
APPENDIX A: PROOFS OF CONSISTENCY
AND ASYMPTOTIC NORMALITY

The conditions for the consistency and asymptotic normality of β̂ and Λ̂0(τ)
in the Cox model were given in Andersen and Gill (1982), which used martin-
gales to simplify and generalize the asymptotic results of Cox (1975) and Tsiatis
(1981). Conditions for the more general relative risk model were given in Pren-
tice and Self (1983). Here, we outline the most important of these conditions
and point out their implications for the use of relative risk regression models in
infectious disease epidemiology.

A.1 Regularity conditions

Assume all observations take place at infectiousness ages in [0, T ] for some
finite T . Let m = Y (0+) = limτ↓0 Y (τ) be the number of pairs ij that were at
risk of infectious contact from i to j while under observation. Let nm denote
the number of individuals that constitute the m pairs. Define the following
functions (Prentice and Self, 1983):

S(0)
m (β, τ) =

1

m
Y (β, τ) =

nm∑
j=1

∑
i6=j

r
(
βTXij(τ)

)
Yij(τ),

S(1)
m (β, τ) =

∂

∂β
S(0)
m (τ) =

1

m

nm∑
j=1

Xij(τ)r′
(
βTXij(τ)

)
Yij(τ), and

S(2)
m (β, τ) =

1

m

nm∑
j=1

∑
i 6=j

Xij(τ)⊗2
(

(ln r)′
(
βTXij(τ)

))2
r
(
βTXij(τ)

)
Yij(τ).

Note that S
(0)
m is real-valued, S

(1)
m is b×1 vector-valued, and S

(2)
m is b×b matrix-

valued. Now let

Em(β, τ) =
S
(1)
m (β, τ)

S
(0)
m (β, τ)

and (A.1)

Vm(β, τ) =
S
(2)
m (β, τ)

S
(0)
m (β, τ)

− Em(β, τ)⊗2 (A.2)

be the values of E(β, τ) and V (β, τ), respectively, based on observations of m
pairs at risk of transmission.

For consistency and asymptotic normality of
√
m(β̂ − β0), we have the fol-

lowing sufficient conditions (Andersen and Gill, 1982; Prentice and Self, 1983):

A. (Finite interval) Λ0(T ) <∞.

B. (Regression function positivity) There exists a neighborhood B0 of β0 such
that r

(
βTXij(τ)

)
is locally bounded away from zero for all ij and all β ∈ B0.
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C. (Asymptotic stability) There exists a neighborhood B ⊆ B0 of β0 and func-
tions s(0), s(1), s(2) defined on B × [0, T ] such that

sup
β∈B,τ∈[0,T ]

‖S(k)
m (β, τ)− s(k)(β, τ)‖ P−→ 0 as m→∞ (A.3)

for k = 0, 1, 2. Here, ‖x‖ is |x| for real x, max
(
|x1|, . . . , |xb|

)
for vector

x, and max
(
|x11|, . . . , |xbb|

)
for matrix x. Asymptotic properties of the

Cox model depend only on convergence of these three functions. For more
general relative risk functions, convergence of four additional functions is
also required (Prentice and Self, 1983).

D. (Asymptotic regularity) The functions s(0)(β, τ), . . . , s(2)(β, τ) are bounded
on B×[0, T ] and continuous in β uniformly in τ . In addition, s(0) is bounded
away from zero and has first and second derivatives with respect to β on

B × [0, T ]. Finally, let e(β, τ) = s(1)(β,τ)
s(0)(β,τ)

and v(β, τ) = s(2)(β,τ)
s(0)(β,τ)

− e(β, τ)⊗2.

Then

Σ =

∫ T
0

v(β0, u)s(0)(β0, u)λ0(u) du (A.4)

is positive definite.

