
Supplementary materials

PatternQuery: Web application for fast detection of
biomacromolecular structural patterns in the entire Protein Data Bank

David Sehnal1,2,3, Lukáš Pravda1,2, Radka Svobodová Vařeková1,2, Crina-Maria Ionescu1, Jaroslav
Koča1,2,∗

1CEITEC - Central European Institute of Technology, Masaryk University Brno, Kamenice 5,
625 00 Brno, Czech Republic
2National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kotlářská
2, 611 37 Brno, Czech Republic
3Faculty of Informatics, Masaryk University Brno, Botanická 68a, 602 00 Brno, Czech Republic

* To whom correspondence should be addressed. JK: Tel: +420 54949 4947; Fax: +420 54949
2556; Email: Jaroslav.Koca@ceitec.muni.cz

The authors wish it to be known that, in their opinion, the first 2 authors should be regarded
as joint First Authors.

Web address: http://ncbr.muni.cz/PatternQuery

1

Theoretical Background of the
PatternQuery Language

Basic Definitions

Chemical Sets

In the following definitions we will use different common sets that can be used to describe the
chemical properties of molecules. For examples the set ChemicalElements = {C,N,O,H, . . . },
Bonds = {single,double, . . . }, or ResidueNames = {CYS,HIS, . . . } (corresponds to the names
of amino acids, ligands, etc.).

Biomolecular Graph

We need to express a molecule including its various properties, like spatial positions of atoms,
information about residues in biomolecules, etc. For this purpose, we define the structure
called biomolecular graph. The structure describes the topology of the molecule as well as its
geometry (x, y, and z coordinates of each atom) and its special biomolecular properties (deno-
tation of residues and chains, etc.).

Definition 1. A biomolecular graph is a structure (G,P) where

G = (Atoms,Bonds) is an undirected graph. Atoms is the set of the graph’s vertices, Bonds is the set
of edges.

P = {Pi} is a set of mappings that varies depending on context. Most often, these properties are of
interest:

atomId : Atoms→ N Atom identifiers.

atomType : Atoms→ ChemicalElements Describes chemical elements of atoms.

bondType : Bonds→ BondTypes Describes type of the bond.

atomPosition : Atoms→ R3 Maps atom to a position in 3D space.

residueId : Atoms→ N Maps atom to a residue identifier.

residueName : Atoms→ ResidueNames Maps atom to a name of a residue.

chain : Atoms→ ChainName Maps atom to a chain.

charge : Atoms→ R Maps atom to a partial charge (real number).

The set of all biomolecular graphs is denoted as BioMolecularGraphs.

Definition 2. We say that two biomolecular graphs A,B ∈ BioMolecularGraphs are isomorphic,
with respect to a set of properties P = {Pi : Xi → Yi}, denoted A ≈P B, if these conditions hold:

• GA ≈ GB , i.e. their underlying graphs are isomorphic.

2

• PA
i (x) ≡ PB

i (h(x)) for each x ∈ Xi and each isomorphism h between graphs GA, GB , i.e., the
properties are equivalent under all isomorphisms.

We say two biomolecular graphs are equal, if they are isomorphic with regards to all defined proper-
ties.

We are particularly interested in analyzing subgraphs of biomolecular graphs which we call
molecular pattern graphs (or just pattern graphs). Molecular patterns are uniquely determined
by a subset of atoms which induces a subgraph in the biomolecular graph.

Definition 3. A molecular pattern graph is defined as (G,F) where

G ∈ BioMolecularGraphs is a biomolecular graph.

F ⊂ Atoms is a subset of biomolecular graph atoms.

The set of all molecular pattern graphs is denoted BioMolecularPatterns. The set of all molecular pat-
tern graphs of a biomolecular graphG ∈ BioMolecularGraphs is denoted BioMolecularPatterns(G) =
{(G,F) |F ⊂ AtomsG}. For a pattern N = (G,F) ∈ BioMolecularPatterns we use the notation Gi

to denote the i-th atom in F .

Definition 4. Isomorphism/equality is defined for pattern graph similarly to the the biomolecular graph
case, with the exception of the relations being restricted to the set of the pattern atoms.

