Supplemental Figures and Tables Summary

Figure S1 shows a lack of apoptosis by several methods: western blots detecting cleaved-Caspase 3 and cleaved-PARP, and TUNEL staining for nicked DNA. Figure S2 shows representative gene clusters from DAVID analysis of genes down-regulated in KD-VEGF (blood vessel, Golgi) as well as a "Foxo1 target" cluster assembled from the literature. Figure S3 shows microarray validation and changes in Foxo1 target genes in KD-VEGF conditions by RT-PCR. Figure S4 investigates possible upstream signaling pathways that may contribute to Foxo1 stability. Table S1 and S2 provide a detailed list of the top ontological clusters derived from the list of genes most changed between KD-VEGF and KD-NT HUVECs in an RNA microarray. Table S3 and S4 provide the top clusters derived from the list of genes responding to Foxo1 rescue following "Expression Pattern 1" (Table S3) and "Expression Pattern 2" (Table S4).

Supplemental Figure 1. Apoptosis was not detected in KD-VEGF HUVECs. (A) Total and cleaved Caspase 3 were detected by western blot in 25ug of protein lysate from KD-VEGF and KD-NT HUVECs. (B) Total and cleaved PARP were analyzed as above. Positive and negative apoptosis controls were provided by non-treated and staurosporine (1hr 1 μ M) treated HUVECs. (C) TUNEL staining was performed on KD-VEGF and KD-NT cells. Out of approximately 50,000 cells, 4 were found to be TUNEL positive in the KD-VEGF condition, while none were TUNEL positive in KD-NT. Nuclease treatment was used to create nicked DNA as a positive control. Error bars mean +/- SD, *, P<0.05; **, P<0.005

Supplemental Figure 2. Autocrine VEGF is required to maintain endothelial identity, mitochondrial and Golgi transcriptome. HUVECs were transfected with siRNA targeting VEGF and total RNA was isolated on day 4 after first transfection (n=3). Gene expression profile was assessed with Illumina human gene chip expression assay. GO clusters extracted from genes significantly up- and down-regulated in KD-VEGF analyzed by DAVID. Heatmaps highlight a subset of two down-regulated GO clusters: (A) blood vessel and (B) Golgi. (C) Select Foxo1 targets significantly up- or down-regulated.

Supplemental Figure 3. Microarray validation and further analysis of Foxo1 target genes (A) A significant decrease in VEGF levels was maintained in double-knockdown conditions. Two of the top genes found (B) increased (CCL23 and NDRG4) and (C) decreased (ESM1 and TAGLN) in the KD-VEGF condition of the microarray were validated by RT-PCR. (D) RT-PCR analysis of several genes of interest showed that decrease in VEGF levels was maintained over several days, Foxo1 levels remained largely unchanged, and VEGFR-2 levels were drastically increased. Several previously-described Foxo1 targets were found to be (E) increased as expected in the KD-VEGF condition by RT-PCR (CITED2, SOD2, SEPP1) or (F) found to be unchanged or regulated contrary to previous reports (SPRY2, MMP7, DCN, ID2, CCND1, CCNB2). Error bars mean +/- SD, *, P<0.05; **, P<0.005

Supplemental Figure 4. No changes observed in signaling pathways upstream of Foxo1 or in phospho-Foxo1 levels. Western blots investigating the phospo- activation status of (A) Akt, (B) JNK and (C) AMPK were performed, revealing no significant differences between KD-VEGF and KD-NT conditions. (D) Western blots were performed and quantified showing phospho-Foxo1 status was unchanged relative to total Foxo1 protein in KD-NT and KD-VEGF HUVECs.

Supplemental Figure 1: Apoptosis was not detected in KD-VEGF HUVECs

(A) Total and cleaved Caspase 3 were detected by western blot in 25ug of protein lysate from KD-VEGF and KD-Scr HUVECs. (B) Total and cleaved PARP were analyzed as above. Positive and negative apoptosis controls were provided by non-treated and staurosporine (1hr 1uM) treated HUVECs.
(C) TUNEL staining was performed on KD-VEGF and KD-Scr cells. Out of approximately 50,000 cells, 4 were found to be TUNEL positive in the KD-VEGF condition, while none were TUNEL positive in KD-Scr. Nuclease treatment was used to create nicked DNA as a positive control.