E. (Asymptotic stability of the observed information matrix)

sup
β∈B

∫ T
0

1

m2

nm∑
j=1

∑
i 6=j

‖Xij(u)‖4
(

(ln r)′′
(
βTXij(u)

))2
r
(
βT
0Xij(u)

)
λ0(u) du

P−→ 0. (A.5)

F. (Lindeberg condition)

1√
m

sup
τ,ij

∥∥∥Xij(τ)(ln r)′
(
βT
0Xij(τ)

)∥∥∥ P−→ 0, (A.6)

where the supremum is over all τ ∈ [0, T ] and all ij such that Yij(τ) = 1.

Condition F is automatically fulfilled if the covariates Xij are bounded. In the
Cox model, conditions B and E are automatically fulfilled because exp(x) > 0
and (ln r)′′(x) = 0 for all real x. With only slight modification, these conditions
also guarantee consistency and asymptotic normality in a stratified relative-risk
regression model (Andersen and Borgan, 1985).

For the methods in this paper, the most important constraint is that s(0)(β, τ)
is bounded away from zero. This has two implications for infectious disease data
that have no counterpart in standard survival data. First, the infectious period
must be ≥ T with positive probability. Second, the hazard of infection in the
susceptible j from a randomly chosen ij at risk of transmission must have a
finite mean as m→∞. To state this requirement more precisely, let

Y·j(τ) =
∑
i6=j

Yij(τ)⇒
nm∑
j=1

Y·j(0
+) = m. (A.7)
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Now let Dij = Y·j(0
+)Yij(0

+) be the number of infectors to which j is exposed
if ij was at risk of transmission and Dij = 0 otherwise. If we randomly choose
a pair ij at risk of transmission and look at the number of infectors to which j
is exposed, its expected value is

1

m

nm∑
j=1

∑
i 6=j

Dij =
1

m

nm∑
j=1

Y·j(0
+)2. (A.8)

For s(0)(β, τ) to be bounded away from zero, we must have

lim sup
m→∞

1

m

nm∑
j=1

Y·j(0
+)2 <∞. (A.9)

If not, a randomly chosen ij has a j with a hazard of infection that becomes
infinite as m → ∞, which implies E[Yij(τ) ] → 0 and s(0)(β, τ) → 0 for all
τ > 0. In practice, this constraint implies that large-sample distributions are
useful when both the number of pairs m and the number of susceptibles are
large such that the largest value of Y·j(0

+)� m.
There is no similar constraint on the number of susceptibles exposed to each

infectious person. In theory, we could have m susceptibles exposed to a single
infectious person without violating the regularity conditions (as long as his or
her infectious period was ≥ T ). This is because the contact intervals in all pairs
ij for a fixed i are assumed to be independent of each other and independent of
the infectious period of i conditional on the covariate processes Xij(τ).

A.2 Asymptotic properties of U(β0, τ), β̂, and Λ̂0(τ)

Let Um(β0, τ) denote the score process based on observations of m pairs ij

at risk of transmission when who-infects-whom is observed, let β̂m denote the
corresponding maximum partial likelihood estimate, and let Λ̂0,m(τ) denote the
corresponding Breslow estimate of the baseline hazard. Under the conditions of
the last section, we have the following results as m → ∞ (Andersen and Gill,
1982; Prentice and Self, 1983):

1. Asymptotic normality of the score: 1√
m
U(β0, T )

D−→ N
(
0,Σ

)
.

2. Consistency of I(β0) and I(β0): 1
mI(β0)

P−→ Σ and 1
mI(β0)

P−→ Σ.

3. Consistency of β̂: β̂m
P−→ β0.

4. Asymptotic normality of β̂:
√
m(β̂ − β0)

D−→ N
(
0,Σ−1

)
.

5. Consistency of I(β̂) and I(β̂): 1
mI(β̂)

P−→ Σ and 1
mI(β̂)

P−→ Σ.

6. Convergence of
√
m
(
Λ̂0(τ)−Λ0(τ)

)
to a mean-zero Gaussian process with

independent increments.
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7. Asymptotic independence of( ∂

∂β
Λ̂(β∗, τ)

)T√
m(β̂ − β0)

and

m

∫ τ

0

1

Y (β0, u)2
dN(u).

