Table of Contents

Materials and Methods
Experimental Data
Experimental Procedures and Compound Characterization
General procedure for the cross coupling between alcohols and phenols with PhenoFluor 5
Investigation of reaction conditions
1-(tert-Butyl) 2-methyl (2S,4S)-4-(4-fluorophenoxy)pyrrolidine-1,2-dicarboxylate (3a) 7
1-(<i>tert</i> -Butyl) 2-methyl (2 <i>S</i> ,4 <i>S</i>)-4-(4-(trifluoromethyl)phenoxy)pyrrolidine-1,2-dicarboxylate (3b)
1-tert-Butyl 2-methyl (2S,4S)-4-(4-methoxyphenoxy)pyrrolidine-1,2-dicarboxylate (3c) 8
1- <i>tert</i> -Butyl 2-methyl (2S,4S)-4-(2-methoxyphenoxy)pyrrolidine-1,2-dicarboxylate (3d)9
(2 <i>S</i> ,4 <i>S</i>)-1- <i>tert</i> -Butyl 2-methyl 4-((5-phenylpyridin-2-yl)oxy)pyrrolidine-1,2-dicarboxylate (3e)
(\pm) -2-((1-Benzoylpyrrolidin-3-yl)oxy)-5-methoxybenzaldehyde ((\pm)- 3f)
(±)-4-((1-Benzoylpyrrolidin-3-yl)oxy)benzaldehyde ((±)- 3 g)11
<i>tert</i> -Butyl 4-(4-acetylphenoxy)piperidine-1-carboxylate (3h)11
(±)- <i>tert</i> -Butyl 4-(3-(dimethylamino)phenoxy)azepane-1-carboxylate ((±)- 3i) 12
<i>tert</i> -Butyl 3-(4-iodophenoxy)azetidine-1-carboxylate (3j)12
tert-Butyl 3-(4-bromo-2-formylphenoxy)azetidine-1-carboxylate (3k)
tert-Butyl 3-(pyridin-3-yloxy)azetidine-1-carboxylate (31)
tert-Butyl 3-(pyridin-4-yloxy)azetidine-1-carboxylate (3m)
<i>tert</i> -Butyl 3-(4-aminophenoxy)azetidine-1-carboxylate (3n)15
tert-Butyl 3-(4-acetamidophenoxy)azetidine-1-carboxylate (30)15
<i>tert</i> -Butyl 3-(4-carbamoylphenoxy)azetidine-1-carboxylate (3p)16
1-(4-(Pent-4-yn-1-yloxy)phenyl)-1H-imidazole (3q)16
2-Methyl-4-(2,2,2-trifluoroethoxy)quinoline (3r)17
4-(3-(2,2,2-Trifluoroethoxy)phenyl)morpholine (3s)
(8 <i>R</i> ,9 <i>S</i> ,13 <i>S</i>)-13-Methyl-3-(2,2,2-trifluoroethoxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17H- cyclopenta[a]phenanthren-17-one (3t)
(<i>R</i>)-(6-(2,2,2-Trifluoroethoxy)quinolin-4-yl)((1 <i>R</i> ,2 <i>R</i> ,4 <i>R</i> ,5 <i>S</i>)-5-vinylquinuclidin-2-yl)methyl benzoate (3u)
(3aR,5R,6S,6aR)-5-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-(4-fluorophenoxy)-2,2
dimethyltetrahydrofuro[2,3-d][1,3]dioxole (3v)19

(S,E)-14-(((3aS,4S,5R,6aS)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethylted)	etrahydro-
3aH-cyclopenta[d][1,3]dioxol-4-yl)oxy)-16-hydroxy-3-methyl-3,4,5,6,9,10-hexah	•
benzo[c][1] oxacyclotetradecine-1,7(8H)-dione (3w)	
Phenyl 2,3,4,6-Tera-O-4-(2)-methylquinolinyl-α-D-galactose (3x)	
Phenyl 2,3,4,6-Tera-O-4-(2)-methylquinolinyl- β -D-galactose (3x') prepared by	
reaction	
Incorporation of ¹⁸ O from phenol to ether	
1- <i>tert</i> -Butyl 2-methyl (2 <i>S</i> ,4 <i>S</i>)-4-(phenoxy)pyrrolidine-1,2-dicarboxylate (3y)	
Tracking the reaction of 1a and 2a with ¹⁹ F NMR and HRMS (ESI-TOF)	
PhenoFluor mediated homo coupling of (4-fluorophenoxy)trimethylsilane (1a')	30
References	
Spectroscopic Data	
¹ H NMR of 3a (CDCl ₃ , 500 MHz, 23 °C)	
¹³ C NMR of 3a (CDCl ₃ , 125 MHz, 23 °C)	33
¹⁹ F NMR of 3a (CDCl ₃ , 375 MHz, 23 °C)	
¹ H NMR of 3b (CDCl ₃ , 500 MHz, 23 °C)	35
¹³ C NMR of 3b (CDCl ₃ , 125 MHz, 23 °C)	
¹⁹ F NMR of 3b (CDCl ₃ , 471 MHz, 23 °C)	37
¹ H NMR of 3c (CDCl ₃ , 500 MHz, 23 °C)	38
¹³ C NMR of 3c (CDCl ₃ , 125 MHz, 23 °C)	39
¹ H NMR of 3d (CDCl ₃ , 500 MHz, 23 °C)	40
¹³ C NMR of 3d (CDCl ₃ , 125 MHz, 23 °C)	
¹ H NMR of 3e (CDCl ₃ , 500 MHz, 23 °C)	
¹³ C NMR of 3e (CDCl ₃ , 125 MHz, 23 °C)	
¹ H NMR of (\pm)- 3f (CDCl ₃ , 500 MHz, 23 °C)	44
¹³ C NMR of (±)- 3f (CDCl ₃ , 125 MHz, 23 ℃)	45
¹ H NMR of (±)- 3 g (CDCl ₃ , 500 MHz, 23 °C)	46
¹³ C NMR of (±)- 3 g (CDCl ₃ , 125 MHz, 23 °C)	47
¹ H NMR of 3h (CDCl ₃ , 500 MHz, 23 °C)	
¹³ C NMR of 3h (CDCl ₃ , 125 MHz, 23 °C)	49
¹ H NMR of (\pm)- 3i (CDCl ₃ , 500 MHz, 23 °C)	50
¹³ C NMR of (±)- 3i (CDCl ₃ , 125 MHz, 23 °C)	51
¹ H NMR of 3j (CDCl ₃ , 500 MHz, 23 °C)	52
¹³ C NMR of 3j (CDCl ₃ , 125 MHz, 23 °C)	53

¹ H NMR of 3k (CDCl ₃ , 500 MHz, 23 °C)	. 54
¹³ C NMR of 3k (CDCl ₃ , 125 MHz, 23 °C)	. 55
¹ H NMR of 3 l (CDCl ₃ , 500 MHz, 23 °C)	. 56
¹³ C NMR of 31 (CDCl ₃ , 125 MHz, 23 °C)	. 57
¹ H NMR of 3m (CDCl ₃ , 500 MHz, 23 °C)	. 58
¹³ C NMR of 3m (CDCl ₃ , 125 MHz, 23 °C)	. 59
¹ H NMR of 3n (CDCl ₃ , 500 MHz, 23 °C)	. 60
¹³ C NMR of 3n (CDCl ₃ , 125 MHz, 23 °C)	. 61
¹ H NMR of 30 (CD ₃ OD, 600 MHz, 23 °C)	. 62
¹³ C NMR of 30 (CD ₃ OD, 125 MHz, 23 °C)	. 63
¹ H NMR of 3p (CDCl ₃ , 600 MHz, 23 °C)	. 64
¹³ C NMR of 3p (CDCl ₃ , 125 MHz, 23 °C)	. 65
¹ H NMR of 3q (CDCl ₃ , 500 MHz, 23 °C)	. 66
¹³ C NMR of 3q (CDCl ₃ , 125 MHz, 23 °C)	. 67
¹ H NMR of $3\mathbf{r}$ (CDCl ₃ , 500 MHz, 23 °C)	. 68
¹³ C NMR of 3r (CDCl ₃ , 125 MHz, 23 °C)	. 69
¹⁹ F NMR of 3r (CDCl ₃ , 282 MHz, 23 °C)	. 70
¹ H NMR of 3s (CDCl ₃ , 500 MHz, 23 °C)	. 71
¹³ C NMR of 3s (CDCl ₃ , 125 MHz, 23 °C)	. 72
¹⁹ F NMR of 3s (CDCl ₃ , 282 MHz, 23 °C)	. 73
¹ H NMR of 3t (CDCl ₃ , 500 MHz, 23 °C)	. 74
¹³ C NMR of 3t (CDCl ₃ , 125 MHz, 23 °C)	. 75
¹⁹ F NMR of 3t (CDCl ₃ , 282 MHz, 23 °C)	. 76
¹ H NMR of 3u (CDCl ₃ , 500 MHz, 23 °C)	. 77
¹³ C NMR of 3u (CDCl ₃ , 125 MHz, 23 °C)	. 78
¹⁹ F NMR of 3u (CDCl ₃ , 282 MHz, 23 °C)	. 79
¹ H NMR of 3v (CDCl ₃ , 500 MHz, 23 °C)	. 80
¹³ C NMR of 3v (CDCl ₃ , 125 MHz, 23 °C)	. 81
¹⁹ F NMR of 3v (CDCl ₃ , 282 MHz, 23 °C)	. 82
¹ H NMR of 3w (CDCl ₃ , 500 MHz, 23 °C)	. 83
¹³ C NMR of 3w (CDCl ₃ , 125 MHz, 23 °C)	. 84
¹ H NMR of 3x (CDCl ₃ , 500 MHz, 23 °C)	. 85
¹³ C NMR of 3x (CDCl ₃ , 125 MHz, 23 °C)	. 86
¹ H NMR of 3x ' (CDCl ₃ , 500 MHz, 23 °C)	. 87

¹³ C NMR of 3x ' (CDCl ₃ , 125 MHz, 23 °C)	88
¹³ H NMR of 3y (DMSO- <i>d6</i> , 500 MHz, 99 °C)	89
¹ H NMR of 3y (DMSO- <i>d6</i> , 500 MHz, 23 °C)	90

Materials and Methods

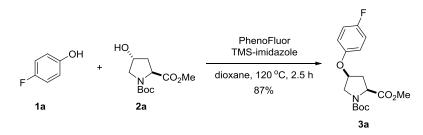
Reactions were carried out under N2 atmosphere unless otherwise noted. All air-sensitive compounds and reactions were performed under an inert atmosphere of nitrogen using standard Schlenk and glovebox techniques. All glassware was stored in an oven or flame-dried prior to use. Anhydrous solvents were obtained either by filtration through drying columns on an mBraun system (DCM, toluene), by distillation from CaH (MeCN, DMF) or Na/benzophenone (dioxane). Purified compounds were further dried under vacuum (0.01-0.2 Torr). Thin layer chromatography (TLC) was performed using EMD TLC plates pre-coated with 250 µm thickness silica gel 60 F_{254} plates and visualized by fluorescence quenching under UV light and KMnO₄ stain. Flash chromatography was performed using silica gel (230-400 mesh) purchased from Silicycle Inc. NMR spectra were recorded on either a Varian Unity/Inova 600 spectrometer operating at 600 MHz for ¹H acquisitions, a Varian Unity/Inova 500 spectrometer operating at 500 MHz and 125 MHz for ¹H and ¹³C acquisitions, respectively, a Varian Mercury 400 spectrometer operating at 400 HMz, and 375 MHz for ¹H, and ¹⁹F acquisitions, respectively, or Varian Mercury 300 spectrometer operating at 300 HMz, and 282 MHz for ¹H, and ¹⁹F acquisitions, respectively. Chemical shifts for ¹H and ¹³C acquisitions are reported in ppm with the solvent resonance as the internal standard (¹H: CDCl₃, δ 7.26; CD₃OD, δ 3.31; DMSO $d6, \delta 2.50$), (¹³C: CDCl₃, δ 77.16; CD₃OD, δ 49.15). Chemical shifts for ¹⁹F acquisitions are reported in ppm with CFCl₃ as the external standard (¹⁹F: CDCl₃, δ 0). Data are reported as follows: s = singlet, br = broad, d = doublet, t = triplet, q = quartet, m = multiplet; coupling constants in Hz; integration. All deuterated solvents were purchased from Cambridge Isotope Laboratories, dried over 4Å molecular sieves. High-resolution mass spectra were obtained using an Agilent ESI-TOF (6210) mass spectrometer or a Bruker q-TOF Maxis Impact mass spectrometer.

Experimental Data

Experimental Procedures and Compound Characterization

General procedure for the cross coupling between alcohols and phenols with PhenoFluor

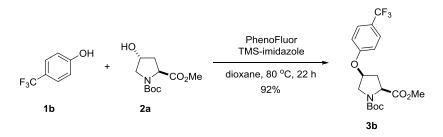
Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (128 mg, 0.300 mmol, 1.50 equiv), TMS-imidazole (85.0 mg, 88.9 μ L, 0.606 mmol, 3.03 equiv.), and 1.5 mL of dioxane at 23 °C. After 10 minutes, a phenol (0.300 mmol, 1.50 equiv.) in 1.0 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. An alcohol (0.200 mmol, 1.00 equiv.) in 1.5 mL dioxane was added and then the vial was sealed and heated at 80 °C for 24 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel.


Investigation of reaction conditions

Under N₂ atmosphere, to an oven-dried vial were added silvlation reagent **5**, 4-fluorophenol (**1a**), and 1.5 mL of solvent at 23 \mathbb{C} . After 5 minutes, PhenoFluor was added, and the mixture was stirred at 23 \mathbb{C} for 0.5 h. Alcohol **2a** in 1.5 mL solvent was added and then the vial was sealed and stirred at corresponding temperature for the time shown in the table below. Once cooled to 23 \mathbb{C} , PhCF₃ was added as internal standard to determine the yield by ¹⁹F NMR.

	F 1a	+ Note CO ₂ Me Boc 2a	PhenoFluor silylation age solvent, T	nt (5)	F O N Boc 3a	₂ Me
entry	4/5/1a/2a	5	solvent	T (°C)	t (h)	3a (%) ^a
1	1/1/1/1		dioxane	120	2.5	<1
2	1/2/1/1	TMSOTf	dioxane	120	2.5	<1
3	1/1/1/1	(TMS) ₂ NH	dioxane	120	2.5	18
4	1/2/1/1	ONTMS	dioxane	120	2.5	47
5	1/2/1/1	TMSNEt ₂	dioxane	120	2.5	50
6	1/2/1/1	TMS-imidazole	dioxane	120	2.5	60
7	1/2/1/1	TMS-imidazole	PhCH ₃	120	2.5	60
8	1/2/1/1	TMS-imidazole	CH_2CI_2	120	2.5	31
9	1/2/1/1	TMS-imidazole	CH ₃ CN	120	13	25
10	1/2/1/1	TMS-imidazole	DMF	120	13	28
11	2/4/1/2	TMS-imidazole	dioxane	120	2.5	97(87) ^b
12	2/4/1/2	TMS-imidazole	dioxane	60	23	97
13	2/4/1/2	TMS-imidazole	dioxane	rt	23	63
14	1.5/3/1.5/1	TMS-imidazole	dioxane	60	23	74(71) ^b

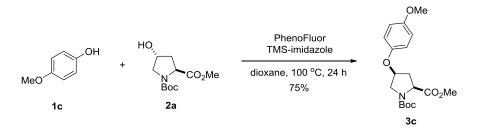
^a Yield was determined by ¹⁹F NMR with PhCF₃ (–62.6 ppm) as a internal standard. ^b Yield in the parentheses refers to the isolated yield.


1-(tert-Butyl) 2-methyl (2S,4S)-4-(4-fluorophenoxy)pyrrolidine-1,2-dicarboxylate (3a)

Under N₂ atmosphere, to an oven-dried vial were added TMS-imidazole (170 mg, 178 μ L, 1.21 mmol, 4.03 equiv.), 4-fluorophenol (**1a**) (33.6 mg, 0.300 mmol, 1.00 equiv.), and 3.0 mL of dioxane at 23 °C. After 5 minutes, PhenoFluor (256 mg, 0.600 mmol, 2.00 equiv) was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2a** (147 mg, 0.599 mmol, 2.00 equiv.) in 2.0 mL dioxane was added and then the vial was sealed and heated at 120 °C for 2.5 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 4:1 (v/v), to afford 88.7 mg of the title compound as an off-white solid (87% yield).

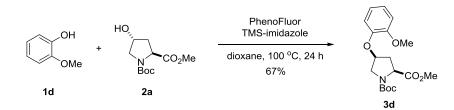
 $R_f = 0.30$ (hexane/EtOAc = 3/1 (v/v)). NMR Spectroscopy [mixture of 2 rotamers]: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.00–6.92 (m, 4H, major+minor), 6.78–6.72 (m, 4H, major+minor), 4.80 (brs, 2H, major+minor), 4.54 (dd, J = 9.0, 2.5 Hz, 1H, minor), 4.42 (t, J = 5.8 Hz, 1H, major). 3.78–3.62 (m, 10 H, major+minor), 2.48–2.32 (m, 4H, major+minor), 1.47 (s, 9H, minor), 1.43 (s, 9H, major). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 172.6, 172.2, 157.8 (d, J = 239.4 Hz), 154.3, 153.9, 152.8 (d, J = 2.5 Hz), 117.0 (d, J = 8.3 Hz), 116.2 (d, J = 23.3 Hz), 80.5, 80.4, 76.4, 75.4, 57.9, 57.6, 52.4, 52.2, 52.0, 51.6, 36.4, 35.4, 28.5, 28.4. ¹⁹F NMR (375 MHz, CDCl₃, 23 °C, δ): -122.77 (minor), -122.80 (major). HRMS (ESI-TOF) (m/z) calcd for C₁₇H₂₂FNNaO₅ [M+Na]⁺, 362.1374; found, 362.1376.