Supplemental Figure 2: Autocrine VEGF is required to maintain endothelial identity, mitochondrial and Golgi transcriptome

HUVECs were transfected with siRNA targeting VEGF and total RNA was isolated on day 4 after first transfection (n=3). Gene expression profile was assessed with Illumina human gene chip expression assay. GO clusters extracted from genes significantly upand down-regulated in KD-VEGF analyzed by DAVID. Heatmaps highlight a subset of two down-regulated GO clusters: (A) blood vessel and (B) Golgi. (C) Select Foxo1 targets significantly up- or down-regulated.

Supplemental Figure 3: Microarray validation and further analysis of Foxo1 target genes

(A) A significant decrease in VEGF levels was maintained in double-knockdown conditions. Two of the top genes found (B) increased (CCL23 and NDRG4) and (C) decreased (ESM1 and TAGLN) in the KD-VEGF condition of the microarray were validated by RT-PCR. (D) RT-PCR analysis of several genes of interest showed that decrease in VEGF levels was maintained over several days, Foxo1 levels remained largely unchanged, and VEGFR-2 levels were drastically increased. Several previously-described Foxo1 targets were found to be (E) increased as expected in the KD-VEGF condition by RT-PCR (CITED2, SOD2, SEPP1) or (F) found to be unchanged or regulated contrary to previous reports (SPRY2, MMP7, DCN, ID2, CCND1, CCNB2).

Supplemental Figure 4. No changes observed in signaling pathways upstream of Foxo1 or in phospho-Foxo1 levels. Western blots investigating the phospo- activation status of (A) Akt, (B) JNK and (C) AMPK were performed, revealing no significant differences between KD-VEGF and KD-NT conditions. (D) Western blots were performed and quantified showing phospho-Foxo1 status was unchanged relative to total Foxo1 protein in KD-NT and KD-VEGF HUVECs.

GO Cluster	Term	Count	Benjamini	Fold Enrichment
Cluster 1 – Enrichment Score: 9.02				
	Golgi apparatus	128	8.53E-09	1.78
	GO:0005794-Golgi apparatus	175	4.96E-07	1.54
	GO:0044431-Golgi apparatus part	75	1.88E-06	1.96
Cluster 2 – E	nrichment Score: 6.88			
	GO:0001568-blood vessel development	65	3.66E-05	2.08
	GO:0001944-vasculature development	65	5.01E-05	2.03
	GO:0048514-blood vessel morphogenesis	54	8.71E-04	2.01
	GO:001525-angiogenesis	41	2.17E-03	2.17
Cluster 3 – E	nrichment Score: 6.21			
	endoplasmic reticulum	146	2.91E-08	1.67
	GO:0005783-endoplasmic reticulum	179	2.75E-05	1.43
	GO:0044432-endoplasmic reticulum part	64	6.67E-02	1.42
Cluster 4 – E	nrichment Score: 5.12			
	IPR001849:Pleckstrin homology	65	2.11E-03	1.86
	domain:PH	56	2.59E-03	1.92
	SM00233:PH	65	1.79E-03	1.76
	IPR011993:Pleckstrin homology-type	60	2.22E-01	1.57
Cluster 5 – E	nrichment Score: 4.07			
	nucleotide binding	278	5.93E-06	1.35
	atp-binding	226	8.02E-06	1.39
	transferase	232	3.14E-05	1.36
	kinase	129	3.80E-05	1.53
	GO:0000166-nucleotide binding	356	4.81E-03	1.24
	GO:0001882-nucleoside binding	261	1.56E.02	1.26
	GO:0001883-purine nucleoside binding	259	1.18E-02	1.26
	GO:0030554-adenyl nucleotide binding	255	1.05E-02	1.26
	GO:0005524-ATP binding	240	1.12E-02	1.27
	GO:0032559-adenyl ribonucleotide binding	242	1.24E-02	1.26
	GO:0006793-phosphorus metabolic process	165	2.43E-02	1.33
	GO:0006796-phosphate metabolic process	165	2.43E-02	1.33
	GO:0004672-protein kinase activity	111	1.60E-02	1.43
	binding site: ATP	98	6.76E-02	1.47
	GO:0017076-purine nucleotide binding	299	1.42E-02	1.21
	GO:0032555-purine ribonucleotide binding	286	1.72E-02	1.21
	IPR017441:Protein kinase, ATP binding site	85	1.72E-02	1.48
	active site: proton acceptor	113	2.07E-01	1.40
	domain: Protein kinase	84	1.35E-01	1.46
	IPR000719:Protein kinase, core	86	1.90E-01	1.43
	IPR002290:Serine/threonine protein kinase	52	2.30E-01	1.59
	Nucleotide phosphate-binding region: ATP	152	2.63E-01	1.28
	serine/threonine-protein kinase	69	3.41E-01	1.48
	GO:0016310-phosphorylation	132	2.82E-02	1.29
	GO:0006468-protein amino acid phosphorylation	112	1.30E-01	1.32
	GO:0004674-protein serine/threonine kinase	77	1.58E-01	1.39
	SM00220:S TKc	52	1.15E-01	1.51
	IPR008271: Serine/threonine protein kinase	64	2.05E-01	1.43
	IPR017442: Serine/threonine protein kinase-rela	64	4.99E-01	1.41