8. Continuity of ∂
∂β Λ̂(β∗, τ): ∂

∂β Λ̂(βm, τ)
P−→ ∂

∂β Λ̂(β0, τ) if βm
P−→ β.

APPENDIX B: ASYMPTOTIC VARIANCE OF
BASELINE HAZARD ESTIMATES

Andersen and Gill (1982) showed that
√
m
(
Λ̂0(τ)−Λ0(τ)

)
converges to a mean-

zero Gaussian martingale in the Cox model for standard survival data, and this
result was extended to more general relative risk functions by Prentice and
Self (1983). Under the conditions given in Appendix , these derivations extend
directly to infectious disease data.

B.1 Who-infects-whom is observed

Expanding Λ̂0(τ)− Λ0(τ) gives us

√
m
(

Λ̂0(τ)− Λ0(τ)
)

=
√
m
(

Λ̂(β̂, τ)− Λ̂(β0, τ)
)

+
√
m
(

Λ̂(β0, τ)− Λ∗0(τ)
)

+
√
m
(
Λ∗0(τ)− Λ0(τ)

)
, (B.1)

where Λ∗0(τ) =
∫ τ
0
1Y (u)>0λ0(u) du. By a first-order Taylor expansion, the first

term in (B.1) is (
∂

∂β
Λ̂(β∗, τ)

)T√
m
(
β̂ − β0

)
(B.2)

for some β∗ on the line segment between β0 and β̂. Using the Doob-Meyer
decomposition, the second term in (B.1) can be written

√
m

∫ τ

0

1Y (u)>0

Y (β0, u)
dM(u), (B.3)

which is a martingale with the optional variation process

m

∫ τ

0

1

Y (β0, u)2
dN(u). (B.4)
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The third term in (B.1) is zero For all τ such that Y (τ) > 0. Under the
regularity conditions of Appendix , the first and second terms are asymptotically
independent, so the asymptotic variance of (B.1) is(

∂

∂β
Λ̂(β̂, τ)

)T(
1

m
I(β̂)

)−1(
∂

∂β
Λ̂(β̂, τ)

)
+

∫ τ

0

m

Y (β̂, u)2
dN(u) (B.5)

for all τ such that Y (τ) > 0.

B.2 Who-infects-whom is not observed

By an expansion similar to that in equation (B.1),

√
m
(

Λ̃0(τ)− Λ0(τ)
)

=
√
m
(

Λ̃β̃,λ̃(β̃, τ)− Λ̃β̃,λ̃(β0, τ)
)

+
√
m
(

Λ̃β̃,λ̃(β0, τ)− Λ̃β0,λ0
(β0, τ)

)
+
√
m
(

Λ̃β0,λ0
(β0, τ)− Λ∗0(τ)

)
+
√
m
(
Λ∗0(τ)− Λ0(τ)

)
. (B.6)

The fourth term in (B.6) is zero for all τ at which Y (τ) > 0.
By a first-order Taylor expansion, the first term in (B.6) equals(

∂

∂β
Λ̃β̃,λ̃(β∗, τ)

)T√
m
(
β̃ − β0

)
(B.7)

for some β∗ on the line segment between β0 and β̃, where

∂

∂β
Λ̃β̃,λ̃(β, τ) = −

∫ τ

0

∂
∂βY (β, u)

Y (β, u)2
dÑ(u|β̃, λ̃). (B.8)

Its contribution to the variance is(
∂

∂β
Λ̃β̃,λ̃(β0, τ)

)T(
1

m
Ĩ(β0)

)−1(
∂

∂β
Λ̃β̃,λ̃(β0, τ)

)
. (B.9)

The second term in (B.6) can be rewritten

√
m

∫ τ

0

1

Y (β0, u)

(
dÑ(u|β̃, λ̃)− dÑ(u|β0, λ0)

)
(B.10)

For each j, we have
∫∞
0

dÑ(u|β, λ) = 1 if j was infected and 0 otherwise.
Thus, the term in parentheses is the sum a subset of the random variables
δij = pij(β̃, λ̃) − pij(β0, λ0), which have sum zero for each j. Since the δij are
asymptotically independent for different j and Y (β0, u) = OP (m), the integral
behaves asymptotically like a mean of independent random variables with mean
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zero and variance O(β̃−β0). Therefore, the second term of (B.6) is OP (β̃−β0)
and converges in probability to zero as m→∞.