1-(*tert*-Butyl) 2-methyl (2*S*,4*S*)-4-(4-(trifluoromethyl)phenoxy)pyrrolidine-1,2-dicarboxylate (3b)



Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (256 mg, 0.600 mmol, 2.00 equiv), TMS-imidazole (170 mg, 178 μ L, 1.21 mmol, 4.03 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, 4-(trifluoromethyl)phenol (**1b**) (49.0 mg, 0.302 mmol, 1.00 equiv.) in 0.75 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2a** (147 mg, 0.599

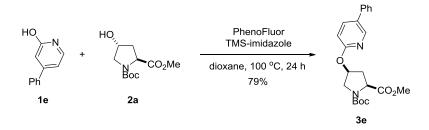
mmol, 2.00 equiv.) in 0.75 mL dioxane was added and then the vial was sealed and heated at 80 $^{\circ}$ C for 22 h. Once cooled to 23 $^{\circ}$ C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 6:1 (v/v), to afford 108 mg of the title compound as a colorless oil (92% yield).


 $R_f = 0.25$ (hexane/EtOAc = 4/1 (v/v)). NMR Spectroscopy [mixture of 2 rotamers]: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.53 (t, J = 7.3 Hz, 4H, major+minor), 6.88–6.83 (m, 4H, major+minor), 4.98–4.91 (2H, major+minor), 4.56 (dd, J = 8.1, 3.4 Hz, 1H, minor), 4.44 (dd, J = 8.7, 2.9 Hz, 1H, major), 3.84–3.64 (m, 10H, major+minor), 2.56–2.44 (m, 4H, major+minor), 1.48 (s, 9H, minor), 1.43 (s, 9H, major).¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 172.4, 171.9, 159.1, 154.1, 153.7, 127.1 (q, J = 4.1 Hz), 124.3 (q, J = 271.1 Hz), 123.7 (q, J = 32.4 Hz), 80.5, 80.4, 75.8, 74.7, 57.8, 57.4, 52.3, 52.1, 51.9, 51.5, 36.3, 35.4, 28.4, 28.3. ¹⁹F NMR (471 MHz, CDCl₃, 23 °C, δ): -61.68 (minor), -61.70 (major). HRMS (ESI-TOF) (m/z) calcd for C₁₈H₂₂F₃NNaO₅ [M+Na]⁺, 412.1342; found, 412.1347.

1-tert-Butyl 2-methyl (2S,4S)-4-(4-methoxyphenoxy)pyrrolidine-1,2-dicarboxylate (3c)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (128 mg, 0.300 mmol, 1.50 equiv), TMS-imidazole (85.0 mg, 88.9 μ L, 0.606 mmol, 3.03 equiv.), and 1.5 mL of dioxane at 23 \mathbb{C} . After 10 minutes, 4-methoxyphenol (**1c**) (37.2 mg, 0.300 mmol, 1.50 equiv.) in 1.0 mL dioxane was added, and the mixture was stirred at 23 \mathbb{C} for 0.5 h. Alcohol **2a** (49.0 mg, 0.200 mmol, 1.00 equiv.) in 1.5 mL dioxane was added and then the vial was sealed and heated at 100 \mathbb{C} for 24 h. Once cooled to 23 \mathbb{C} , the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 4:1 (v/v), to afford 53.0 mg of the title compound as a colorless oil (75% yield).

 R_f = 0.28 (hexane/EtOAc = 3/1 (v/v)). NMR Spectroscopy [mixture of 2 rotamers]: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 6.83–6.76 (m, 4H, major+minor), 6.75–6.70 (m, 4H), 4.82–4.75 (m, 2H, major+minor), 4.51 (dd, *J* = 9.1, 2.4 Hz, 1H, minor), 4.39 (t, *J* = 5.9 Hz, 1H, major), 3.78–3.61 (m, 16H, major+minor), 2.46–2.30 (m, 4H), 1.46 (s, 9H, minor), 1.42 (s, 9H, major). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 172.6, 172.2, 154.4, 154.2, 153.8, 150.6, 117.0, 114.8, 80.2, 80.1, 76.3, 75.3, 57.9, 57.5, 55.7, 52.2, 52.1, 51.9, 51.5, 36.3, 35.4, 28.4, 28.3. HRMS (ESI-TOF) (m/z) calcd for C₁₈H₂₅NNaO₆ [M+Na]⁺, 374.1574; found, 374.1580.

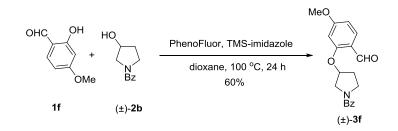


1-tert-Butyl 2-methyl (2S,4S)-4-(2-methoxyphenoxy)pyrrolidine-1,2-dicarboxylate (3d)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (128 mg, 0.300 mmol, 1.50 equiv), TMS-imidazole (85.0 mg, 88.9 μ L, 0.606 mmol, 3.03 equiv.), and 1.5 mL of dioxane at 23 °C. After 10 minutes, 2-methoxyphenol (**1d**) (37.2 mg, 0.300 mmol, 1.50 equiv.) in 1.0 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2a** (49.0 mg, 0.200 mmol, 1.00 equiv.) in 1.5 mL dioxane was added and then the vial was sealed and heated at 100 °C for 24 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 4:1 (v/v), to afford 47.0 mg of the title compound as a yellow solid (67% yield).

 R_f = 0.25 (hexane/EtOAc = 3/1 (v/v)). NMR Spectroscopy [mixture of 2 rotamers]: ¹H NMR (500 MHz, CDCl₃, 23 ℃, δ): 7.01–6.94 (m, 2H, major+minor), 6.91–6.85 (m, 4H, major+minor), 6.85–6.80 (m, 2H, major+minor), 4.98–4.84 (m, 2H, major+minor), 4.52 (dd, *J* = 9.0, 2.7 Hz, 1H, minor), 4.40 (dd, *J* = 7.8, 4.6 Hz, 1H, major). 3.81 (s, 3H, minor), 3.80 (s, 3H, major), 3.75 (s, 3H, major), 3.74 (s, 3H, minor), 3.88–3.68 (m, 4H, major+minor), 2.52–2.35 (m, 4H, major+minor), 1.47 (s, 9H, minor), 1.43 (s, 9H, major).¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 172.6, 172.2, 154.3, 153.8, 150.7, 150.7, 146.01, 146.0, 122.8, 122.8, 120.9, 120.8, 117.6, 117.5, 112.5, 80.1, 80.0, 76.9, 75.9, 57.9, 57.5, 55.8, 52.2, 52.04, 51.8, 51.3, 36.5, 35.6, 28.4, 28.3. HRMS (ESI-TOF) (m/z) calcd for C₁₈H₂₅NNaO₆ [M+Na]⁺, 374.1574; found, 374.1584.

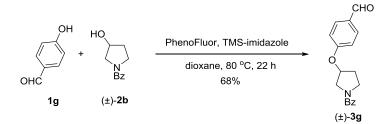
(2S,4S)-1-tert-Butyl 2-methyl 4-((5-phenylpyridin-2-yl)oxy)pyrrolidine-1,2-dicarboxylate (3e)



Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (256 mg, 0.600 mmol, 2.00 equiv), TMS-imidazole (170 mg, 178 μ L, 1.21 mmol, 4.03 equiv.), and 1.0 mL of dioxane at 23 \mathbb{C} . After 10 minutes, 4-phenylpyridin-2-ol (**1e**) (95% purity, 34.0 mg, 0.300 mmol, 1.00 equiv.) in 0.75 mL dioxane was added, and the mixture was stirred at 23 \mathbb{C} for 0.5 h. Alcohol **2a** (147 mg, 0.599 mmol, 2.00 equiv.) in 1.0 mL dioxane was added and then the vial was sealed and heated at 100 \mathbb{C} for 24 h. Once cooled to 23 \mathbb{C} , the reaction mixture was concentrated in vacuo. The

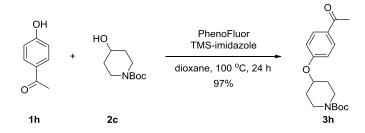
residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 2:1 (v/v), to afford 94.5 mg of the title compound as a colorless oil (79% yield).

 $R_f = 0.5$ (hexane/EtOAc = 3/2 (v/v)). NMR Spectroscopy [mixture of 2 rotamers]: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 8.16–8.12 (m, 2H, major+minor), 7.56 (d, J = 8.0 Hz, 4H, major+minor), 7.46–7.37 (m, 6H, major+minor).7.08 (t, J = 5.0 Hz, 2H, major+minor), 6.83 (d, J = 10.2 Hz, 2H, major+minor), 5.58 (m, 1H, minor), 5.55 (m, 1H, major), 4.54 (dd, J = 9.3, 2.3 Hz, 1H, minor), 4.42 (dd, J = 9.3, 2.2 Hz, 1H, major), 3.91–3.81 (m, 2H, major+minor), 3.75–3.63 (m, 8H, major+minor), 2.63–2.55 (m, 1H, major), 2.55–2.47 (m, 1H, minor), 2.45 (s, 1H, major), 2.44 (s, 1H, minor), 1.47 (s, 9H, minor), 1.43 (s, 9H, major). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 172.9, 172.5, 163.2, 163.2, 154.3, 153.8, 151.5, 147.1, 138.1, 138.0, 129.1, 129.0, 126.9, 115.8, 109.1, 109.0, 80.1, 80.0, 73.7, 72.7, 58.0, 57.6, 52.5, 52.2, 52.0, 51.9, 36.5, 35.7, 28.4, 28.3. HRMS (ESI-TOF) (m/z) calcd for C₂₂H₂₇N₂O₅ [M+Na]⁺, 399.1914; found, 399.1930.


(±)-2-((1-Benzoylpyrrolidin-3-yl)oxy)-5-methoxybenzaldehyde ((±)-3f)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (128 mg, 0.300 mmol, 1.50 equiv), TMS-imidazole (85.0 mg, 88.9 μ L, 0.606 mmol, 3.03 equiv.), and 1.5 mL of dioxane at 23 \mathbb{C} . After 10 minutes, 2-hydroxy-4-methoxybenzaldehyde (**1f**) (45.6 mg, 0.300 mmol, 1.50 equiv.) in 0.50 mL dioxane was added, and the mixture was stirred at 23 \mathbb{C} for 0.5 h. Alcohol (±)-**2b** (38.0 mg, 0.199 mmol, 1.00 equiv.) in 1.0 mL dioxane was added and then the vial was sealed and heated at 100 \mathbb{C} for 24 h. Once cooled to 23 \mathbb{C} , the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with EtOAc/hexane 2:1 (v/v), to afford 39.0 mg of the title compound as a light yellow solid (60% yield).

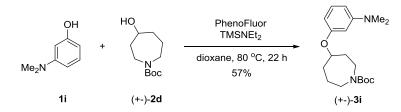
 $R_f = 0.20$ (EtOAc/hexane = 2/1 (v/v)). NMR Spectroscopy [mixture of 2 rotamers]: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 10.30 (s, 1H, major), 10.21 (s, 1H, minor), 7.84 (d, J = 8.7 Hz, 1H, major), 7.81 (d, J = 8.8 Hz, 1H, minor), 7.53 (dd, J = 7.4 Hz, 2H, major), 7.51–7.47 (d, J = 6.5 Hz, 2H, minor), 7.45–7.35 (m, 6H, major+minor), 6.58 (d, J = 8.7 Hz, 1H, major), 6.55 (d, J = 9.1 Hz, 1H, minor), 6.42 (s, 1H, major), 6.31 (s, 1H, minor), 5.09 (t, J = 4.2 Hz, 1H, major), 4.99–4.91(m, 1H, minor), 4.13–3.46 (m, 14H), 2.44–2.23 (m, 2H, major), 2.22–2.12 (m, 2H, minor). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 187.9, 187.8, 170.2, 170.1, 166.1, 165.9, 161.0, 160.9, 136.5, 136.3, 131.1, 131.1, 130.4, 130.3, 128.6, 128.5, 127.3, 127.2, 119.8, 106.5, 106.2, 100.1, 100.0, 77.2, 75.9, 55.8, 54.6, 51.8, 47.6, 44.3, 32.4, 30.2. HRMS (ESI-TOF) (m/z) calcd for C₁₉H₂₀NO₄ [M+H]⁺, 326.1387; found, 326.1297.


(±)-4-((1-Benzoylpyrrolidin-3-yl)oxy)benzaldehyde ((±)-3g)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (128 mg, 0.300 mmol, 1.50 equiv), TMS-imidazole (85.0 mg, 88.9 μ L, 0.606 mmol, 3.03 equiv.), and 1.5 mL of dioxane at 23 \mathbb{C} . After 10 minutes, 4-hydroxybenzaldehyde (**1g**) (36.6 mg, 0.300 mmol, 1.50 equiv.) in 0.50 mL dioxane was added, and the mixture was stirred at 23 \mathbb{C} for 0.5 h. Alcohol (±)-**2b** (38.0 mg, 0.199 mmol, 1.00 equiv.) in 1.0 mL dioxane was added and then the vial was sealed and heated at 80 \mathbb{C} for 22 h. Once cooled to 23 \mathbb{C} , the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with EtOAc/hexane 2:1 (v/v), to afford 40.0 mg of the title compound as a light yellow solid (68% yield).

 $R_f = 0.3$ (EtOAc/hexane = 2/1 (v/v)). NMR Spectroscopy [mixture of 2 rotamers]: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 9.90 (s, 1H, major), 9.87 (s, 1H, minor), 7.85 (d, *J* = 8.1 Hz, 2H, major), 7.81 (d, *J* = 8.2 Hz, 2H, minor), 7.56 (d, *J* = 6.7 Hz, 2H, major), 7.50 (d, *J* = 7.1 Hz, 2H, minor), 7.45–7.36 (m, 6H, major+minor), 7.01 (d, *J* = 8.3 Hz, 2H, major), 6.93 (d, *J* = 8.3 Hz, 2H, minor), 5.10 (s, 1H, major), 4.99 (s, 1H, minor), 4.23–3.52 (m, 8H, major+minor), 2.36–2.22 (m, 2H, major), 2.22–2.10 (m, 2H, minor). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 190.9, 190.8, 170.3, 170.0, 162.2, 162.0, 136.6, 136.5, 132.2, 130.5, 130.4, 130.3, 128.6, 128.5, 127.4, 127.3, 115.7, 115.6, 76.7, 75.6, 54.7, 52.1, 47.5, 44.4, 32.3, 30.2. HRMS (ESI-TOF) (m/z) calcd for C₁₈H₁₈NO₃ [M+H]⁺, 296.1281; found, 296.1293.

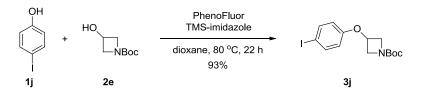
tert-Butyl 4-(4-acetylphenoxy)piperidine-1-carboxylate (3h)



Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (256 mg, 0.600 mmol, 3.00 equiv), TMS-imidazole (170 mg, 178 μ L, 1.21 mmol, 6.05 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, 1-(4-hydroxyphenyl)ethan-1-one (**1h**) (27.2 mg, 0.200 mmol, 1.00 equiv.) in 1.0 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2c** (120.8 mg, 0.600 mmol, 3.00 equiv.) in 0.50 mL dioxane was added and then the vial was sealed and

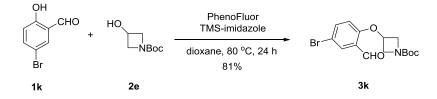
heated at 100 \C for 24 h. Once cooled to 23 \C , the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 4:1 (v/v), to afford 61.3 mg of the title compound as a white solid (97% yield).

 $R_f = 0.30$ (hexane/EtOAc = 4/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.90 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 4.70–4.44 (m, 1H), 3.79–3.56 (m, 2H), 3.50–3.23 (m, 2H), 2.52 (s, 3H), 1.96-1.88 (m, 2H), 1.83–1.69 (m, 2H), 1.45 (s, 9H).¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 196.7, 161.2, 154.8, 130.7, 130.4, 115.2, 79.7, 72.2, 40.5, 30.3, 28.4, 26.3. HRMS (ESI-TOF) (m/z) calcd for C₁₈H₂₅NNaO₄ [M+Na]⁺, 342.1676; found, 342.1683.


(±)-tert-Butyl 4-(3-(dimethylamino)phenoxy)azepane-1-carboxylate ((±)-3i)

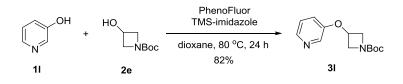
Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (256 mg, 0.600 mmol, 1.50 equiv), TMSNEt₂ (175 mg, 227 μ L, 1.21 mmol, 3.00 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, 3-(dimethylamino)phenol (**1i**) (82.3 mg, 0.600 mmol, 1.50 equiv.) in 0.75 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol (±)-**2d** (86.1 mg, 0.400 mmol, 1.00 equiv.) in 0.75 mL dioxane was added and then the vial was sealed and heated at 80 °C for 22 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 8:1 (v/v), to afford 76.0 mg of the title compound as a colorless oil (57% yield).

 $R_f = 0.3$ (hexane /EtOAc = 8/1 (v/v)). NMR Spectroscopy [mixture of rotamers]: ¹H NMR (300 MHz, CDCl₃, 23 °C, δ): 7.14 (t, J = 8.1 Hz, 2H, major+minor), 6.38 (d, J = 8.5 Hz, 2H, major+minor), 6.30 (s, 2H, major+minor), 6.29 (d, J = 7.4 Hz, 2H, major+minor), 4.48–4.37 (m, 2H, major+minor), 3.68–3.20 (m, 8H, major+minor), 2.93 (s, 12H, major+minor), 2.15–1.83 (m, 10H, major+minor), 1.73–1.59 (m, 2H, major+minor), 1.47 (s, 18H, major+minor). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 158.5, 155.6, 129.8, 106.2, 103.6, 101.6, 79.3, 75.6, 75.4, 46.6, 45.9, 41.9, 41.5, 40.8, 34.3, 34.0, 32.0, 31.4, 28.5, 22.8, 22.3. HRMS (ESI-TOF) (m/z) calcd for C₁₉H₃₁N₂O₃ [M+H]⁺, 335.2329; found, 335.2343.


tert-Butyl 3-(4-iodophenoxy)azetidine-1-carboxylate (3j)

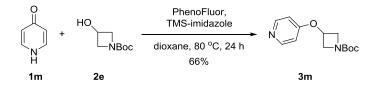
Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (256 mg, 0.600 mmol, 1.50 equiv), TMS-imidazole (170 mg, 178 μ L, 1.21 mmol, 3.00 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, 4-iodophenol (**1**j) (132 mg, 0.600 mmol, 1.50 equiv.) in 0.75 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2e** (70.0 mg, 0.404 mmol, 1.00 equiv.) in 0.75 mL dioxane was added and then the vial was sealed and heated at 80 °C for 22 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 20:1 (v/v), to afford 138.8 mg of the title compound as a off-white solid (93% yield).