Definition 5. We define a mapping toGraph : BioMolecularPatterns → BioMolecularGraphs
which maps a pattern graph to a biomolecular graph, by restricting the vertices, edges, and property
mappings to the pattern atom set:

toGraph : ((G,P), F) 7→ (G|F , {Pi|F })

We define two basic operations, one function, and one relation on pattern graphs:

Definition 6. For a biomolecular graph G ∈ BioMolecularGraphs we define functions unionG,
intersectionG, distanceG, areConnectedG using BMP as a shorthand for BioMolecularPatterns as

unionG : BMP(G)× BMP(G)→ BMP(G), ((G,F1), (G,F2)) 7→ (G,F1 ∪ F2)

intersectionG : BMP(G)× BMP(G)→ BMP(G), ((G,F1), (G,F2)) 7→ (G,F1 ∩ F2)

distanceG : BMP(G)× BMP(G)→ R,
((G,F1), (G,F2)) 7→ min{‖atomPosition(a)− atomPosition(b)‖ | a ∈ F1 ∧ b ∈ F2}
(minimum distance of any pair of atoms from different patterns).

areConnectedG is a relation on BMP(G) with all pairs of patterns that are connected by an edge.

Describing and Recognizing Structural Patterns

We introduce a (domain specific) language that is defined in this chapter. We will use syntax
of the Haskell programming language to illustrate the basic concepts as it allows a straightfor-
ward definition of the basic concepts. However, the presented approach is general and easy to
implement in almost any modern programming language.

3

Building Blocks of the Language

This section provides a general overview and explains basic principles of the language.

Definition 7. A pattern query is a function that maps a biomolecular graph to a set of patterns:
query : BioMolecularGraphs→ 2BioMolecularPatterns.

We define the data types based on the abstract structures BioMolecularGraphs (definition
1) and BioMolecularPatterns (definition 3). In order to make the code shorter and more read-
able, we will call these types Molecule and Pattern. These types can be defined as

{- Atom is identified by an integer number.
Its properties are stored in the Molecule type. -}

data Atom = Atom Integer
data Bond = Bond (Atom, Atom) {- Bond is a tuple of atoms -}
data Molecule = Molecule (

Set Atom,
Set Bond,
<properties>) {- e.g. atom types, positions, etc. -}

data Pattern = Pattern (Molecule, Set Atom)

In the definitions we use the data type Set to represent sets. Basic operations on sets are
called using the dot notation, for example Set.union or Set.singleton (creates a set with a single
element).

The properties of atoms/bonds can be defined as mappings from a Molecule and
Atom/Bond. For example, the atomType property is defined as

atomType :: Molecule -> Atom -> String
atomType (Molecule (_,_,...,atomTypes,...)) a = atomTypes a

The equality of types Molecule and Pattern is defined in the sense of definitions 2 and
4 with respect to properties atomId and atomType.

The operations on the type Pattern from definition 6 also need to be defined. The def-
inition/implementation of these functions is rather straightforward, for example union on
patterns would be defined as:

union :: Pattern -> Pattern -> Pattern
union (Pattern (m,a)) (Pattern (m,b)) = Pattern (m, Set.union a b)

The data type corresponding to the definition 7 of a query can then by defined as

type Query = Molecule -> Set Pattern

Example 1. A query that returns all atoms as patterns is defined as

atomsQuery :: Query
atomsQuery = \mol ->
map (\a -> Pattern (mol, Set.singleton a)) (atoms mol)

The query is represented as a lambda expression. In the query, each atom is mapped to a singleton
set and then coupled with the context molecule.

The execution of the query is then a simple application of the query function on the input
molecular graph:

execute :: Query -> Molecule -> Set Pattern
execute query molecule = query molecule

We recognize three basic categories of queries:

4

Generator queries Queries that create sets of patterns from molecular graphs.

Modifier queries Queries that modify sets of patterns.

Combinator queries Queries that combine one or more sets of patterns.

These categories will now be described in more detail.

Generator Queries

The most basic building block of the language is a generator query. It provides a way of de-
scribing basic patterns within a molecular graph, such as atoms or residues.

The general shape of a generator query can be defined as

generatorQuery :: (Molecule -> [Pattern]) -> Query
generatorQuery generator =

\mol -> Set.fromList (
map (\atoms -> Pattern (mol, atoms)) (generator mol))

which splits the input molecular graph into a list of patterns defined by the generator
argument.