Table S1 – DAVID analysis of genes significantly downregulated in KD-VEGF

Table S2 – DAVID analysis of genes significantly upregulated in KD-VEGF

GO Cluster	Term	Count	Benjamini	Fold Enrichment	
Cluster 1 – Enrichment Score: 18.55					
	Mitochondrion	200	3.39E-21	2.03	
	GO:0005739-mitochondrion	243	1.36E-20	1.85	
	transit peptide	125	4.79E-16	2.22	
	transit peptide: Mitochondrion	123	2.66E-14	2.22	
	GO:0044429-mitochondrial part	134	3.25E-11	1.86	
Cluster 2 – E	nrichment Score: 13.68				
	GO:0031974-membrane enclosed lumen	352	2.15E-18	1.57	
	GO:0070013-intracellular organelle lumen	339	4.91E-18	1.57	
	GO:0043233-organelle lumen	342	2.61E-17	1.55	
	GO:0031981-nuclear lumen	272	7.67E-13	1.55	
	GO:0005654-nucleoplasm	175	6.55E-10	1.64	
	GO:0005730-nucleolus	131	6.49E-06	1.55	
	GO:0044451-nucleoplasm part	106	3.60E-05	1.58	
Cluster 3 – E	nrichment Score: 8.86				
	GO:0030529-ribonucleoprotein complex	142	1.20E-19	2.28	
	ribonucleoprotein	90	4.56E-17	2.73	
	ribosomal protein	65	9.91E-14	2.92	
	GO:0006412 – translation	95	3.14E-11	2.27	
	GO:0005840 – ribosome	69	1.55E-12	2.65	
	GO:0033279-ribosomal subunit	48	3.28E-11	3.10	
	GO:0003735-structural constituent of ribosome	57	4.70E-10	2.76	
	protein biosynthesis	48	1.87E-05	2.16	
	GO:0015934-large ribosomal subunit	25	1.30E-05	3.08	
	hsa03010: ribosome	30	3.46E-04	2.53	
	GO:0006414-translational elongation	31	6.85E-04	2.43	
	GO:0022626-cystolic ribosome	25	4.13E-04	2.55	
	GO:0044445–cystolic part	37	9.77E-04	2.01	
	Ribosome	22	1.81E-03	2.55	
	GO:0022625-cystolic large ribosomal subunit	14	5.09E-03	3.04	
	GO:0022627-cystolic small ribosomal subunit	11	1.71E-01	2.27	
	GO:005198-structural molecule activity	89	8.50E-01	1.14	
Cluster 4 – E	nrichment Score: 8.85				
	GO:0000278-mitotic cell cycle	97	2.15E-09	2.07	
	GO:0007049-cell cycle	167	4.24E-08	1.65	
	Mitosis	54	1.87E-08	2.50	
	GO:0022403-cell cycle phase	98	3.96E-07	1.87	
	cell cycle	101	5.33E-08	1.85	
	GO:0022402-cell cycle process	123	4.49E-07	1.72	
	GO:0048285-organelle fission	64	4.05E-07	2.21	
	GO:0000087-M phase of mitotic cell cycle	62	1.03E-06	2.19	
	Cell division	66	2.72E-07	2.11	
	GO:0000279-M phase	80	2.70E-06	1.92	
	GO:0007067-mitosis	60	2.91E-06	2.16	
	GO:0000280-nuclear division	60	2.91E-06	2.16	
	GO:0051301-cell division	68	2.25E-04	1.82	