 $R_f = 0.2$ (hexane/EtOAc = 10/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.57 (d, J = 8.8 Hz, 2H), 6.52 (d, J = 8.7 Hz, 2H), 4.86–4.80 (m, 1H), 4.31–4.26 (m, 2H), 3.99 (dd, J = 9.8, 4.0 Hz, 2H), 1.45 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 156.4, 156.1, 138.5, 116.9, 83.8, 79.9, 65.8, 56.3, 28.4. HRMS (ESI-TOF) (m/z) calcd for C₁₄H₁₈INNaO₃ [M+Na]⁺, 398.0224; found, 398.0224.


tert-Butyl 3-(4-bromo-2-formylphenoxy)azetidine-1-carboxylate (3k)

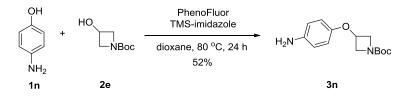
Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (191 mg, 0.449 mmol, 1.50 equiv), TMS-imidazole (127 mg, 133 μ L, 0.905 mmol, 3.00 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, 5-bromo-2-hydroxybenzaldehyde (**1o**) (90.0 mg, 0.450 mmol, 1.50 equiv.) in 0.75 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2e** (52.0 mg, 0.301 mmol, 1.00 equiv.) in 0.75 mL dioxane was added and then the vial was sealed and heated at 80 °C for 24 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 4:1 (v/v), to afford 86.2 mg of the title compound as a yellow solid (81% yield).

 R_f = 0.23 (hexane /EtOAc = 4/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 10.41 (s, 1H), 7.94 (d, *J* = 2.4 Hz, 1H), 7.59 (dd, *J* = 9.8, 2.4 Hz, 1H), 6.51 (d, *J* = 8.8 Hz, 1H), 4.98–4.93 (m, 1H), 4.34 (ddd, *J* = 9.8, 6.1, 1.0 Hz, 2H), 4.05 (ddd, *J* = 10.3, 4.5, 1.0 Hz, 2H), 1.46 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 187.7, 157.6, 155.9, 138.3, 131.6, 126.3, 114.6, 114.2, 80.2, 66.7, 56.1, 28.3. HRMS (ESI-TOF) (m/z) calcd for C₁₅H₁₈BrNNaO₄ [M+Na]⁺, 378.0311; found, 378.0306.


tert-Butyl 3-(pyridin-3-yloxy)azetidine-1-carboxylate (3l)

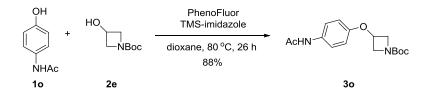
Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (256 mg, 0.600 mmol, 1.50 equiv), TMS-imidazole (170 mg, 178 μ L, 1.21 mmol, 3.00 equiv.), and 1.0 mL of dioxane at 23 \mathbb{C} . After 10 minutes, pyridin-3-ol (11) (57.5 mg, 0.605 mmol, 1.50 equiv.) in 0.6 mL dioxane was added, and the mixture was stirred at 23 \mathbb{C} for 0.5 h. Alcohol 2e (70.0 mg, 0.404 mmol, 1.00 equiv.) in 0.9 mL dioxane was added and then the vial was sealed and heated at 80 \mathbb{C} for 24 h. Once cooled to 23 \mathbb{C} , the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 1:1 (v/v), to afford 82.0 mg of the title compound as a brown solid (82% yield).

 $R_f = 0.50$ (hexane/EtOAc = 2/3 (v/v)). NMR Spectroscopy : ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 8.20 (s, 1H), 8.11 (s, 1H), 7.20–7.15 (m, 1H), 6.99 (d, J = 8.3 Hz, 1H), 4.89–4.84 (m, 1H), 4.29–4.23 (m, 2H), 3.98–3.93 (m, 2H), 1.39 (s, 9H).¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 156.0, 152.8, 142.9, 137.5, 124.0, 121.5, 79.9, 66.1, 56.2, 28.3. HRMS (ESI-TOF) (m/z) calcd for C₁₃H₁₉N₂O₃ [M+H]⁺, 251.1390; found, 251.1399.


tert-Butyl 3-(pyridin-4-yloxy)azetidine-1-carboxylate (3m)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (256 mg, 0.600 mmol, 1.50 equiv), TMS-imidazole (170 mg, 178 μ L, 1.21 mmol, 3.00 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, pyridin-4(1H)-one (**1m**) (57.5 mg, 0.605 mmol, 1.50 equiv.) in 0.6 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2e** (70.0 mg, 0.404 mmol, 1.00 equiv.) in 0.9 mL dioxane was added and then the vial was sealed and heated at 80 °C for 24 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 2:3 (v/v), to afford 66.3 mg of the title compound as a yellow solid (66% yield).

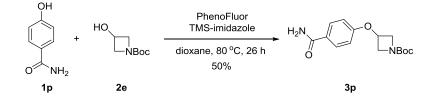
 $R_f = 0.2$ (hexane /EtOAc = 1/2 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 8.43 (d, J = 6.3 Hz, 2H), 6.64 (d, J = 6.4 Hz, 2H), 4.94–4.88 (m, 1H), 4.31 (dd, J = 9.8, 6.4 Hz, 2H), 4.00 (dd, J = 10.0, 4.0 Hz, 2H), 1.43 (s, 9H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 162.6, 155.9, 151.4, 110.3, 80.1, 65.8, 56.2, 28.3. HRMS (ESI-TOF) (m/z) calcd for C₁₃H₁₉N₂O₃ [M+H]⁺, 251.1390; found, 251.1395.


tert-Butyl 3-(4-aminophenoxy)azetidine-1-carboxylate (3n)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (256 mg, 0.600 mmol, 1.50 equiv), TMS-imidazole (170 mg, 178 μ L, 1.21 mmol, 3.00 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, 4-aminophenol (**1n**) (65.4 mg, 0.600 mmol, 1.50 equiv.) in 0.75 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2e** (70.0 mg, 0.404 mmol, 1.00 equiv.) in 0.75 mL dioxane was added and then the vial was sealed and heated at 80 °C for 24 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 3:2 (v/v), to afford 55.0 mg of the title compound as a yellow solid (52% yield).

 $R_f = 0.5$ (hexane/EtOAc = 1/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 6.64–6.55 (m, 4H), 4.79–4.74 (m, 1H), 4.23 (dd, J = 9.6, 6.5 Hz, 2H), 3.96 (dd, J = 9.7, 4.6 Hz, 2H), 3.47 (brs, 2H), 1.44 (s, 9H).¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 156.2, 149.6, 140.8, 116.4, 115.7, 79.7, 66.1, 26.5, 28.4. HRMS (ESI-TOF) (m/z) calcd for C₁₄H₂₀N₂NaO₃ [M+Na]⁺, 287.1366 ; found, 287.1368.

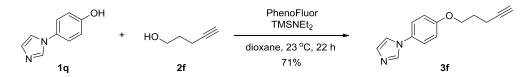
tert-Butyl 3-(4-acetamidophenoxy)azetidine-1-carboxylate (30)



Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (192 mg, 0.450 mmol, 1.50 equiv), TMS-imidazole (127 mg, 133 μ L, 0.905 mmol, 3.00 equiv.), and 1.0 mL of dioxane at 23 \mathbb{C} . After 10 minutes, N-(4-hydroxyphenyl)acetamide (**10**) (68.0 mg, 0.450 mmol, 1.50 equiv.) in 0.75 mL dioxane was added, and the mixture was stirred at 23 \mathbb{C} for 0.5 h. Alcohol **2e** (52.0 mg, 0.301 mmol, 1.00 equiv.) in 0.75 mL dioxane was added and then the vial was sealed and heated at 80 \mathbb{C} for 26 h. Once cooled to 23 \mathbb{C} , the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 1:2 (v/v), to afford 80.6 mg of the title compound as a white solid (88% yield).

 $R_f = 0.23$ (hexane /EtOAc = 1/2 (v/v)). NMR Spectroscopy: ¹H NMR (600 MHz, CD₃OD, 23 °C, δ) 7.44 (d, J = 9.0 Hz, 2H), 6.76 (d, J = 9.0 Hz, 2H), 4.98–4.91 (m, 1H), 4.31 (brs, 2H), 3.88 (brs, 2H), 2.09 (s, 3H), 1.45 (s, 9H). ¹³C NMR (125 MHz, CD₃OD, 23 °C, δ): 171.6, 158.2, 154.8, 133.9, 123.3, 116.0, 81.5, 67.3, 57.2, 28.8, 23.7. HRMS (ESI-TOF) (m/z) calcd for C₁₆H₂₂N₂NaO₄

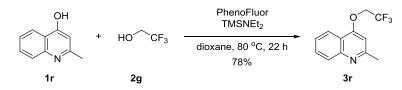
[M+Na]⁺, 329.1472; found, 329.1478.


tert-Butyl 3-(4-carbamoylphenoxy)azetidine-1-carboxylate (3p)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (192 mg, 0.450 mmol, 1.5 equiv), TMS-imidazole (127 mg, 133 μ L, 0.905 mmol, 3.00 equiv.), and 1.00 mL of dioxane at 23 °C. After 10 minutes, 4-hydroxybenzamide (**1p**) (62.0 mg, 0.452 mmol, 1.50 equiv.) in 0.75 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2e** (52.0 mg, 0.301 mmol, 1.00 equiv.) in 0.75 mL dioxane was added and then the vial was sealed and heated at 80 °C for 26 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 1:2~0/1 (v/v), to afford 42.8 mg of the title compound as a white solid (50% yield).

 $R_f = 0.23$ (EtOAc). NMR Spectroscopy: ¹H NMR (600 MHz, CD₃OD, 23 °C, δ): 7.85 (d, J = 8.3 Hz, 2H), 6.88 (d, J = 8.3 Hz, 2H), 5.04 (brs, 1H), 4.99 (brs, 2H), 4.36 (brs, 2H), 3.92 (brs, 2H), 1.43 (s, 9H). ¹³C NMR (125 MHz, CD₃OD, 23 °C, δ): 171.8, 161.0, 158.0, 130.9, 128.0, 115.5, 81.4, 67.3, 28.6. HRMS (ESI-TOF) (m/z) calcd for C₁₅H₂₀N₂NaO₄ [M+Na]⁺, 315.1315; found, 315.1314.

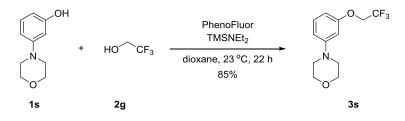
1-(4-(Pent-4-yn-1-yloxy)phenyl)-1H-imidazole (3q)



Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (341 mg, 0.800 mmol, 2.00 equiv), TMSNEt₂ (233 mg, 303 μ L, 1.60 mmol, 4.00 equiv.), and 1.5 mL of dioxane at 23 °C. After 10 minutes, 4-(1H-imidazol-1-yl)phenol (**1q**) (64 mg, 0.400 mmol, 1.00 equiv.) in 1.0 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2f** (67.3 mg, 74 μ L, 0.800 mmol, 2.00 equiv.) was added and then the vial was sealed and the mixture was stirred at 23 °C for 22 h. The reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with EtOAc, to afford 64.0 mg of the title compound as a white solid (71% yield).

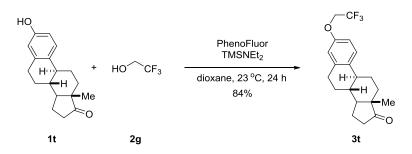
 $R_f = 0.25$ (EtOAc). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.76 (s, 1H), 7.29 (d, J = 8.9 Hz, 2H), 7.19 (d, J = 8.9 Hz, 2H), 6.99 (d, J = 8.9 Hz, 2H), 4.11 (t, J = 6.1 Hz, 2H), 2.43 (td, J = 6.9, 2.6 Hz, 2H), 2.03 (p, J = 6.5 Hz, 2H), 1.98 (t, J = 2.6 Hz, 1H). ¹³C NMR (125

MHz, CDCl₃, 23 °C, δ): 158.4, 136.0, 130.9, 130.3, 123.4, 118.9, 115.6, 83.4, 69.12, 66.7, 28.2, 15.3. HRMS (ESI-TOF) (m/z) calcd for C₁₄H₁₅N₂O [M+H]⁺, 227.1179; found, 227.1188.


2-Methyl-4-(2,2,2-trifluoroethoxy)quinoline (3r)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (341 mg, 0.800 mmol, 2.00 equiv), TMSNEt₂ (233 mg, 303 μ L, 1.60 mmol, 4.00 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, 2-methylquinolin-4-ol (**1r**) (64.0 mg, 0.402 mmol, 1.00 equiv.) in 1.0 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. 2,2,2-Trifluoroethanol (**2g**) (80.6 mg, 58 μ L, 0.806 mmol, 2.00 equiv.) was added and then the vial was sealed and heated at 80 °C for 22 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 2:1 (v/v), to afford 75.2 mg of the title compound as a white solid (78% yield).

R_f = 0.40 (hexane/EtOAc = 2/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 8.12 (d, *J* = 8.3 Hz, 1H), 7.95 (d, *J* = 8.3 Hz, 1H), 7.67 (d, *J* = 7.9 Hz, 1H), 7.45 (d, *J* = 7.6 Hz, 1H), 6.51 (s, 1H), 4.49 (q, 7.8 Hz, 2H), 2.67 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 159.8, 148.9, 130.3, 128.2, 125.4, 123.0 (q, *J* = 278.3 Hz), 121.9, 121.4, 119.2, 101.1, 65.3 (q, *J* = 36.9 Hz), 25.8. ¹⁹F NMR (282 MHz, CDCl₃, 23 °C, δ): -73.6 (t, *J* = 7.9 Hz). HRMS (ESI-TOF) (m/z) calcd for C₁₂H₁₁F₃NO [M+H]⁺, 242.0787; found, 242.0798.


4-(3-(2,2,2-Trifluoroethoxy)phenyl)morpholine (3s)

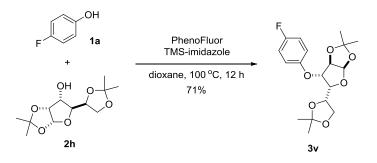
Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (341 mg, 0.800 mmol, 2.00 equiv), TMSNEt₂ (233 mg, 303 μ L, 1.60 mmol, 4.00 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, 3-morpholinophenol (**1s**) (71.7 mg, 0.400 mmol, 1.00 equiv.) in 1.0 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. 2,2,2-Trifluoroethanol (**2g**) (80.6 mg, 58 μ L, 0.806 mmol, 2.00 equiv.) was added and then the vial was sealed and the mixture was stirred at 23 °C for 22 h. The reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 10:1 (v/v), to afford 88.6 mg of the title compound as a colorless oil (85% yield).

R_f = 0.20 (hexane/EtOAc = 10/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.21 (t, *J* = 8.2 Hz, 1H), 6.61 (dd, *J* = 8.3, 2.3 Hz, 1H), 6.51 (t, *J* = 2.4 Hz, 1H), 6.42 (dd, *J* = 8.1, 2.4 Hz, 1H), 4.34 (q, *J* = 8.2 Hz, 2H), 3.91–3.82 (m, 4H), 3.21–3.12 (m, 4H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 158.6, 153.0, 130.2, 123.5 (q, *J* = 277.8 Hz), 110.1, 105.1, 103.4, 66.9, 66.0 (q, *J* = 35.5 Hz), 49.2. ¹⁹F NMR (282 MHz, CDCl₃, 23 °C, δ): –74.0 (t, *J* = 8.2 Hz). HRMS (ESI-TOF) (m/z) calcd for $C_{12}H_{15}F_{3}NO_{2}$ [M+H]⁺, 262.1049; found, 262.1060.

(8*R*,9*S*,13*S*)-13-Methyl-3-(2,2,2-trifluoroethoxy)-6,7,8,9,11,12,13,14,15,16-decahydro-17Hcyclopenta[a]phenanthren-17-one (3t)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (341 mg, 0.800 mmol, 2.00 equiv), TMSNEt₂ (233 mg, 303 μ L, 1.60 mmol, 4.00 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, estrone (**1t**) (108 mg, 0.400 mmol, 1.00 equiv.) in 1.0 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. 2,2,2-Trifluoroethanol (**2g**) (80.6 mg, 58 μ L, 0.806 mmol, 2.00 equiv.) was added and then the vial was sealed and the mixture was stirred at 23 °C for 24 h. The reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 8:1 (v/v), to afford 117.5 mg of the title compound as a white solid (78% yield).

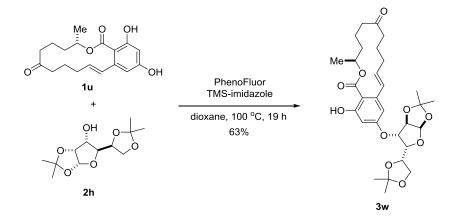
R_f = 0.30 (hexane/EtOAc = 8/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.23 (dd, *J* = 8.6, 1.1 Hz, 1H), 6.78–6.72 (m, 1H), 6.69 (d, *J* = 2.7 Hz, 1H), 4.32 (q, *J* = 8.2 Hz, 2H), 2.99–2.86 (m, 2H), 2.51 (dd, *J* = 18.9, 8.8Hz, 1H), 2.45–2.39 (m, 1H), 2.26 (td, *J* = 10.5, 3.8 Hz, 1H), 2.15 (dt, *J* = 18.8, 8.9 Hz, 1H), 2.10–1.99 (m, 2H), 2.00–1.92 (m, 1H), 1.70–1.30 (m, 6H), 0.92 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 220.8, 155.5, 138.2, 134.0, 126.6, 123.4 (q, *J* = 278.1 Hz), 115.1, 112.4, 65.9 (q, *J* = 35.4 Hz), 50.4, 48.0, 44.0, 38.2, 35.9, 31.6, 29.6, 26.4, 25.9, 21.6, 13.8. ¹⁹F NMR (282 MHz, CDCl₃, 23 °C, δ): –74.0 (t, *J* = 8.2 Hz). HRMS (ESI-TOF) (m/z) calcd for C₂₀H₂₄F₃O₂ [M+H]⁺, 353.1723; found, 353.1737.


