosphorylation in %; §: maximal ion score of the Mascot search algorithm

Supplementary Table 5 | NanoLC-ESI-MS/MS-identified phosphopeptides present in a human CSF sample treated with SCX+pS-MIP, compared with the TiO₂ approach.³

Sequence	found by TiO ₂	Protein name	Protein Group Accessions	Modifications
GREEHYEEEEEEEDGAAVAEK	no	Golgi integral membrane protein 4	O00461	Y6(Phosp)
VTEPISAESGEQVER	yes	Apolipoprotein L1	O14791	T2(Phosp)
EALQSEEDEEVKEEDTEQKR	yes	Extracellular matrix protein 2	O94769	S5(Phosp)
EALQSEEDEEVKEEDTEQK	yes		O94769	S5(Phosp)
LVGGPMDASVEEEGVR	yes	Cystein C	P01034	M6(Oxidation); S9(Phosp)
VYACEVTHQGLSSPVTK	no	Ig kappa chain C region	P01834	Y2(Phosp)
AATVGSLAGQPLQER	no	Apolipoprotein E	P02649	T3(Phosp)
KVPQVSTPTLVEVSR	no	Serum Albumin	P02768	T7(Phosp)
ERADEPQWSLYPSDSQVSEEVK	no	Secretogranin-1	P05060	S13(Phosp)
GHPQEESEESNVSMASLGEK	yes		P05060	S7(Phosp); M14(Oxidation)
GEDSSEEKHLEEPGETQNAFLNER	yes		P05060	S5(Phosp)
GEDSSEEKHLEEPGETQNAFLNER	yes		P05060	S4(Phosp); S5(Phosp)
SAEFPDFYDSEEPVSTHQEAENEKDR	yes		P05060	S1(Phosp)
SQEESEEGEEDATSEVDKRR	yes		P05060	S1(Phosp)
SQEESEEGEEDATSEVDKR	yes		P05060	S5(Phosp)
VESLEQEAANER	yes	Amyloid beta A4	P05067	S3(Phosp)

KANDESNEHSDVIDSQELSK	no	Osteopontin	P10451	S6(Phosp)
ANDESNEHSDVIDSQELSK	yes		P10451	S5(Phosp); S14(Phosp)
ANDESNEHSDVIDSQELSK	yes		P10451	S5(Phosp)
ANDESNEHSDVIDSQELSKVSR	yes		P10451	S14(Phosp)
DSYETSQLDDQSAETHSHK	yes		P10451	S2(Phosp)
AIPVAQDLNAPSDWDSR	yes		P10451	S16(Phosp)
QNLLAPQNAVSSEETNDFKQETLPSK	yes		P10451	S11(Phosp)
QNLLAPQNAVSSEETNDFKQETLPSK	yes		P10451	S11(Phosp); S12(Phosp)
QNLLAPQNAVSSEETNDFK	yes		P10451	S12(Phosp)
EDSLEAGLPLQVR	no	Chromogranin-A	P10645	S3(Phosp)
VTTVASHTSDSDVPSGVTEVVVK	no	Clusterin	P10909	S11(Phosp)
EILSVDCSTNNPSQAK	no		P10909	S4(Phosp)
LEPEDEESDADYDYQNR	no	Coagulation Factor	P12259	S8(Phosp)
QQAHKEESSPDYNPYQGVSVPLQQK	no	Secretogranin-2	P13521	S8(Phosp)
EESSPDYNPYQGVSVPLQQK	no		P13521	S4(Phosp)
IESQTQEEVRDSKENIEK	yes		P13521	S12(Phosp)
QEVNPVRQEIESETTSEEQIQEEK	yes	Versican core protein	P13611	T15(Phosp)
ESAEVEEIVFPR	yes	Cadherin-2	P19022	S2(Phosp)
SLPGESEEMMEEVDQVTLYSYK	no	Inter-alpha-trypsin inhibitor heavy chain H2	P19823	S6(Phosp); M9(Oxidation); M10(Oxidation)
DLYANTVLSGGTTMYPGIADR	no	Actin, cytoplasmic	P60709	T13(Phosp)
AQRLSQETEALGR	no	Nucleobindin-1	Q02818	S5(Phosp)

EHANSKQEEDNTQSDDILEESDQPTQVSK	no	SPARC-like protein 1	Q14515	S14(Phosp)
HSASDDYFIPSQAFLEAER	no		Q14515	S11(Phosp)
MQEDEFDQGNQEQEDNSNAEMEEENASNVNK	yes		Q14515	M1(Oxidation); S17(Phosp); M21(Oxidation)
DQGNQEQDPNISNGEEEEEKEPGEVGTHNDNQER	yes		Q14515	S12(Phosp)
FLDEVQAYSNVNK	no	Rho GTPase-activating protein 22	Q7Z5H3	Y8(Phosp); S9(Phosp)
LRGEDDYNMDENEAESETDKQAALAGNDR	no	Golgi integral membrane protein 1	Q8NBJ4	M9(Oxidation); S16(Phosp)
ELSAERPLNEQIAEAEEDK	yes	Secretogranin-3	Q8WXD2	S3(Phosp)
ELSAERPLNEQIAEAEEDKIK	yes		Q8WXD2	S3(Phosp)
SEHPESSLSSEEETAGVENVK	no	Receptor-type tyrosine-protein phosphatase N2	Q92932	S10(Phosp)