The third term in (B.6) can be evaluated using the conditional variance
formula. The expression inside the parentheses has the variance

Eβ0,λ0 [ σ̂2
v(β0, τ) ] + Varβ0,λ0

(
Λ̂v(β0, τ)

)
=∫ τ

0

1

Y (β0, u)2
dÑ(u|β0, λ0) + Eβ0,λ0

[
Λ̂v(β0, τ)2

]
− Λ̃β0,λ0

(β0, τ)2, (B.11)

where

σ̂2
v(β, τ) =

∫ τ

0

1

Y (β, u)2
dN(u|v). (B.12)

Since each infected person has only one infector and infectors can be chosen
independently given the observed data,

Eβ0,λ0

[
Λ̂v(β0, τ)2

]
= Λ̃β0,λ0

(β̃, τ)2 −
n∑
j=1

(∫ τ

0

1

Y (β0, u)
dÑ·j(u|β0, λ0)

)2

+

∫ τ

0

1

Y (β0, u)2
dÑ(u|β0, λ0), (B.13)

where Ñ·j(u|β, λ) =
∑
i 6=j Ñij(u|β, λ). Therefore, the total variance contribu-

tion of the third term in (B.6) reduces to

2

∫ τ

0

m

Y (β0, u)2
dÑ(u|β0, λ0)−

n∑
j=1

(∫ τ

0

√
m

Y (β0, u)
dÑ·j(u|β0, λ0)

)2

. (B.14)

Since only the first and third terms of (B.6) are asymptotically nonzero, all
that remains is to look at their covariance. Let Nij(τ |v) denote the value of
Nij(τ) that we would have calculated had we observed the transmission network
v. Then the corresponding value of the score U(β, τ) is

Uv(β, τ) =

n∑
j=1

∑
i 6=j

∫ τ

0

∂

∂β
ln
r
(
βTXij(u)

)
Y (β, u)

dN(u|v) (B.15)

and the corresponding covariance of U(β, τ) and Λ̂(β, τ) is

κv(β, τ) =

n∑
j=1

∑
i 6=j

∫ τ

0

1

Y (β, u)

(
∂

∂β
ln
r
(
βTXij(u)

)
Y (β, u)

)
dNij(u|v). (B.16)

By the conditional covariance formula,

Cov
(
Ũβ0,λ0

(β0, λ0), Λ̃β0,λ0
(β0, τ)

)
= Covβ0,λ0

(
Uv(β0, τ), Λ̂v(β0, τ)

)
+ Eβ0,λ0 [κv(β0, τ) ] (B.17)
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By an argument similar to that leading to (B.14), this reduces to

2

n∑
j=1

∑
i 6=j

∫ τ

0

1

Y (β0, u)

(
∂

∂β
ln
r
(
βT
0Xij(u)

)
Y (β0, u)

)
dÑij(u|β0, λ0)

−
n∑
j=1

(∫ τ

0

1

Y (β0, u)
dÑ·j(u|β0, λ0)

)
U·j(β0, τ). (B.18)

In the limit of large m, both terms in (B.18) act like means of random variables
with mean zero and finite variance, so they converge in probability to zero.
Since β̃ is a function of the expected score, this implies that the first and third
terms of equation (B.6) are asymptotically independent.

Combining all of these results, the asymptotic variance of (B.6) is

(
∂

∂β
Λ̃β̃,λ̃(β0, τ)

)T(
1

m
Ĩ(β0)

)−1(
∂

∂β
Λ̃β̃,λ̃(β0, τ)

)
+ 2

∫ τ

0

m

Y (β0, u)2
dÑ(u|β0, λ0)−

n∑
j=1

(∫ τ

0

√
m

Y (β0, u)
dÑ·j(u|β0, λ0)

)2

.

(B.19)
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