(*R*)-(6-(2,2,2-Trifluoroethoxy)quinolin-4-yl)((1*R*,2*R*,4*R*,5*S*)-5-vinylquinuclidin-2-yl)methyl benzoate (3u)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (256 mg, 0.600 mmol, 2.00 equiv), TMSNEt₂ (175 mg, 224 μ L, 1.20 mmol, 4.00 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, (*R*)-(6-hydroxyquinolin-4-yl)((1*R*,2*R*,4*R*,5*S*)-5-vinylquinuclidin-2-yl)methyl benzoate (**1u**) (124.2 mg, 0.301 mmol, 1.00 equiv.) in 1.0 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. 2,2,2-Trifluoroethanol (**2g**) (60.1 mg, 44 μ L, 0.601 mmol, 2.00 equiv.) was added and then the vial was sealed and heated at 80 °C for 22 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc/Et₃N 100:150/1 (v/v/v), to afford 125.5 mg of the title compound as a yellow oil (85% yield).

R_f = 0.20 (hexane/EtOAc/Et₃N = 100/150/1 (v/v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 8.77 (d, *J* = 4.4 Hz, 1H), 8.11–8.05 (m, 3H), 7.69 (brs, 1H), 7.61 (t, *J* = 7.3 Hz, 1H), 7.51–7.43 (m, 4H), 6.84 (brs, 1H), 5.88–5.78 (m, 1H), 5.04 (d, *J* = 9.2 Hz, 1H), 5.02 (s, 1H), 4.74–4.51 (m, 2H), 3.47 (q, *J* = 7.9 Hz, 1H), 3.25 (s, 1H), 3.14 (t, *J* = 11.4 Hz, 1H), 2.72 (s, 2H), 2.37 (s, 1H), 2.00–1.90 (m, 2H), 1.82 (brs, 2H), 1.64 (brs, 1H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 165.6, 155.7, 148.4, 145.3, 144.2, 141.6, 133.6, 132.5, 129.7, 129.6, 128.7, 126.6, 123.3 (q, *J* = 277.8 Hz), 121.6, 118.9, 114.7, 103.4, 77.3, 74.2, 66.0 (q, *J* = 36.4 Hz), 59.4, 56.6, 42.5, 39.6, 27.8, 27.6, 24.1. ¹⁹F NMR (375 MHz, CDCl₃, 23 °C, δ): -73.6 (t, *J* = 8.0 Hz). HRMS (ESI-TOF) (m/z) calcd for C₂₈H₂₈F₃N₂O₃ [M+H]⁺, 497.2047; found, 497.2066.

(3aR, 5R, 6S, 6aR)-5-((S)-2,2-Dimethyl-1,3-dioxolan-4-yl)-6-(4-fluorophenoxy)-2,2 dimethyltetrahydrofuro[2,3-d][1,3]dioxole (3v)

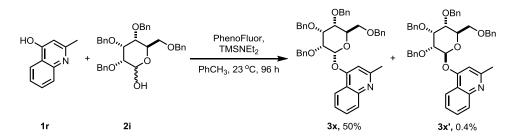


Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (128 mg, 0.300 mmol, 1.50

equiv), TMS-imidazole (85 mg, 88.9 μ L, 0.605 mmol, 3.00 equiv.), and 1.5 mL of dioxane at 23 \mathbb{C} . After 10 minutes, 4-fluorophenol (**1a**) (33.6 mg, 0.300 mmol, 1.50 equiv.) and 1.0 mL dioxane were added, and the mixture was stirred at 23 \mathbb{C} for 0.5 h. Alcohol **2h** (52.1 mg, 0.200 mmol, 1.00 equiv.) in 1.5 mL dioxane was added and then the vial was sealed and heated at 100 \mathbb{C} for 12 h. Once cooled to 23 \mathbb{C} , the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 25:1 (v/v), to afford 50.5 mg of the title compound as a white solid (71% yield).

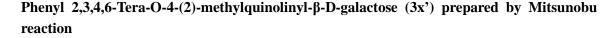
R_f = 0.30 (hexane/EtOAc = 8/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 7.04–6.97 (m, 2H), 6.9 –6.90 (m, 2H), 6.00–5.88 (m, 1H), 4.65 (d, *J* = 3.0 Hz, 1H), 4.58 (d, *J* = 3.8 Hz, 1H), 4.45 (dd, *J* = 13.4, 5.8 Hz, 1H), 4.30 (dd, *J* = 7.7, 3.1 Hz, 1H), 4.18–4.07 (m, 2H), 1.54 (s, 3H), 1.44 (s, 3H), 1.33 (s, 3H), 1.31 (s, 3H).¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 157.8 (d, *J* = 239.8 Hz), 153.1 (d, *J* = 2.5 Hz), 116.8 (d, *J* = 8.2 Hz), 116.1 (d, *J* = 23.3 Hz), 112.1, 109.2, 105.2, 82.1, 80.7, 80.5, 72.2, 67.1, 26.9, 26.7, 26.2, 25.3. ¹⁹F NMR (282 MHz, CDCl₃, 23 °C, δ): -122.45. HRMS (ESI-TOF) (m/z) calcd for C₁₈H₂₄FO₆ [M+H]⁺, 355.1551; found, 355.1562.

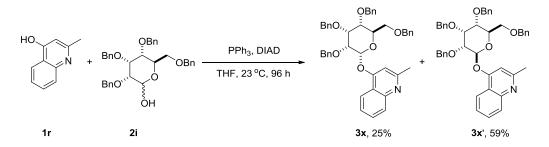
(S,E)-14-(((3aS,4S,5R,6aS)-5-((R)-2,2-Dimethyl-1,3-dioxolan-4-yl)-2,2-dimethyltetrahydro-3aH-cyclopenta[d][1,3]dioxol-4-yl)oxy)-16-hydroxy-3-methyl-3,4,5,6,9,10-hexahydro-1H-benzo[c][1]oxacyclotetradecine-1,7(8H)-dione (3w)



Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (85.2 mg, 0.200 mmol, 2.00 equiv), TMS-imidazole (56.6 mg, 59.2 μ L, 0.403 mmol, 4.03 equiv.), and 0.9 mL of dioxane at 23 °C. After 10 minutes, Zearalenone (**1u**) (31.8 mg, 0.100 mmol, 1.00 equiv.) in 0.6 mL dioxane was added, and the mixture was stirred at 23 °C for 10 min. Alcohol **2h** (52.0 mg, 0.201 mmol, 2.01 equiv.) was added and then the vial was sealed and heated at 100 °C for 19 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 5:1 (v/v), to afford 35.3 mg of the title compound as a off-white solid (63% yield).

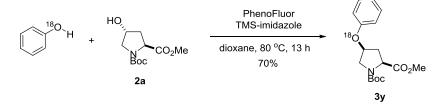
 $R_f = 0.25$ (hexane/EtOAc = 5/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 12.06 (s, 1H), 7.00 (d, J = 15.8 Hz, 1H), 6.51 (s, 2H), 5.94 (d, J = 3.9 Hz, 1H), 5.71 (ddd, J = 15.8 Hz, 1H), 6.51 (s, 2H), 5.94 (d, J = 3.9 Hz, 1H), 5.71 (ddd, J = 3.9 Hz, 1H), 5.71 (dddd, J = 3.9 Hz, 1H), 5.71 (

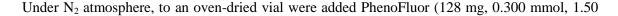

14.7, 10.7 Hz, 4.3 Hz, 1H), 5.04-4.97 (m, 1H), 4.74 (d, J = 3.1 Hz, 1H), 4.56 (d, J = 3.5 Hz, 1H), 4.43–4.37 (m, 1H), 4.31–4.28 (m 1H), 4.15–4.06 (m, 2H), 2.86–2.77 (m, 1H), 2.63–2.56 (m, 1H), 2.40–2.32 (m, 1H), 2.56–2.09 (m, 4H), 1.81–1.58 (m, 5H), 1.54 s, 3H), 1.42 (s, 3H), 1.38 (d, J = 6.3 Hz, 3H), 1.31 (s, 3H), 1.30 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 210.9, 171.3, 165.5, 161.3, 143.6, 132.9, 132.8, 112.3, 109.3, 109.1, 105.2, 104.4, 101.4, 82.2, 80.3, 79.8, 73.6, 72.1, 67.1, 42.9, 36.6, 34.7, 31.0, 26.9, 26.7, 26.2, 25.3, 22.2, 20.9, 20.8. HRMS (ESI-TOF) (m/z) calcd for C₃₀H₄₀NaO₁₀ [M+Na]⁺, 583.2514; found, 583.2500.


Phenyl 2,3,4,6-Tera-O-4-(2)-methylquinolinyl-α-D-galactose (3x)

Under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (128 mg, 0.300 mmol, 1.50 equiv.), TMSNEt₂ (87.5 mg, 112 μ L, 0.60 mmol, 1.50 equiv.), and 1.0 mL of PhCH₃ at 23 °C. After 10 minutes, 2-methylquinolin-4-ol (**1r**) (48.0 mg, 0.301 mmol, 1.50 equiv.) in 1.0 mL PhCH₃ were added, and the mixture was stirred at 23 °C. After 30 min, 2,3,4,6-tetra-O-benzyl-D-galactose (**2i**) (108 mg, 0.199 mmol, 1.00 equiv.) was added and then the vial was sealed. After being stirred at 23 °C for 96 h, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 2:1 (v/v), to afford 68.0 mg of α -anomer **3x** as a colorless oil (50% yield) and 0.5 mg of β -anomer **3x**' as white solid (0.4%). β -anomer **3x**' was obtained as the major isomer via Mitsunobu reaction and characterized (see next page).

 R_f = 0.20 (hexane/EtOAc = 2/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 8.21 (d, *J* = 8.3 Hz, 1H), 8.03 (d, *J* = 8.4 Hz, 1H), 7.72 (t, *J* = 7.7 Hz, 1H), 7.54–7.41 (m, 5H), 7.41–7.26 (m, 11H), 7.24–7.17 (m, 5H), 6.87 (s, 1H), 5.73 (anomeric H, d, *J* = 3.3 Hz, 1H), 5.13–4.98 (m, 2H), 4.96–4.88 (m, 2H), 4.75–4.65 (m, 2H), 4.47–4.27 (m, 4H), 4.12 (s, 1H), 4.07 (t, *J* = 6.5 Hz, 1H), 3.68–3.59 (m, 1H), 3.56 (dt, *J* = 12.3, 6.1 Hz, 1H), 2.65 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 160.2, 159.7, 148.9, 138.5, 138.4, 137.7, 129.8, 128.5, 128.4, 128.3, 128.3, 128.2, 128.1, 127.8, 127.7, 127.7, 127.6, 125.0, 121.9, 120.0, 104.5, 96.4 (anomeric carbon), 78.4, 76.4, 75.0, 74.7, 73.5, 73.4, 73.2, 70.9, 68.6, 25.8. HRMS (ESI-TOF) (m/z) calcd for C₄₄H₄₄NO₆ [M+H]⁺, 682.3163; found, 682.3184.

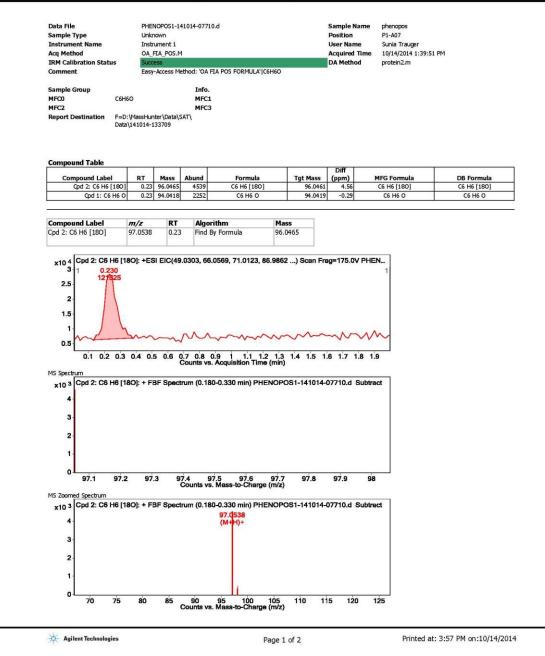


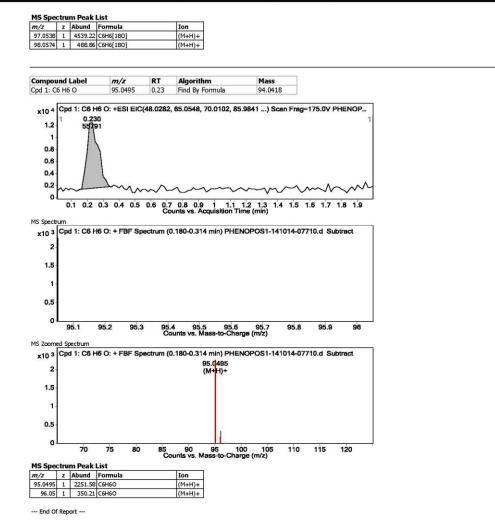

Under N₂ atmosphere, to an oven-dried vial were added 2-methylquinolin-4-ol (**1r**) (57.0 mg, 0.358 mmol, 1.20 equiv.), 2,3,4,6-tetra-O-benzyl-D-galactose (**2i**) (162 mg, 0.300 mmol, 1.00 equiv.), PPh₃ (94.5 mg, 0.360 mmol, 1.20 equiv.) and 2.0 mL of THF at 23 °C. After 10 minutes, diisopropyl azodicarboxylate (DIAD, 72.9 mg, 71 µL, 0.361 mmol, 1.20 equiv.) was added slowly in 2 minutes. After being stirred at 23 °C for 24 h, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 2:1~1:1 (v/v), to afford 52.0 mg of α -anomer **3x** as a colorless oil (25% yield), and 122.0 mg of β -anomer **3x**' as a white solid (59% yield). The ratio of α -anomer/ β -anomer was determined to be 30/70.

Characterization of β -anomer **3x**': $R_f = 0.10$ (hexane/EtOAc = 2/1 (v/v)). NMR Spectroscopy: ¹H NMR (500 MHz, CDCl₃, 23 °C, δ): 8.14 (d, J = 8.3 Hz, 1H), 7.95 (d, J = 8.5 Hz, 1H), 7.66 (t, J = 7.7 Hz, 1H), 7.48–7.18 (m, 21H), 6.83 (s, 1H), 5.27 (anomeric H, d, J = 7.6 Hz, 1H), 5.03 (d, J = 7.4 Hz, 1H), 5.01 (d, J = 8.3 Hz, 1H), 4.93 (d, J = 10.6 Hz, 1H), 4.83–4.77 (m, 2H), 4.68 (d, J = 11.6 Hz, 1H), 4.47 (d, J = 11.6 Hz, 1H), 4.41 (d, J = 11.6 Hz, 1H), 4.36–4.28 (m, 1H), 4.00 (d, J = 2.6 Hz, 1H), 3.81 (t, J = 6.3 Hz, 1H), 3.75–3.65 (m, 2H), 3.62–3.57 (m, 1H), 2.59 (s, 3H). ¹³C NMR (125 MHz, CDCl₃, 23 °C, δ): 160.2, 159.9, 149.2 138.4, 138.3, 138.1, 137.9, 129.9, 128.6, 128.6, 128.5, 128.5, 128.4, 128.3, 128.1, 128.0, 127.9, 127.8, 125.2, 121.9, 119.8, 104.1, 100.7 (anomeric carbon), 82.3, 79.0, 75.9, 74.8, 74.6, 73.9, 73.4, 73.3, 69.2, 26.0. HRMS (ESITOF) (m/z) calcd for C₄₄H₄₄NO₆ [M+H]⁺, 682.3163; found, 682.3182.

Incorporation of ¹⁸O from phenol to ether

1-tert-Butyl 2-methyl (2S,4S)-4-(phenoxy)pyrrolidine-1,2-dicarboxylate (3y)

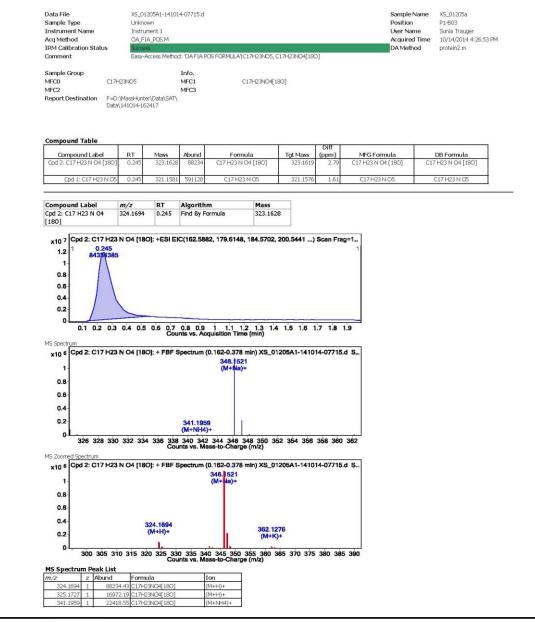



equiv), TMS-imidazole (85.0 mg, 88.9 μ L, 0.606 mmol, 3.03 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, Ph¹⁸OH (68.5% purity in ¹⁸O; 29.0 mg, 0.304 mmol, 1.52 equiv.) in 1.0 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h. Alcohol **2a** (49.0 mg, 0.200 mmol, 1.00 equiv.) in 1.0 mL dioxane was added and then the vial was sealed and heated at 80 °C for 13 h. Once cooled to 23 °C, the reaction mixture was concentrated in vacuo. The residue was purified by chromatography on silica gel, eluting with hexane/EtOAc 8:1 (v/v), to afford 44.5 mg of the title compound as a colorless oil (70% yield).