Supplemental Table S3 Domigan et al, 2014

Table S3 – DAVID analysis of genes following Expression Pattern 1

GO Cluster	Term	Count	Benjamini	Fold Enrichment
Cluster 1 – E	nrichment Score: 3.67			
	GO:0022402-cell cycle process	43	6.85E-03	2.17
	GO:0022403-cell cycle phase	34	9.64E-03	2.34
	GO:0000278-mitotic cell cycle	31	1.19E-02	2.39
	GO:0007049-cell cycle	50	2.16E-02	1.84
	GO:0000279-M phase	27	3.91E-02	2.34
	GO:0000087-M phase of mitotic cell cycle	20	9.66E-02	2.55
	GO:0048285-organelle fission	20	1.12E-01	2.49
	GO:0000280 nuclear division	19	1.59E-01	2.46
	GO:0007067-mitosis	19	1.59E-01	2.46
	Cell cycle	30	4.49E-02	1.97
	GO:0051301-cell division	22	2.74E-01	2.13
	cell division	19	1.16E-01	2.18
	mitosis	15	1.07E-01	2.48
Cluster 2 – E	nrichment Score: 3.10	10	110/2 01	
	ribonucleoprotein	27	4.60E-04	2.93
	ribosomal protein	19	5.86E-03	3.06
	GO:0005840-ribosome	20	1 58E-02	2.75
	GO:0030529-ribonucleoprotein complex	34	2 37E-02	1.95
	GO:0033279-ribosomal subunit	14	2.37E-02	3 23
	GO:0003735-structural constituent of ribosome	16	4 19E-01	2 75
	GO:0005755-structural constituent of moosome $GO:0006412$ -translation	23	3.17E-01	1.98
	hsa03010:Ribosome	8	9.17E-01 9.95E-01	2.24
	GO:0005198-structural molecule activity	23	9.93E-01	1.05
Cluster 3 – F	nrichment Score: 2 61	23	J.J+L-01	1.05
Cluster 5 – E	CO:0005730 mitochondrion	65	2 75E 02	1 77
	CO:0003739-mitochondrial part	03 42	2.75E-05 2.08E-03	2.08
	Mitochondrion	42	2.08E-03	2.08
	Transit poptida: mitachondrian	40	7.9E-02	1.74
	CO:0021000 organalla mambrana	57	7.01E-01 5.12E-02	1.93
	Transit poptido	37	5.12E-02	1.34
	CO:0021066 mitochondrial mambrana	30	J.01E-02	1.91
	CO:0005740 mitochondrial anyalana	25	1.07E-01	1.07
	CO:0003/40-mitochondrial lumon	20	1.01E-01	1.03
	GO.0031980-Initochondrial rumen	17	9.89E-02	2.21
	GO:0005/59-milochondriai matrix	17	9.89E-02	2.21
	GO:003196/-organelle envelope	33	1.68E-01	1.57
	GO:0005742 with a bandwin line and when a	33	1.6/E-01	1.5/
	GO:0005/43-mitochondrial inner membrane	17	4.22E-01	1.64
	GO:0019866-organelle inner membrane	1/	5.50E-01	1.53
	Mitochondrion inner membrane	11	6.46E-01	1.72
Cluster 4 – E	nrichment Score: 2.34	26	0.715.02	2.2.4
	GO:0051/26-regulation of cell cycle	26	8.71E-02	2.24
	GO:0010564-regulation of cell cycle process	12	2.96E-01	3.00
	GO:000/346-regulation of mitotic cell cycle	14	3.29E-01	2.63
	GO:0007093-mitotic cell cycle checkpoint	7	3.48E-01	4.65
	GO:0000075-cell cycle checkpoint	9	5.34E-01	2.82
	GO:0031575-G1/S transition checkpoint	3	9.15E-01	5.04
Cluster 5 – E	nrichment Score: 2.32	_		
	GO:0005761-mitochondrial ribosome	8	5.48E-02	4.92
	GO:0000313-organellar ribosome	8	5.48E-02	4.92
	GO:0005763-mitochodrial small ribosomal	4	2.35E-01	6.56