A specific example of a generator query is the atomsQuery which returns patterns corre-
sponding to all atoms of a specific type:

atomsQuery :: [ElementType] -> Query
atomsQuery elements = generatorQuery (\mol ->

(map (\a -> Pattern (mol, Set.singleton a))
. filter (\a -> elem (atomType mol a) elements))

{- elem checks if an element is a member of a list -}
(atoms mol))

This query filters the atoms of the input structure by checking if they have the matching
element type. Next, each matching atoms is converted to a pattern containing a single atom.

Modifier Queries

The modifier queries work by mapping each pattern from the result of an inner query to a set of
patterns. The general template of a modifier query can be defined as

modifierQuery :: (Pattern -> Set Pattern) -> Query -> Query
modifierQuery modifier innerQuery = \mol ->

Set.unions (map modifier (execute innerQuery mol))

The way this works is:

• The innerQuery is executed.

• The modifier function is then mapped onto each pattern in the set from the previous step.
This results in a set of sets of patterns.

• Union is computed on the result of the previous step, resulting in a set of patterns.

An example of a modifier query is the ambientAtomsQuery which extends the inner pat-
tern by all atoms within a given radius:

ambientAtomsQuery :: Float -> Query -> Query
ambientAtomsQuery radius =

modifierQuery (\Pattern (g, m) -> Pattern
(g, m >>= \a -> filter (\b -> distance a b <= radius) (atoms g)))

5

What this does is that for each atom in each pattern, it identifies all atoms within a given
radius and then adds them to a single set.

A somewhat special (and a very useful) case of the modifier query is the filterQuery:

filterQuery :: (Pattern -> Bool) -> Query -> Query
filterQuery filterFunction = modifierQuery (\m ->

if filterFunction m
then Set.singleton m
else Set.empty)

Here, the modifier function “tests” the pattern. If the condition is satisfied, a singleton with
this single pattern is returned.

Another special kind of a modifier query is the insideQuery, that executes a particular
query on results from another and combines them into a single query:

insideQuery :: Query -> Query -> Query
ambientAtomsQuery what within = \ctx ->

foldr Set.union Set.empty
(map (execute ctx . toMolecule) (execute ctx within))

Combinator Queries

The combinator query, as the name implies, combines multiple queries into one. The general
template of a modifier query can be defined as

combinatorQuery ::
(Molecule -> [Pattern] -> Maybe Pattern) -> [Query] -> Query

combinatorQuery combinator queries = \mol ->
(Set.fromList
. catMaybes {- discard the Nothing results -}
. map (combinator mol)
. sequence
. map (\q -> Set.toList (execute q mol)))
queries

The way this works is the following:

• Each query in queries list is executed. The result is converted to list so that the types
match.

• Next, the sequence function yields all combinations of the queries from the previous
step. For example, if the result from step 1 was [[a, b], [c, d]], the function
sequence returns [[a, c], [a, d], [b, c], [b, d]].

• The function combinator is provided with the current context and is applied to each
combination from the previous step. The combinator function might fail to create a com-
bination from the input patterns. Therefore, the function returns either a pattern or noth-
ing, represented by the Maybe type.

• The nothing results from the previous step are discarded and the result is converted to a
set.

A straightforward example of a combinator query is combinationsQuery that yields pat-
terns created as all possible combinations of the underlying patterns and uses the set union as
its combinator function:

6

combine :: Molecule -> [Pattern] -> Maybe Pattern
combine mol patterns =

Just (Pattern (mol, foldr1 (\a b -> union a b) patterns))

combinationsQuery :: Query
combinationsQuery = combinatorQuery combine

A more complicated example of a combinator query is the clusterQuery, which is an ex-
tension of the combinationsQuery. In clusterQuery, the combinator function first checks
if all pairs of patterns are within a given distance of each other and only then combines the
patterns into a single one:

clusterQuery :: Float -> Query
clusterQuery maxDistance = combinatorQuery (\mol patterns ->

let
dist = max [distance a b | a <- patterns, b <- patterns, a /= b]

in
if dist > maxDistance then Nothing
else combine mol patterns)

Notes on Complexity

By the query complexity we mean the time required to execute a query on a biomolecular graph
with N vertices. The typical complexities of queries from different categories are given here.