 $R_f = 0.25$ (hexane/EtOAc = 5/1 (v/v)). $[\alpha]_D^{23} = -32.2$ ° (c = 1.0, CHCl₃). NMR Spectroscopy [mixture of 2 rotamers]: ¹H NMR (500 MHz, DMSO-*d*6, 23 °C, δ): 7.32–7.25 (m, 4H, major+minor), 6.99–6.90 (m, 2H, major+minor), 6.88–6.78 (m, 4H, major+minor), 5.09–4.97 (m, 2H, major+ minor), 4.40 (dd, J = 8.3, 4.4 Hz, 1H, minor), 4.36 (dd, J = 9.4, 2.0 Hz, 1H, major), 3.75–3.65 (m, 2H, major+minor), 3.64 (s, 3H, major), 3.61 (s, 3H, minor), 3.46–3.36 (m, 2H, major+minor), 2.60–2.51 (m, 2H, major+minor), 2.20 (s, 1H, major), 2.17 (s, 1H, minor), 1.40 (s, 9H, minor), 1.34 (s, 9H, major). The above data is consistent with the reported data.⁴

VT NMR analysis of **3y** at 99 °C in DMSO-*d6* reflects an e.r. \ge 97 : 3.

HRMS analysis shows a 67.7% incorporation of ¹⁸O in the product, with the Ph¹⁸OH (68.5% purity of ¹⁸O) as the starting material, indicating that the oxygen in the ether bond is predominantly from phenol. For the mass spectra of ¹⁸O incorporation determination, see SI-Ph¹⁸OH and SI-¹⁸O-3y.

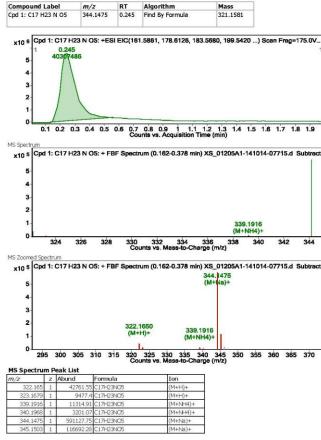


Agilent Technologies

Page 2 of 2

Printed at: 3:57 PM on:10/14/2014

SI-Ph¹⁸OH

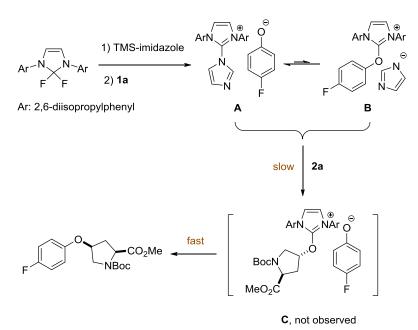


Agilent Technologies

Page 1 of 2

Printed at: 4:32 PM on:10/14/2014

342,1926	1	6686.67	C17H23NO4[180]	(M+NH4)+
346.1521	1	1154158.38	C17H23NO4[180]	(M+Na)+
347.155	1	223356.27	C17H23N04[180]	(M+Na)+
348.1576	1	25899.46	C17H23NO4[180]	(M+Na)+
349.1646	1	3035.42	C17H23NO4[180]	(M+Na)+
362.1276	1	20054.89	C17H23NO4[180]	(M+K)+
363.1332	1	4466.87	C17H23NO4[180]	(M+K)+


---- End Of Report ----

Agilent Technologies

Page 2 of 2

Printed at: 4:32 PM on:10/14/2014

SI-¹⁸O-3y

Tracking the reaction of 1a and 2a with ¹⁹F NMR and HRMS (ESI-TOF)

Reaction 1: under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (42.7 mg, 0.100 mmol, 1.00 equiv), TMS-imidazole (28.2 mg, 29.7 μ L, 0.201 mmol, 1.01 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, 4-fluorophenol (**1a**) (11.2 mg, 0.100 mmol, 1.00 equiv.) in 0.5 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h, after which PhCF₃ (20 μ L, 0.162 mmol) was added as the internal standard for ¹⁹F NMR analysis (see **Figure S1**). ¹⁹F NMR shows that a yield of 97% was found for 4-fluorophenolate at –132.4 ppm. HRMS (ESI-TOF) shows a major signal at 455.3191, which is in consistent with the calculated MS for the cation of ion pair A (C₃₀H₃₉N₄; 455.3169). Although ion pair B was not observed in ¹⁹F NMR, a very small peak at 499.3124 was observed via HRMS (ESI-TOF), which is consistent with the calculated MS for the

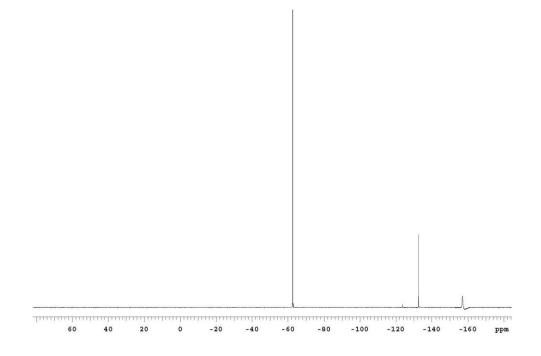


Figure S1 ¹⁹F NMR of reaction 1

Reaction 2: under N₂ atmosphere, to an oven-dried vial were added PhenoFluor (42.7 mg, 0.100 mmol, 1.00 equiv), TMS-imidazole (28.2 mg, 29.7 μ L, 0.201 mmol, 2.01 equiv.), and 1.0 mL of dioxane at 23 °C. After 10 minutes, 4-fluorophenol (**1a**) (11.2 mg, 0.100 mmol, 1.00 equiv.) in 0.5 mL dioxane was added, and the mixture was stirred at 23 °C for 0.5 h, after which 1-(tert-butyl) 2-methyl (2*S*,4*R*)-4-hydroxypyrrolidine-1,2-dicarboxylate **2a** (24.5 mg, 0.100 mmol, 1.00 equiv.) in 1.0 mL of dioxane were added. The mixture was then heated at 60 °C. After 3 h, PhCF₃ (10 μ L, 0.081 mmol) was added as the internal standard for ¹⁹F NMR analysis (see **Figure S2**). ¹⁹F NMR showed a yield of 48% for ether **3a**, and a yield of 52% for 4-fluorophenolate. The cations of A and B can still be observed via HRMS (ESI-TOF), and A is the major intermediate. The anticipated ion pair C was not observed. For the mass spectra, see SI-reaction 2.

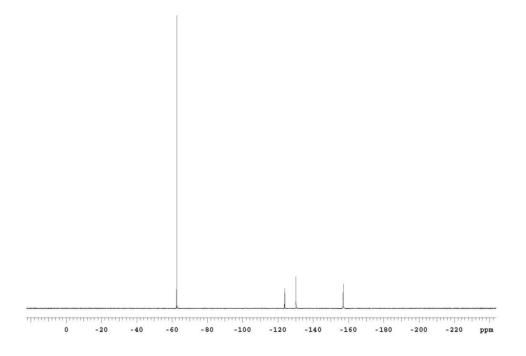
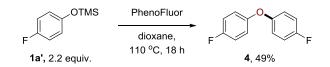



Figure S2 ¹⁹F NMR of reaction 2

PhenoFluor mediated homo coupling of (4-fluorophenoxy)trimethylsilane (1a').

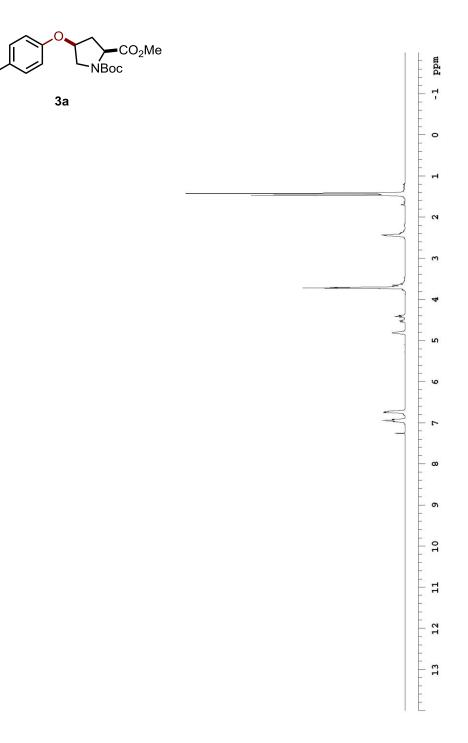
Under N_2 atmosphere, the mixture of PhenoFluor (427.0 mg, 1.00 mmol, 1.00 equiv), (4-fluorophenoxy)trimethylsilane (**1a'**, 405.4 mg, 2.20 mmol, 2.20 equiv.), and dioxane (6 mL) was heated at 110 °C for 18 h. The reaction was quenched with water (10 mL), and the mixture was extracted with Et₂O (20 mL×3). The organic phase was dried with anhydrous MgSO₄. The solvent was removed under vacuo. The residue was purified by chromatography on silica gel, eluting with pentane, to afford 101 mg of the title compound as a colorless oil (49% yield).

Characterization of compound **4**: NMR Spectroscopy: ¹H NMR (400 MHz, CDCl₃, 23 °C, δ): 7.06–6.99 (m, 4H), 6.97–6.92 (m, 4H). ¹³C NMR (125 MHz, 23 °C, δ) 158.86 (d, *J* = 241.7 Hz), 153.49 (d, *J* = 3.0 Hz), 120.05 (d, *J* = 8.4 Hz), 116.47 (d, *J* = 23.4 Hz). ¹⁹F NMR (375 MHz, CDCl₃, 23 °C, δ): –120.2. MS (EI) (m/z): 206 (M⁺).

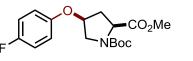
References

(1) Shriver, D. F.; Drezdon, M. A. Inert-Atmosphere Glove Boxes. The Manipulation of Air-Sensitive Compounds, 2nd ed.; John Wiley & Sons: New York, 1986; pp. 45–67.

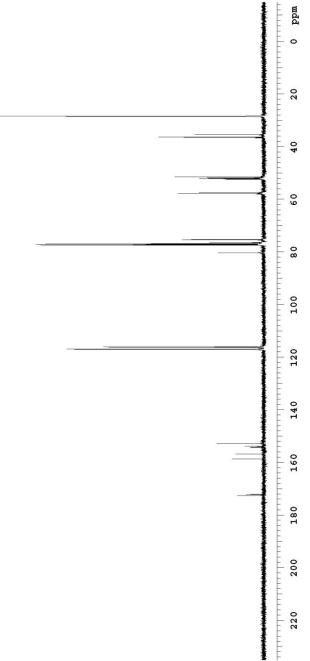
(2) Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics **1996**, *15*, 1518–1520.

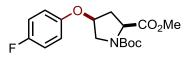

(3) Fulmer, G. R.; Miller, A. J. M.; Sherden, N. H.; Gottlieb, H. E.; Nudelman, A.; Stoltz, B. M.; Bercaw, J. E.; Goldberg, K. I. *Organometallics* **2010**, *29*, 2176-2179.

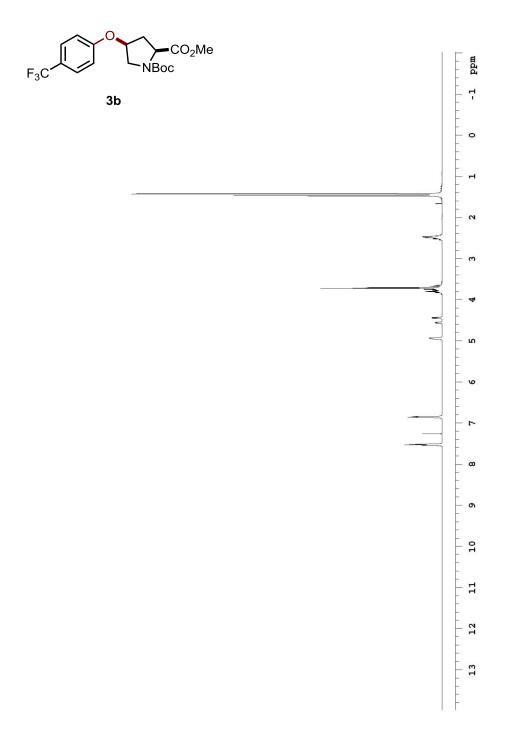
(4) Bellier, B.; McCort-Tranchepain, I.; Ducos, B.; Danascimento, S.; Meudal, H.; Noble, F.; Garbay, C.; Roques, B. P. *J. Med. Chem.* **1997**, *40*, 3947.

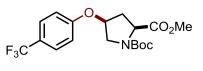

Spectroscopic Data

F

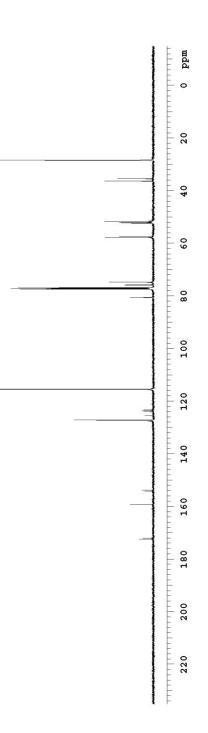

¹H NMR of **3a** (CDCl₃, 500 MHz, 23 °C)

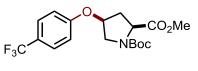

¹³C NMR of **3a** (CDCl₃, 125 MHz, 23 °C)

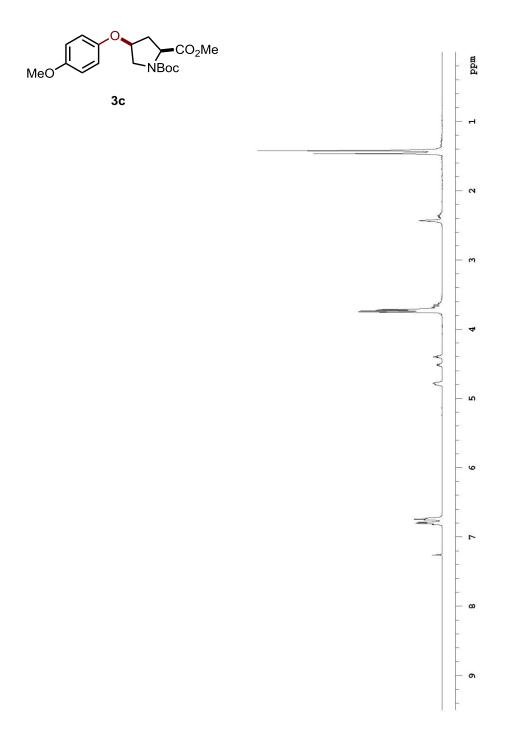

¹⁹F NMR of **3a** (CDCl₃, 375 MHz, 23 **°**C)

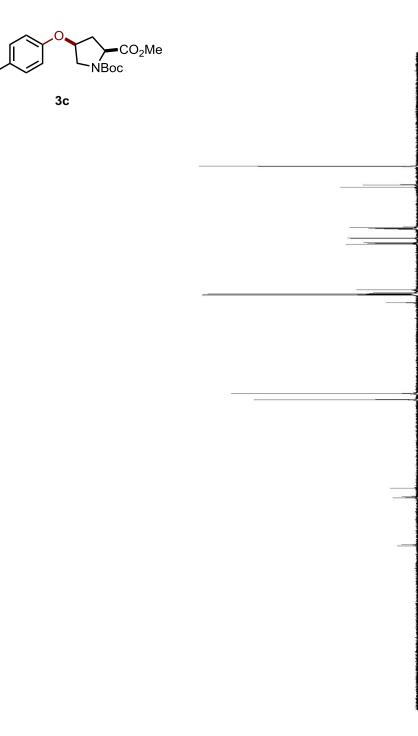

3a

mdd -140 -120 -100 -80 -- 60 E -40 - 20 -0 20 ()

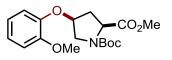

¹H NMR of **3b** (CDCl₃, 500 MHz, 23 °C)


¹³C NMR of **3b** (CDCl₃, 125 MHz, 23 °C)

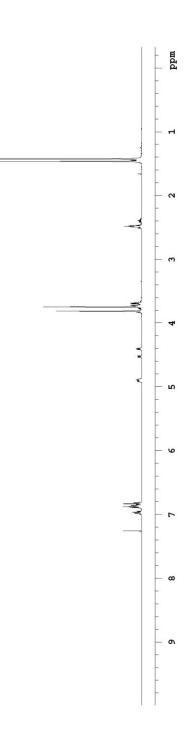

¹⁹F NMR of **3b** (CDCl₃, 471 MHz, 23 °C)


-240 ppm -220 -200 -180 -160 -140 -120 -100 - 80 - 60 II IIII -40 I I I I I I I 20 0 -20

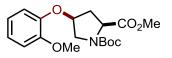
¹H NMR of **3c** (CDCl₃, 500 MHz, 23 °C)

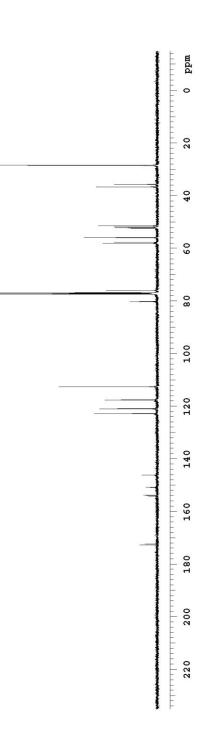

MeO

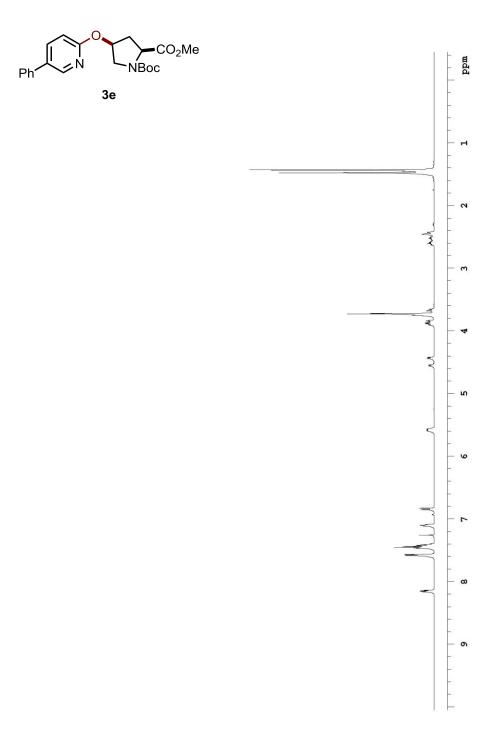
¹³C NMR of **3c** (CDCl₃, 125 MHz, 23 $^{\circ}$ C)