			Supplemental Table S3 Domigan et al, 2014
GO:0000314-organellar small ribosomal	4	2.35E-01	6.56

GO Cluster	Term	Count	Benjamini	Fold Enrichment	
Cluster 1 – Enrichment Score: 5.70					
	GO:0048514-blood vessel morphogenesis	23	1.00E-03	3.60	
	GO:0001568-blood vessel development	24	1.75E-03	3.23	
	GO:0001944-vasculature development	24	1.77E-03	3.15	
	GO:0001525-angiogenesis	17	5.94E-03	3.79	
Cluster 2 – Ei	nrichment Score: 4.33				
	GO:0016477-cell migration	24	5.16E-03	2.87	
	GO:0048870-cell motility	24	2.30E-02	2.58	
	GO:0051674-localization of cell	24	2.30E-02	2.58	
	GO:0006928-cell motion	31	3.71E-02	2.15	
Cluster 3 – Ei	richment Score: 2.23				
	hsa04360:Axon guidance	14	1.13E-01	2.94	
	domain: Sema	6	5.97E-01	6.50	
	IPR002165: Plexin	6	6.38E-01	6.36	
	IPR001627:Semaphorin/CD100 antigen	6	6.38E-01	6.36	
	IPR003659: Plexin/semaphorin/integrin	7	4.97E-01	5.11	
	SM00630:Sema	6	5.93E-01	5.60	
	SM00423:PSI	7	3.89E-01	4.50	
	IPR015943:WD40/YVTN repeat-like	15	9.47E-01	1.64	
	Domain:Ig-like C2-type	5	1.00E+00	1.63	
Cluster 4 – Ei	richment Score: 1.83				
	IPR013761:Sterile alpha motif-type	10	3.81E-01	4.27	
	IPR001660:Sterile alpha motif-SAM	9	8.11E-01	3.18	
	SM00454:SAM	9	6.85E-01	2.80	
	domain:SAM	7	9.59E-01	2.90	
	IPR011510:Sterile alpha motif homology 2	3	9.98E-01	2.40	
Cluster 5 – Enrichment Score: 1.74					
	GO:0030054-cell junction	26	7.19E-01	1.67	
	cell junction	21	3.46E-01	1.78	
	GO:0005911-cell-cell junction	12	6.30E-01	2.10	
Cluster 6 – Enrichment Score: 1.73					
	actin-binding	16	2.07E-01	2.19	
	GO:0008092-cytoskeletal protein binding	26	7.74E-01	1.67	
	GO:0015629-actin cytoskeleton	16	6.39E-01	1.97	
	GO:0003779-actin binding	16	9.44E-01	1.59	
Cluster 7 – Er	nrichment Score: 1.63				
	GO:0001667-ameboidal cell migration	6	6.73E-01	5.35	
	GO:0014032-neural crest cell development	5	7.91E-01	5.00	
	GO:0014033-neural crest cell differentiation	5	7.91E-01	5.00	
	GO:0060485-mesenchyme development	6	8.10E-01	3.81	
	GO:0001755 neural crest cell migration	4	8.08E-01	5.74	
	GO:0014031-mesenchymal cell development	5	8.54E-01	3.23	
	GO:0048762-mesenchymal cell differentiation	5	8.54E-01	3.23	

Table S4 – DAVID analysis of genes following Expression Pattern 2