Generator queries These queries have typically O(N) (linear) complexity as they mostly con-
sists of checking element symbols of atoms, comparing names of residues, etc.

Modifier queries The typical complexity of this type of query is O(N logN). The query
ambientAtomsQuery has this complexity if implemented using a space-partitioning
data structure such as kD-trees or octree.

Combinator queries The combinator queries are the most complicated to execute. Their com-
plexity can be exponential—for example in the case of the combinationsQuery. Fortu-
nately, some of the useful queries, such as clusterQuery, can be optimized using more
sophisticated data structures such as kD-trees to have the complexity O(N logN) in most
practical cases.

7

Figure S1: The results page contains a detail about all identified patterns and PDB entries of ori-
gin together with metadata details and visualization of each pattern. Color denotation specifies
possible structural issues.

8

SI Structure Validation

When running a query, the user may request an optional validation of ligands and non-standard
residues of size larger than 6 atoms present in the atom patterns. The structure of these residues
can be examined on their completeness and correctness using MotiveValidator [1], and the val-
idation report can be immediately reached via ValidatorDB [2]. In brief, ValidatorDB identifies
all the residues relevant for validation based on their annotation (PDB residue name, PDB
residue ID, and PDB chain). For each residue to be validated, the input for MotiveValidator is
made up from the atoms of the residue, and all atoms which are at most 2 bonds away from
these. Validation is performed against a suitable structural model from the wwPDB Chemi-
cal Component Dictionary [3], and employs SiteBinder [4]. Any structural discrepancies are
reported.

SI Query 1: Workflow of building the query

The results for the Case Study I can be found at:
http://webchem.ncbr.muni.cz/Platform/MotiveQuery/Result/CSI

1) Defining two calcium ions close to
each other

2) Defining a ring of either pyranose or
furanose, typically associated with sugars

Near (4 , Atoms ("Ca") , Atoms ("Ca")) Or (Rings (5 ∗ ["C"] + ["O"]) ,
Rings (4 ∗ ["C"] + ["O"]))

3) Defining a pair of calcium ions and the
coordinating residues

4) Filtering only to those patterns which
contain a sugar moiety by combining the PQ

expressions 2 and 3

9

Near (4 , Atoms ("Ca") , Atoms ("Ca")) .
ConnectedResidues (1)

Near (4 , Atoms ("Ca") , Atoms ("Ca")) .
ConnectedResidues (1) .
F i l t e r (lambda l : l . Count (

Or (Rings (5 ∗ ["C"] + ["O"]) ,
Rings (4 ∗ ["C"] + ["O"]))) > 0)

SI Query 2

Filtering out nucleotides from SI Query 1 (patterns containing a phosphorus atom):

Table S1: Content of the 87 sugar binding site of the Asp*3-Glu-Asn*2-Gly composition
Sugar
ID

Sugar name Counter

FUC α-L-fucose 33
MMA O1-methyl-mannose 17
MFU α-L-methyl-fucose 8
MAN α-D-mannose 5
ARW methyl β-D-arabinopyranoside 4
GXL α-L-galactopyranose 4

2G0
(2S)-1-[(2S)-6-amino-2-([(2S,3S,4R,5S,6S)-3,4,5-trihydroxy-6-
methyltetrahydro-2H-pyran-2-yl]acetylamino)hexanoyl]-N-
[(1S)-1-carbamoyl-3-methylbutyl]pyrrolidine-2-carboxamide

4

A1Q methyl L-glycero-α-D-manno-heptopyranoside 4

YX0
[(3E)-3-(1-hydroxyethylidene)-2,3-dihydroisoxazol-5-yl]methyl
6-deoxy-α-L-galactopyranoside

3

LZ0
[1-(2-oxoethyl)-1H-1,2,3-triazol-5-yl]methyl 6-deoxy-α-L-
galactopyranoside

3

FUL B-L-fucose 2

Table S2: Content of the 12 sugar binding site of the Asp*3-Glu-Asn*2 composition
Sugar
ID