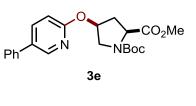


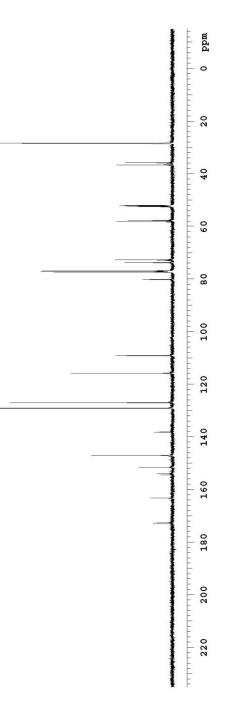
mdd


¹H NMR of **3d** (CDCl₃, 500 MHz, 23 $^{\circ}$ C)



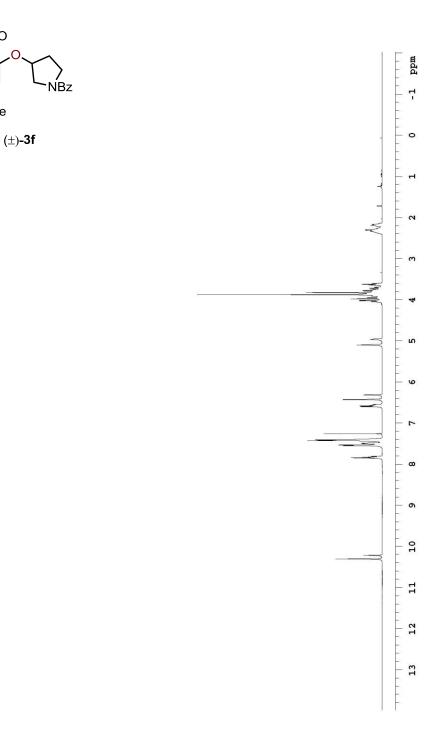

¹³C NMR of **3d** (CDCl₃, 125 MHz, 23 °C)

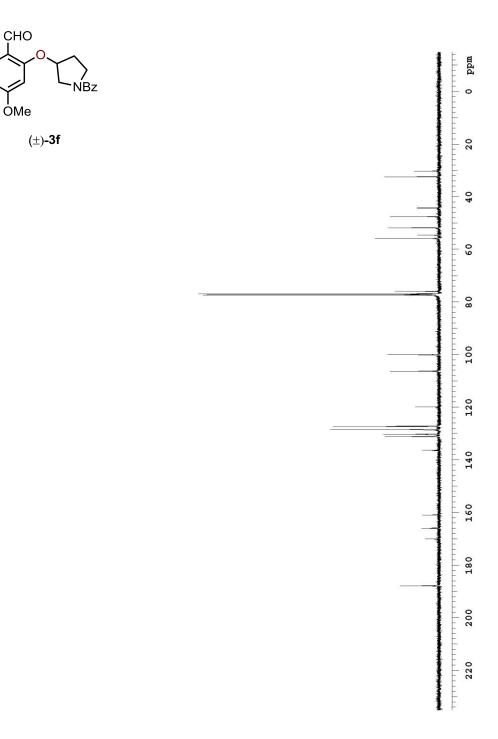




¹H NMR of **3e** (CDCl₃, 500 MHz, 23 °C)

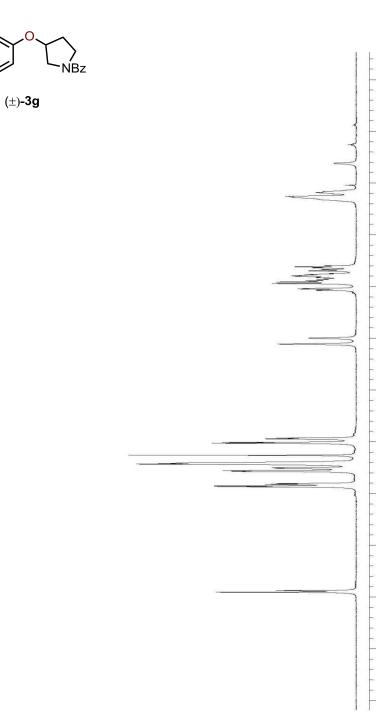
¹³C NMR of **3e** (CDCl₃, 125 MHz, 23 °C)




ĊНО

ЬМе

¹H NMR of (\pm)-**3f** (CDCl₃, 500 MHz, 23 °C)



¹³C NMR of (\pm) -**3f** (CDCl₃, 125 MHz, 23 °C)

онс

¹H NMR of (\pm)-**3**g (CDCl₃, 500 MHz, 23 °C)

mdd

н

3

3

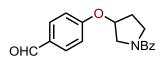
4

ы

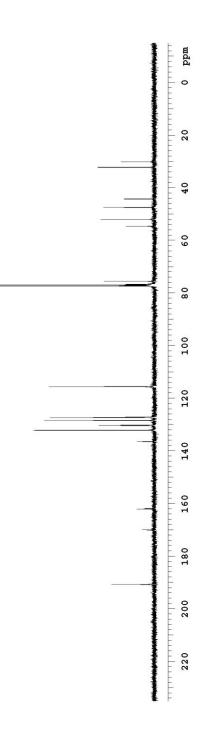
9

5

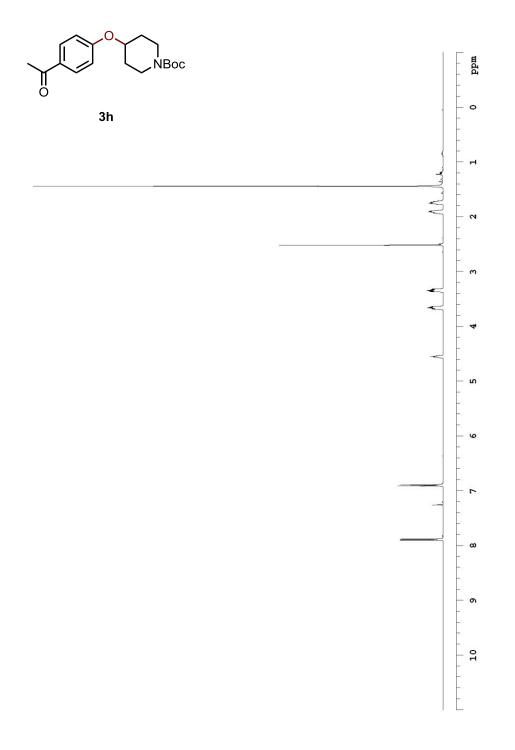
8

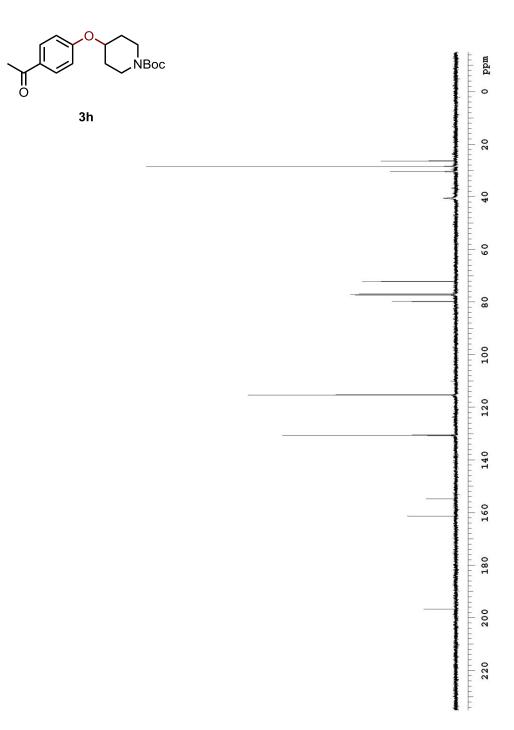

σ

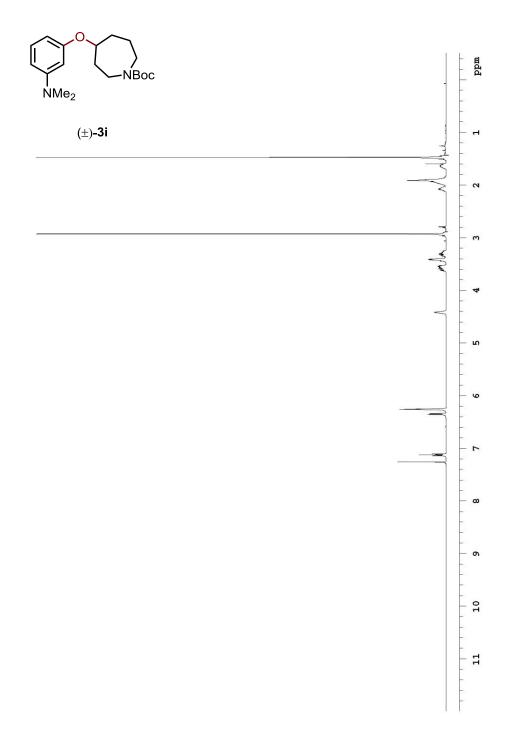
10

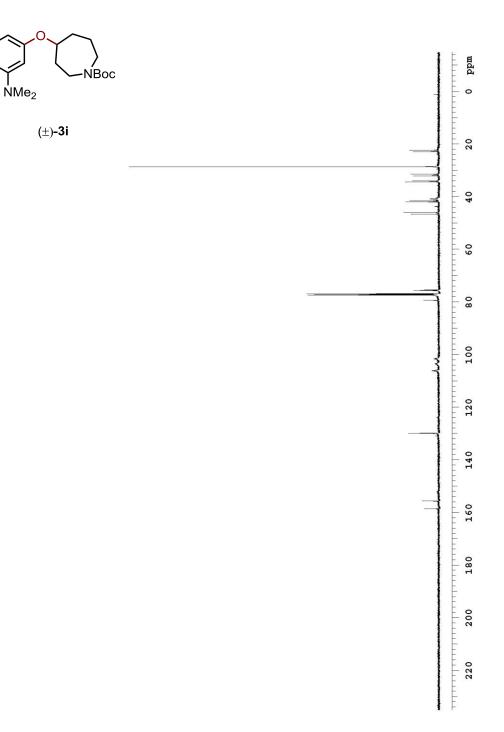

11

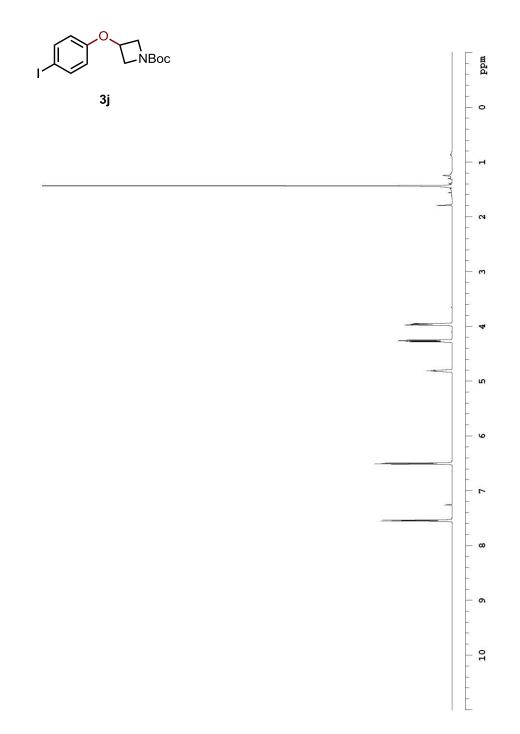
12

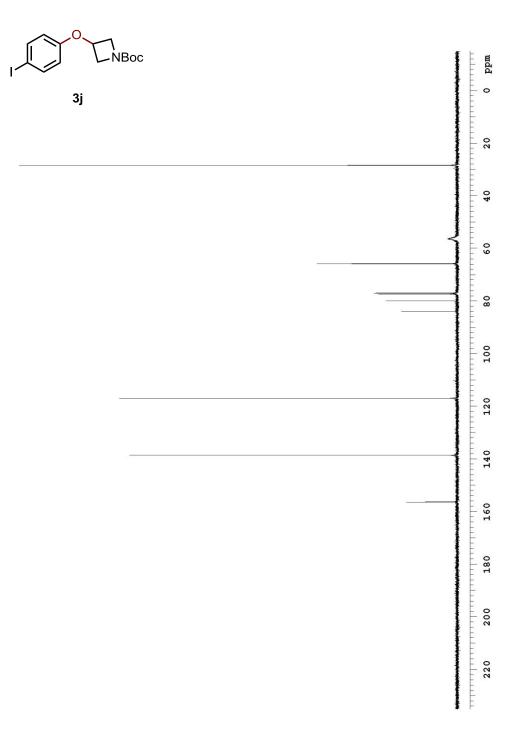

¹³C NMR of (\pm)-**3**g (CDCl₃, 125 MHz, 23 °C)

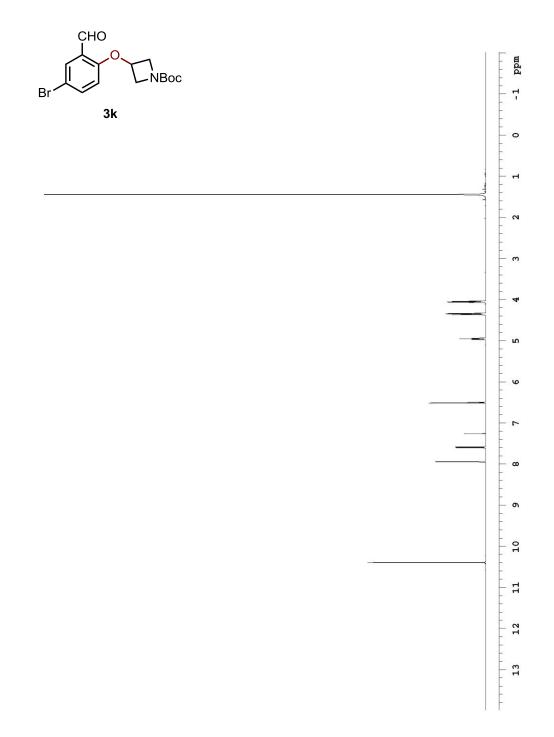


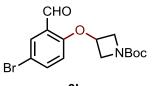

¹H NMR of **3h** (CDCl₃, 500 MHz, 23 °C)

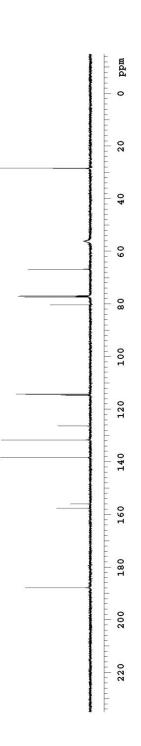

¹³C NMR of **3h** (CDCl₃, 125 MHz, 23 °C)

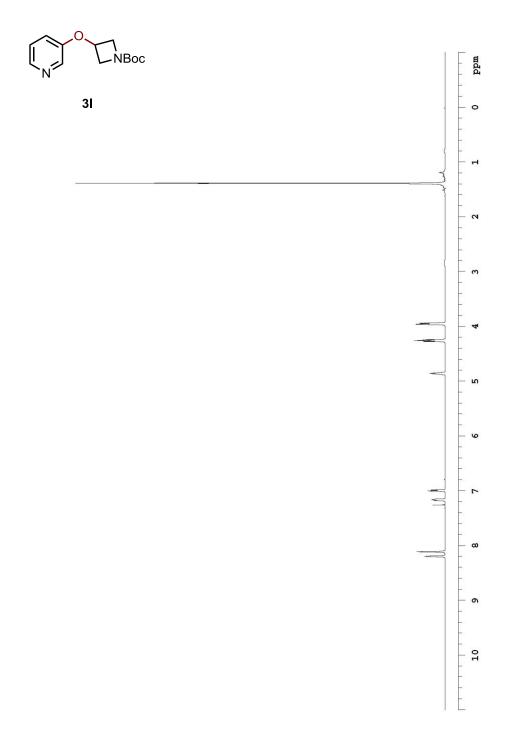

¹H NMR of (\pm)-**3i** (CDCl₃, 500 MHz, 23 °C)

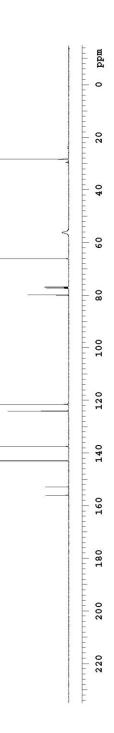

¹³C NMR of (\pm)-**3i** (CDCl₃, 125 MHz, 23 °C)


¹H NMR of **3j** (CDCl₃, 500 MHz, 23 °C)


¹³C NMR of **3j** (CDCl₃, 125 MHz, 23 °C)

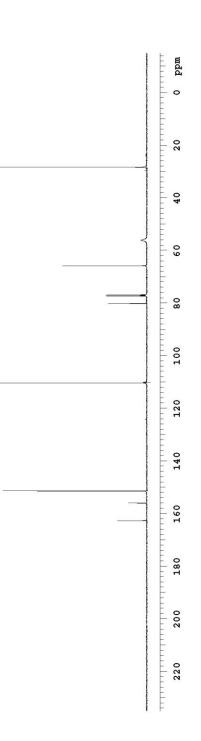

¹H NMR of **3k** (CDCl₃, 500 MHz, 23 °C)


¹³C NMR of **3k** (CDCl₃, 125 MHz, 23 °C)

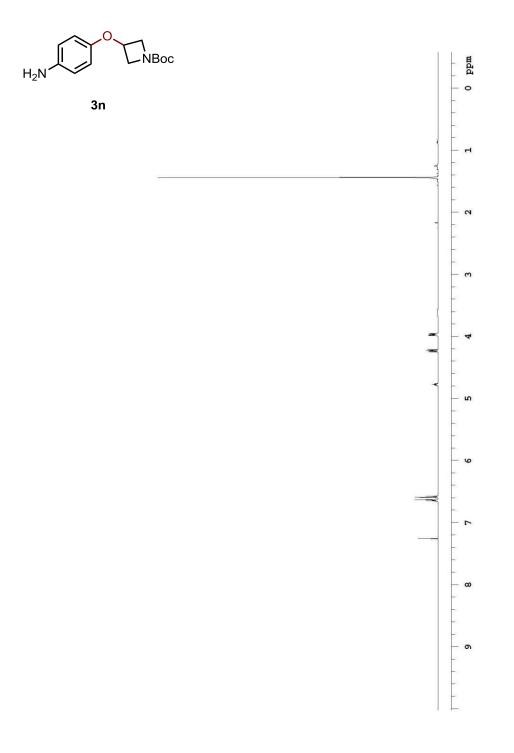


¹H NMR of **31** (CDCl₃, 500 MHz, 23 °C)

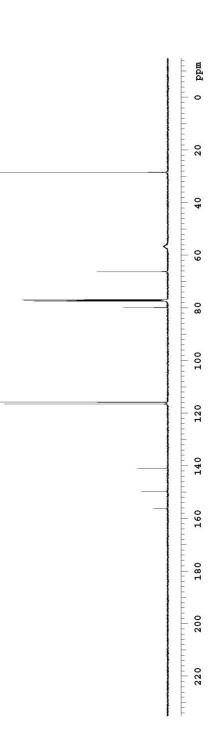

¹³C NMR of **3l** (CDCl₃, 125 MHz, 23 °C)


¹H NMR of **3m** (CDCl₃, 500 MHz, 23 °C)

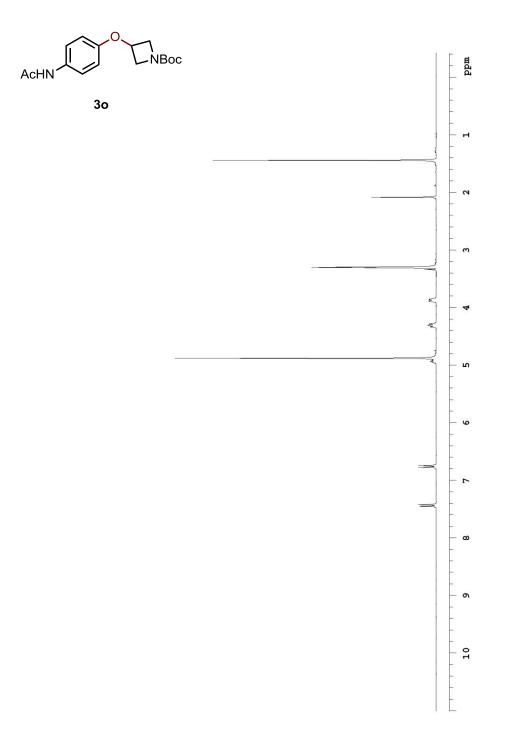
3m



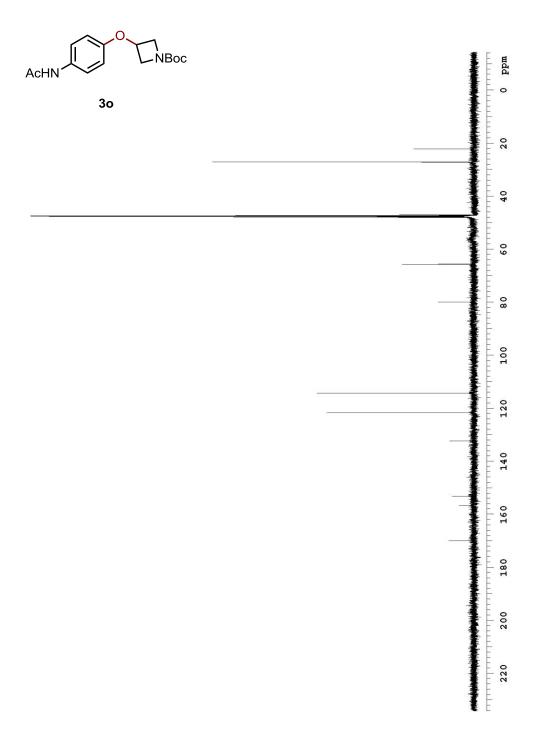
¹³C NMR of **3m** (CDCl₃, 125 MHz, 23 **°**C)

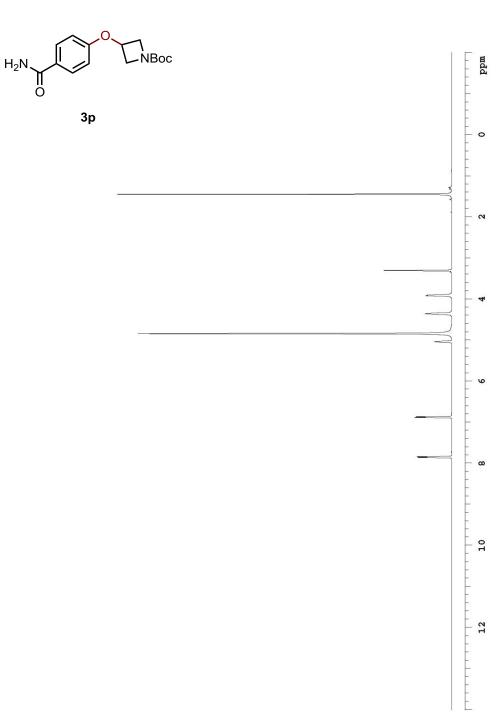


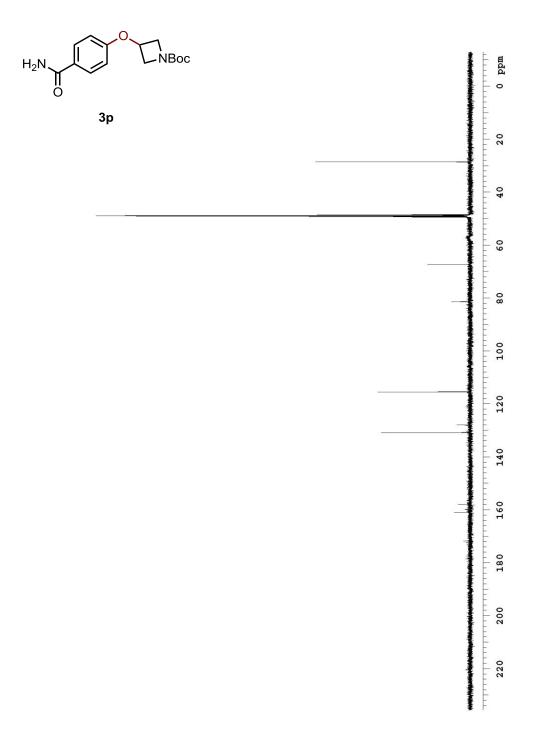
¹H NMR of **3n** (CDCl₃, 500 MHz, 23 °C)

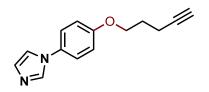


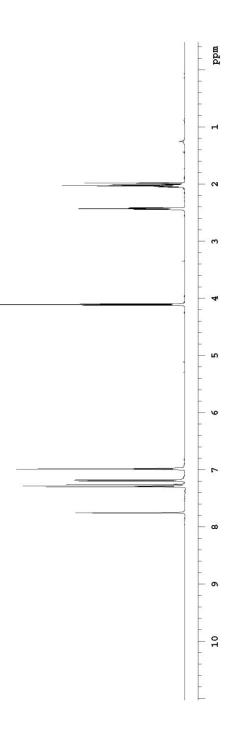
¹³C NMR of **3n** (CDCl₃, 125 MHz, 23 °C)

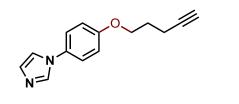


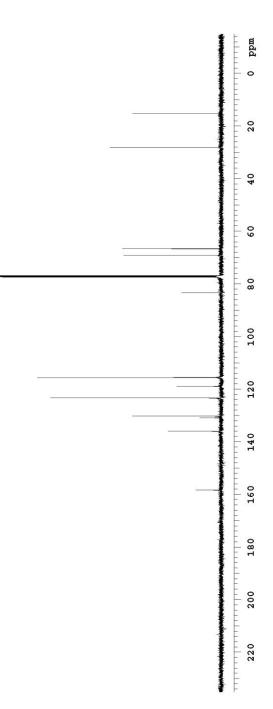

¹H NMR of **30** (CD₃OD, 600 MHz, 23 °C)

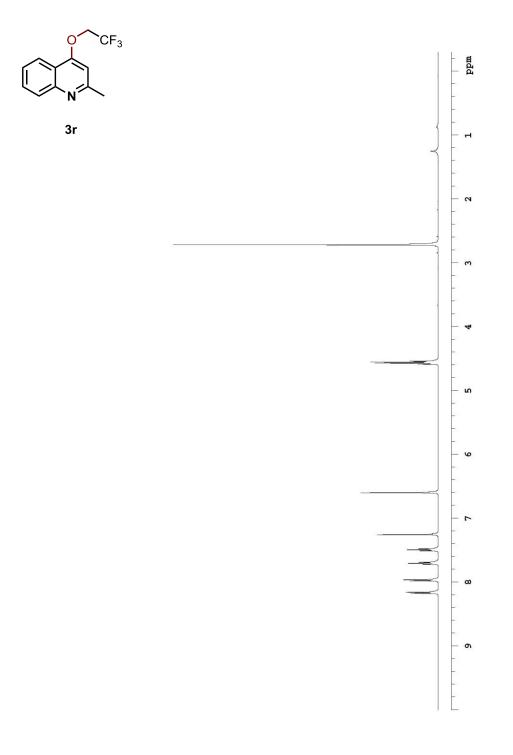

¹³C NMR of **30** (CD₃OD, 125 MHz, 23 °C)

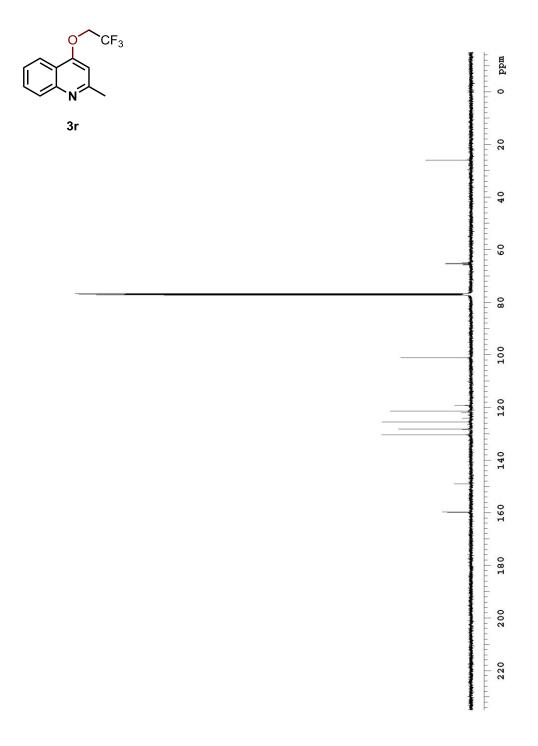

¹H NMR of **3p** (CDCl₃, 600 MHz, 23 °C)

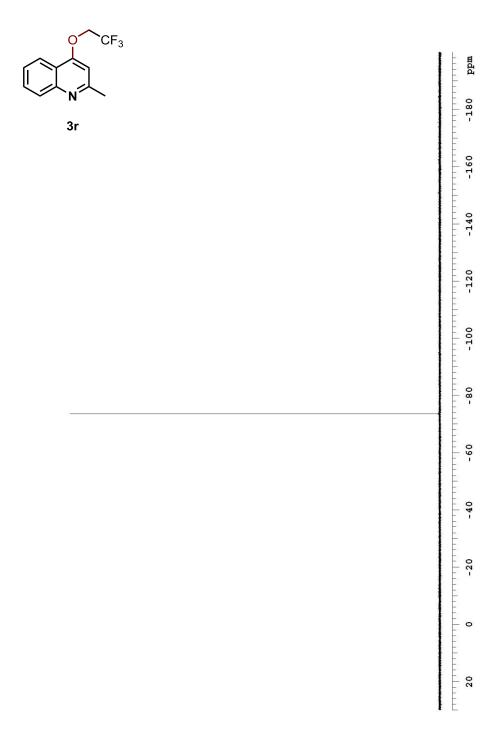

¹³C NMR of **3p** (CDCl₃, 125 MHz, 23 °C)


¹H NMR of 3q (CDCl₃, 500 MHz, 23 °C)

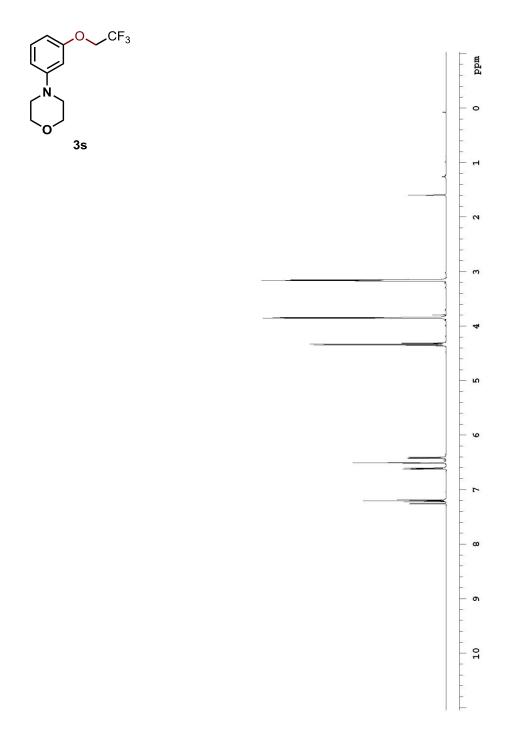

3q


¹³C NMR of **3q** (CDCl₃, 125 MHz, 23 °C)

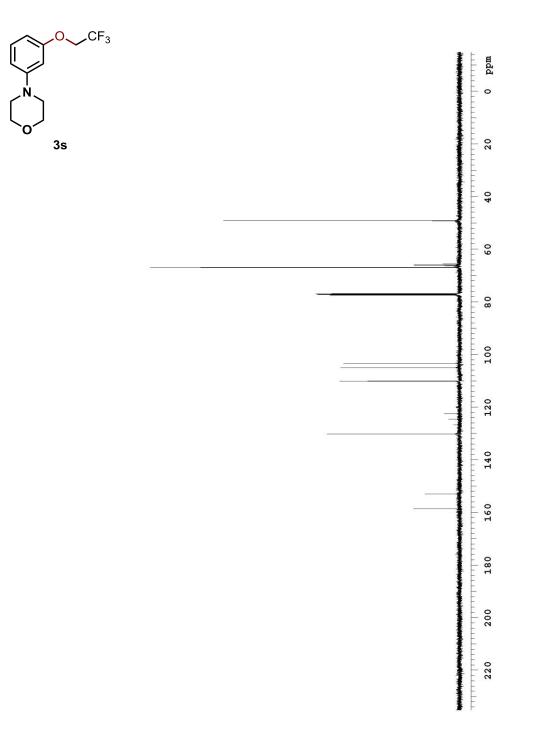



¹H NMR of 3r (CDCl₃, 500 MHz, 23 °C)

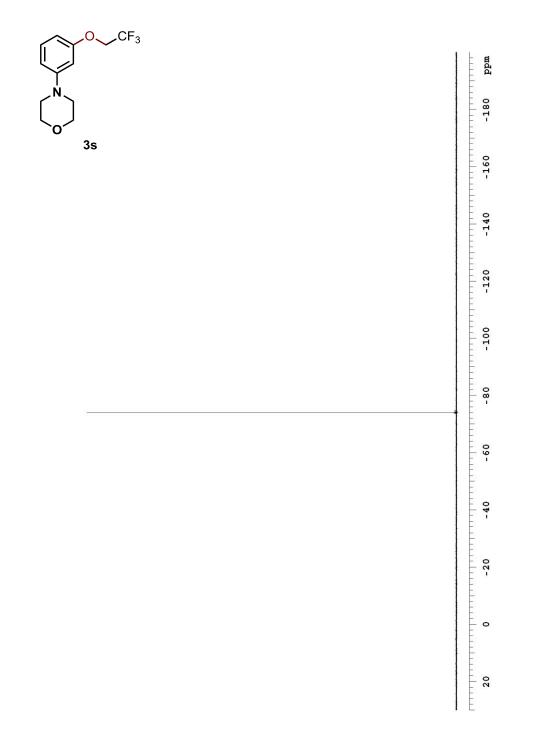
¹³C NMR of **3r** (CDCl₃, 125 MHz, 23 $^{\circ}$ C)

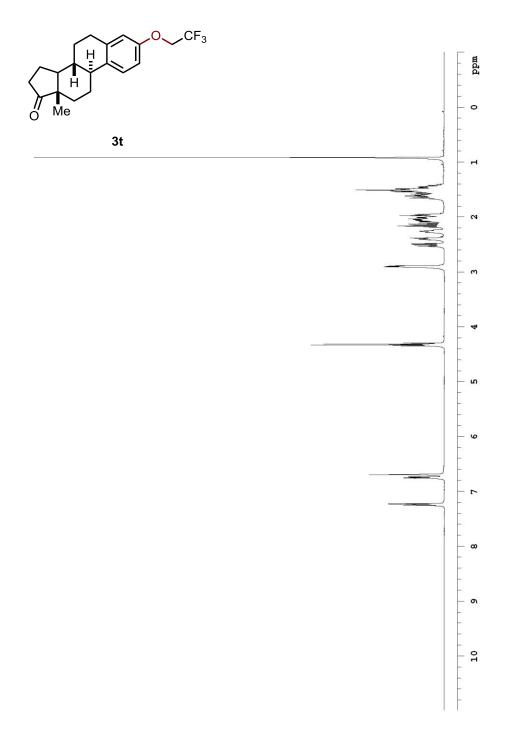


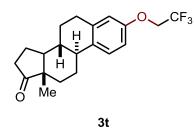
¹⁹F NMR of **3r** (CDCl₃, 282 MHz, 23 °C)