Sugar name Counter

MAN O1-methyl-mannose 4
MFU α-D-mannose 3
MMA O1-methyl-mannose 2
BDF B-D-fructopyranose 1
FUC α-L-fucose 1
A1Q methyl L-glycero-α-D-manno-heptopyranoside 1

SI Query Validation 1

Out of the 114 residues relevant for validation, in three cases the structural discrepancy pre-
vented proper validation, and the validated residue was flagged as Degenerate. This was
caused by the erroneous annotation of sugar residues in the 1ovs entry. All three MAN residues
housed in the binding site are formally decomposed into two separate residues, where the sec-
ond residue annotated as MAN contains just two atoms, therefore marked as Degenerate. All

10

four 2G0 ligands present in the pectate lyase (3dcq) are incomplete, and finally 2 out of 4 FUC
ligands present in the 1oxc entry exhibit incorrect chirality in the C1 carbon. The remaining 105
residues are complete and exhibit correct chirality, resulting in the overall good quality of the
queried data.

SI Query 3

The results for the Case Study II can be found at:
http://webchem.ncbr.muni.cz/Platform/MotiveQuery/Result/CSII

RegularMotifs (’ . { 2 } C . { 2 , 4 }C . { 1 2 }H. { 3 , 5 }H’) .
ConnectedAtoms (1) .

SI Query 4

RegularMotifs (’ . { 2 } C . { 2 , 4 }C . { 1 2 }H. { 3 , 5 }H’) .
ConnectedAtoms (1) .
F i l t e r (lambda m:

m. Find (Atoms (’Zn ’) .
ConnectedResidues (1) .
F i l t e r (lambda n :

(n . Count (Residues (’ Cys ’)) == 2) &
(n . Count (Residues (’ His ’)) == 2))) .

SeqCount () > 0)

SI Query 5

RegularMotifs (’ . { 2 } C . { 2 , 4 }C . { 3 } [F|Y] . { 5 } [AILFPGV] . { 2 }H. { 3 , 5 }H’) .
ConnectedAtoms (1) .
F i l t e r (lambda m:

m. Find (Atoms (’Zn ’) .
ConnectedResidues (1) .
F i l t e r (lambda n :

(n . Count (Residues (’ Cys ’)) == 2) &
(n . Count (Residues (’ His ’)) == 2))) .

SeqCount () > 0)

SI Query 6

RegularMotifs (’ . { 2 } C . { 2 , 4 }C . { 1 2 }H. { 3 , 5 }H’) .
ConnectedAtoms (1) .
F i l t e r (lambda m:

m. Find (NotAtoms (’C ’ , ’N’ , ’O’ , ’P ’ , ’ S ’ , ’H’ , ’Zn ’) .
AmbientResidues (3) .
F i l t e r (lambda n :

(n . Count (Residues (’ Cys ’)) == 2) &
(n . Count (Residues (’ His ’)) == 2))) .

SeqCount () > 0)

Limitations

To overcome the shortcoming for an amount of parallel queries executed so as the amount of
returned patterns or atoms, the search can be split into several runs, and for each run the data
set to be queried can be specified using metadata filtering or a list of PDB ids. The command-
line version of PQ does not include these limitations.

Similar to all services dealing with external data sources, the performance of PQ is depen-
dent on the quality of input structures, in this case the quality of the data set which is queried.

11

Low resolution structures can contain a variety of structural discrepancies. Therefore making
difficult for PQ to properly identify atomic bonds. In order to deal with this potential draw-
back, we encourage users to use custom structure lists based on useful metadata such as the
structure resolution, or a careful selection of PDB ids. For the user’s convenience, the PQ re-
sults page links to ValidatorDB, which contains validation reports of the completeness and
correctness of ligands and non-standard residues larger than 6 atoms.

Finally, there is an initial requirement for the user to learn basic queries and develop the
ability to decompose chemical or structural problems into smaller pieces in order to construct
a particular query. However, we believe the language learning curve is not too steep, enabling
even the inexperienced user to learn the basics fast. In addition, the PQ user manual includes
a large number of examples for each of the basic queries, as well as more complex examples
for solving particular biologically relevant issues. Last but not least, direct user support for
constructing user-defined queries is enabled.

Performance Overview

This section gives an overview of the “real world” performance of the presented tool. Unless
stated otherwise, each computation was run 7 times, the fastest and slowest result was dis-
carded, and the times are shown as the average (the differences in individual times were about
1% in all cases). All computations were run on a machine with Intel i7-3770 @ 3.4GHz pro-
cessor, 32GB RAM, SSD drive, using Microsoft Windows Server 2008 R2 and .NET Framework
4.5.2 (Your computation can be executed on a different machine, such as: 4xIntel Xeon E5-4610
@ 2.9GHz, 64GB RAM, SSD drive using Microsoft Windows Server 2012 and .NET Framework
4.5.2).

Table S3 gives running times of the PatternQuery application for different queries and input
sizes.

Query # of PDBs / Size # of Patterns / Size Time Avg. Rate
1: Empty1 107249 / 118GB 0 / 0 MB 29m28s ~68 MB/s
2: Residues with metals2 107249 / 118GB 277127 / 160 MB 30m56s ~65 MB/s
3: Residues with metals and
surroundings3

107249 / 118GB 276762 / 1 GB 35m56s ~56 MB/s

4: Lectins4 7857 / 7.2GB 108 / 710 KB 1m50s ~67 MB/s
5: C2H2 Zinc Finger motifs5 9699 / 16.1GB 354 / 471KB 5m6s ~54 MB/s

Table S3: Performance of the PatternQuery application on various queries and datasets. The
size is of the input data stored in uncompressed mmCIF format.

The query 1 is an “empty” query to establish the amount of time spent by reading the
input from disk and parsing it to create a representation in memory. The results show that the
user can expect 2-20% time overhead over the “empty” query based on the complexity of the
query and/or the result size. The implementation of the application allows to easily query only
relevant data to dramatically reduce the query time as shown by queries 4 and 5.

1Atoms(’ ’), executed on the entire PDB.org archive as of 16.3.2015.
2Atoms(’Zn’, ’Fe’, ’Ca’, ’Mg’).ConnectedResidues(0), executed on the entire PDB.org archive as

of 16.3.2015.
3Atoms(’Zn’, ’Fe’, ’Ca’, ’Mg’).ConnectedResidues(0).AmbientResidues(5), executed on the

entire PDB.org archive as of 16.3.2015.
4Near(4, Atoms(’Ca’), Atoms(’Ca’)).ConnectedResidues(1).Filter(lambda l: l.

Count(Or(Rings(5 * [’C’] + [’O’]), Rings(4 * [’C’] + [’O’]))) > 0).Filter(lambda
l: l.Count(Atoms(’P’)) == 0), executed on entries with calcium atom(s) in the PDB.org archive as of
16.3.2015.

5RegularMotifs(’.{2}C.{2,4}C.{3}[F|Y].{5}[AILFPGV].{2}H.{3,5}H’).ConnectedAtoms(1),
executed on entries with zinc atom(s) in the PDB.org archive as of 16.3.2015.

12

Bibliography

[1] Vařeková,R.S., Jaiswal,D., Sehnal,D., Ionescu,C.M., Geidl,S., Pravda,L., Horský,V., Wim-
merová,M. and Koča,J. (2014) MotiveValidator: Interactive web-based validation of ligand
and residue structure in biomolecular complexes. Nucleic Acids Res., 42, W227–33.

[2] Sehnal,D., Svobodová Vařeková,R., Pravda,L., Ionescu,C.-M., Geidl,S., Horský,V.,
Jaiswal,D., Wimmerová,M. and Koča,J. (2015) ValidatorDB: database of up-to-date vali-
dation results for ligands and non-standard residues from the Protein Data Bank. Nucleic
Acids Res., 43, D369–D375.

[3] Sen,S., Young,J., Berrisford,J.M., Chen,M., Conroy,M.J., Dutta,S., Di Costanzo,L., Gao,G.,
Ghosh,S., Hudson,B.P., et al. (2014) Small molecule annotation for the Protein Data Bank.
Database (Oxford)., 2014, 1–11.

[4] Sehnal,D., Vařeková,R.S., Huber,H.J., Geidl,S., Ionescu,C.-M., Wimmerová,M. and Koča,J.
(2012) SiteBinder: an improved approach for comparing multiple protein structural mo-
tifs. J. Chem. Inf. Model., 52, 343–59.

13