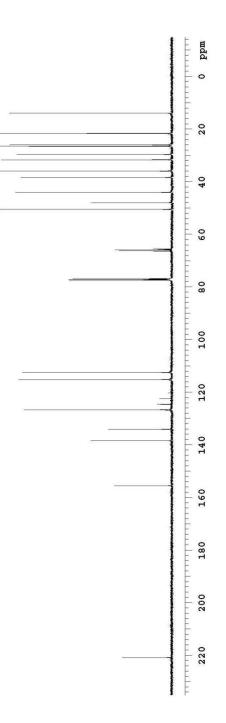


S70

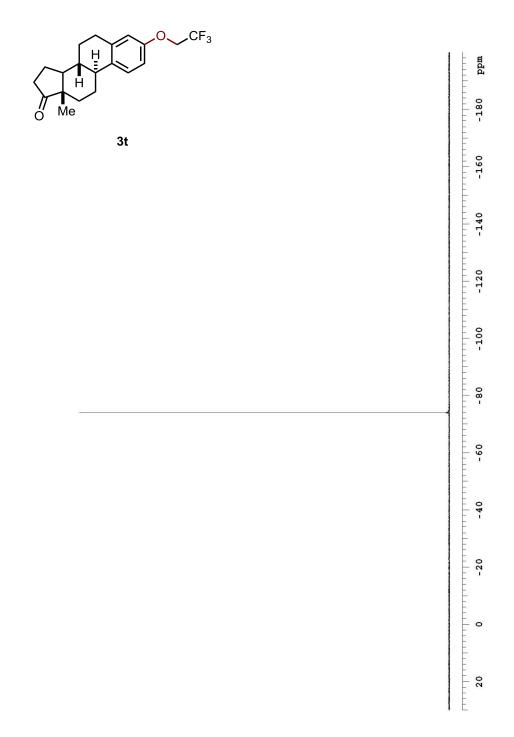

¹H NMR of **3s** (CDCl₃, 500 MHz, 23 $^{\circ}$ C)


¹³C NMR of **3s** (CDCl₃, 125 MHz, 23 °C)

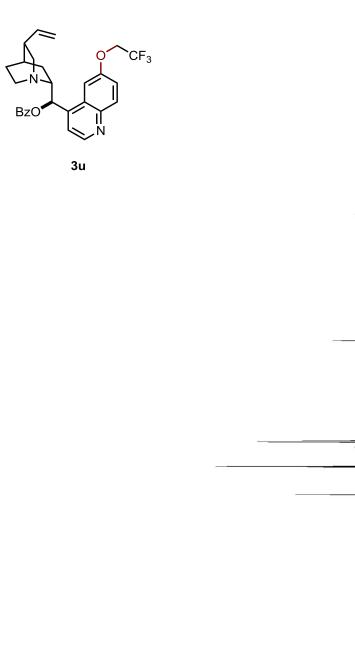

¹⁹F NMR of **3s** (CDCl₃, 282 MHz, 23 °C)

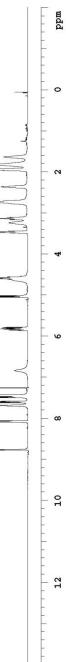


¹H NMR of **3t** (CDCl₃, 500 MHz, 23 °C)



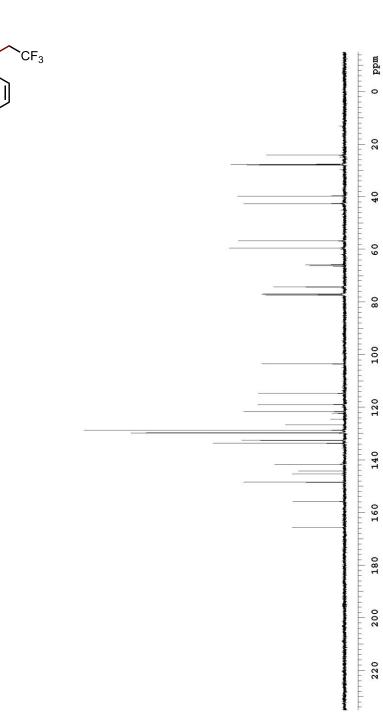
¹³C NMR of **3t** (CDCl₃, 125 MHz, 23 °C)



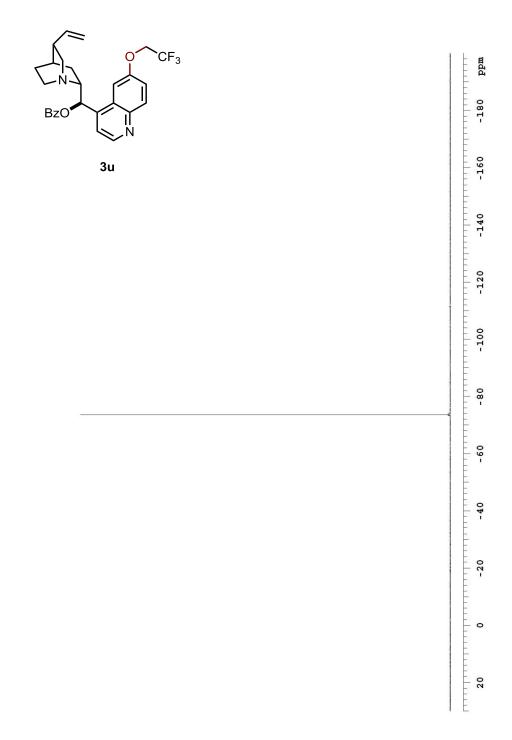


¹⁹F NMR of **3t** (CDCl₃, 282 MHz, 23 °C)

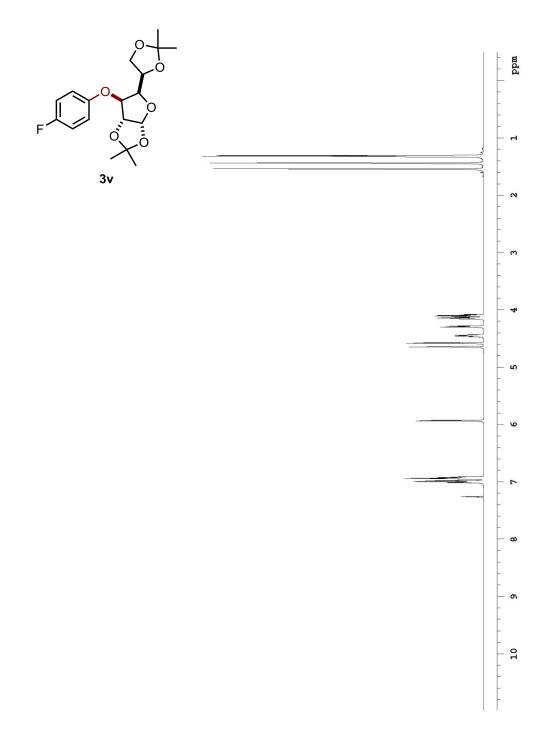
¹H NMR of 3u (CDCl₃, 500 MHz, 23 °C)

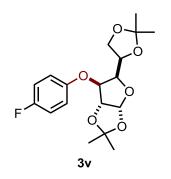


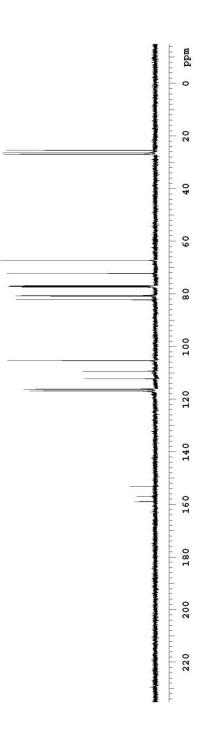
BzO


¹³C NMR of **3u** (CDCl₃, 125 MHz, 23 °C)

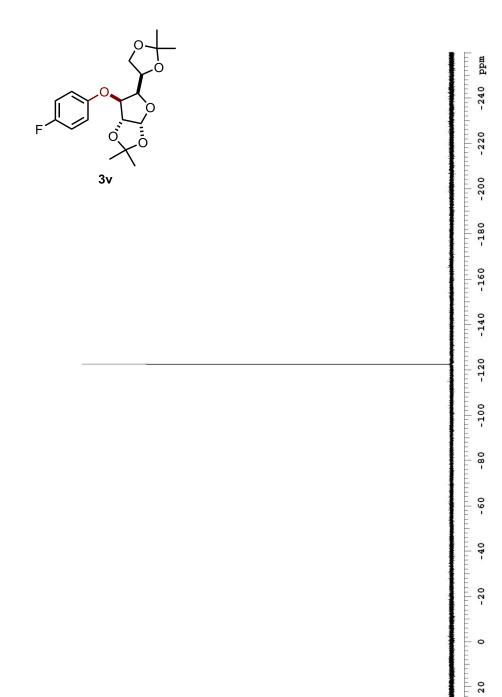
0


3u

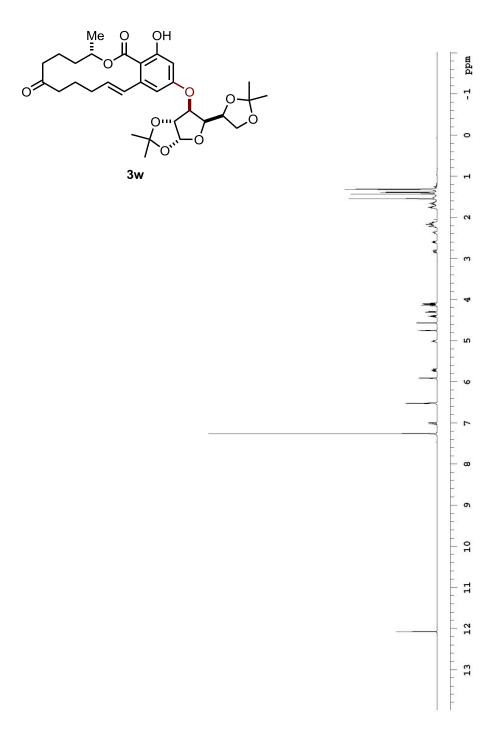

¹⁹F NMR of **3u** (CDCl₃, 282 MHz, 23 °C)

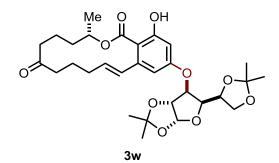


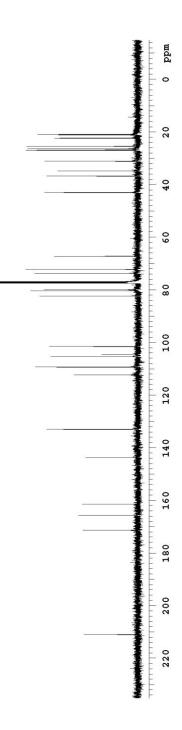
¹H NMR of 3v (CDCl₃, 500 MHz, 23 °C)



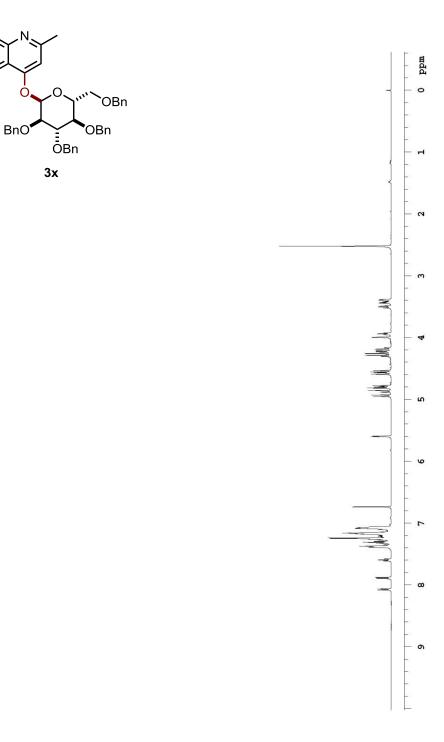
¹³C NMR of 3v (CDCl₃, 125 MHz, 23 °C)



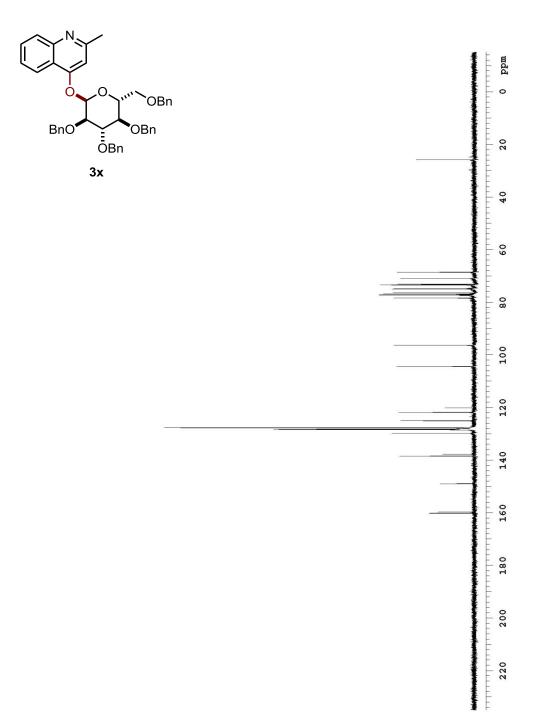

¹⁹F NMR of **3v** (CDCl₃, 282 MHz, 23 °C)

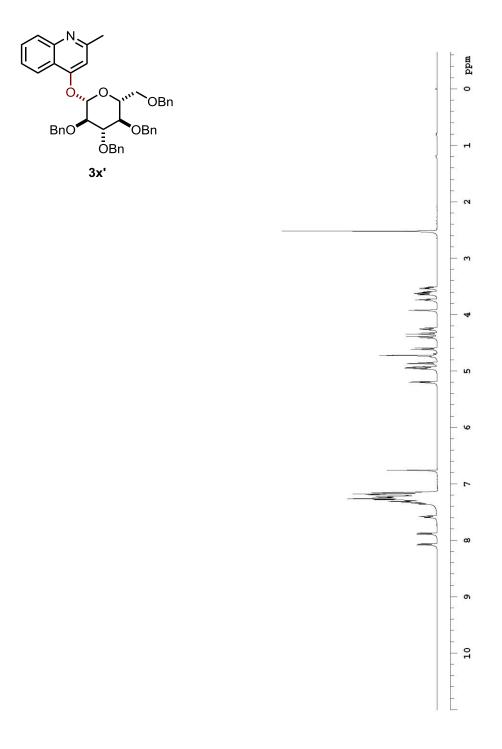


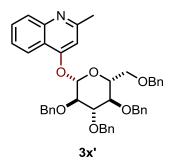
¹H NMR of 3w (CDCl₃, 500 MHz, 23 °C)

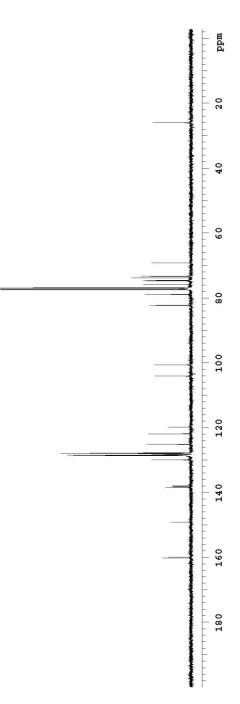


¹³C NMR of **3w** (CDCl₃, 125 MHz, 23 °C)

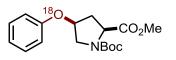



¹H NMR of 3x (CDCl₃, 500 MHz, 23 °C)

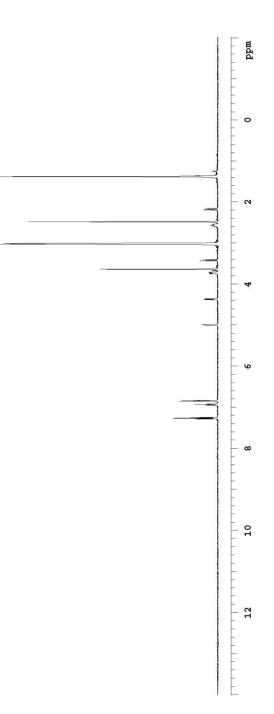

¹³C NMR of **3x** (CDCl₃, 125 MHz, 23 °C)

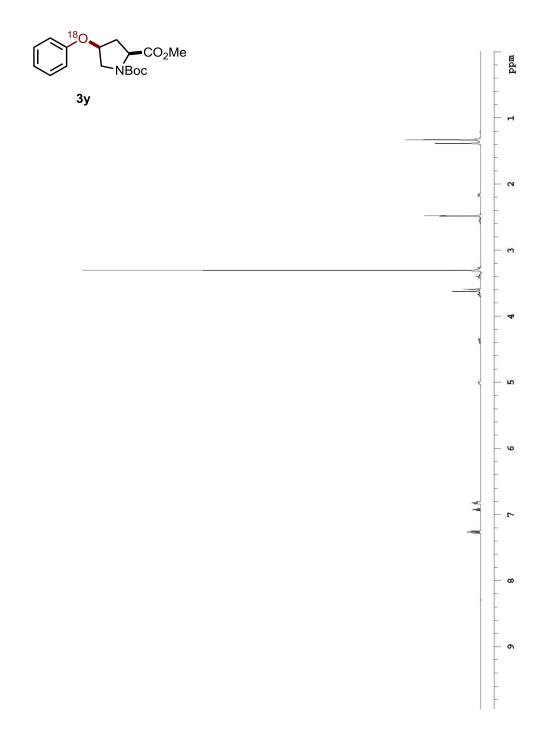


¹H NMR of **3x'** (CDCl₃, 500 MHz, 23 °C)



¹³C NMR of **3x**' (CDCl₃, 125 MHz, 23 °C)




¹³H NMR of **3**y (DMSO-*d6*, 500 MHz, 99 °C)

3у

¹H NMR of **3y** (DMSO-*d6*, 500 MHz, 23 °C)

