## **Supplementary Information**

#### Contents:

| Table S1   | Table of related databases/tools.                                        |
|------------|--------------------------------------------------------------------------|
| Table S2   | Complete set of input parameters and their default values for SELPHI.    |
| Table S3   | List of output files provided by SELPHI.                                 |
| Tabe S4a-c | GO terms enrichment (Biological Process only) of hits associated with    |
|            | Group 1-3 kinases of Figure S2.                                          |
| Table S5   | Serine/Threonine kinase associations with transcription factor peptides. |
| Table S6   | List of peptides associated with MAPK1 in the SELPHI network.            |
| Figure S1  | Biological Process GO term enrichment analysis for phospho-peptides      |
|            | changed in the EGFR case study                                           |
| Figure S2  | SELPHI-extracted network amongst kinases in case study.                  |
| Figure S3  | Demonstration of enrichment in known/predicted interactions at high      |
|            | correlation and low p-value cutoffs                                      |
| Note 1     | SELPH-Convert Tool                                                       |
| Note 2     | Correlation and p-value calculations                                     |
| Note 3     | Discussion of serine/threonine kinase SELPHI network                     |
| Note 4     | Results interpretation                                                   |

Table S1. Table of related databases/tools.

| Tool                                                                     | Туре             | Descriptions                                                                     |
|--------------------------------------------------------------------------|------------------|----------------------------------------------------------------------------------|
| PhosphoSitePlus (1)<br>PhosphoELM (2)<br>PHOSIDA (3)<br>PhosphoPOINT (4) | Database         | Phospho-site and regulatory information                                          |
| DEPOD (5)                                                                | Database         | Phosphatase activity and substrates                                              |
| KEA (6)                                                                  | Prediction tool  | Kinase enrichment                                                                |
| KinasePhos2.0 (7)                                                        | Prediction tool  | Machine learning                                                                 |
| NetworKIN (8), (9)<br>KinomeXplorer (10),<br>PhosphoSiteAnalyzer (11)    | Prediction tool  | Motifs/Position Specific scoring<br>matrices & contextual network<br>information |
| Scansite 2.0 (12)                                                        | Prediction tool  | Motifs/Position Specific scoring<br>matrices                                     |
| GPS 2.0 (13)                                                             | Prediction tool  | Kinase group hierarchy                                                           |
| HeRS (14)                                                                | Prediction tool  | Kinase/Transcription factor similarity                                           |
| PhosphoChain (15)                                                        | Prediction tool  | Expression profile integration                                                   |
| RegPhos (16)                                                             | Prediction tool  | Expression and protein localization data integration                             |
| Saez-Rodriguez et al (17)                                                | Pathway Modeling | Logic/Boolean based                                                              |
| Mitsos et al (18)                                                        | Pathway Modeling | Integer Linear Programming                                                       |
| Zhang et al (19)                                                         | Pathway Modeling | Bayesian network inference                                                       |

| Parameter      | Default  | Description                                                      |
|----------------|----------|------------------------------------------------------------------|
| Job name       | NONE     | Name of your job                                                 |
| Input Data     | NONE     | Tab delimited text or Excel <sup>™</sup> files with phospho-     |
|                |          | proteomics data (Proteins, Peptides, Ratios, optional            |
|                |          | Intensity and/or Score)                                          |
| Merge          | NONE     | File with comma separated samples that should be                 |
| samples        |          | merged for the analysis                                          |
| Log            | NO       | Indicate if your data has already been log transformed           |
| Analyze Motifs | NO       | Request a motif over-representation analysis                     |
| Phospho-Site   | NONE     | File with the protein-peptide pairs mapped to the                |
| map            |          | sequence MAPK14_pSQERPTFYR MAPK14_S2                             |
| ID map         | NONE     | Tab delimited text or Excel <sup>IM</sup> file with the proteins |
|                |          | identified mapped to UniprotID or GeneID                         |
| FASTA          | NONE     | Database searched to identify proteins in set (in FASTA          |
| database       |          | format)                                                          |
| Clustering     | NONE     | Choose whether to cluster phospho-peptides using PCA &           |
| method         |          | k-means clustering or mclust                                     |
| STRING         | Overall  | Select which STRING score to use as a cutoff for your            |
| evidence       |          | network overlap: Overall, Experimental and/or Database           |
| GeneMania      | 0        | Select which GeneMania data to use, everything (0) or            |
| evidence       |          | physical interaction only (1)                                    |
| Ratio Cutoff   | 3        | Cutoff for fold change ratio to be used                          |
| Kinase Cutoff  | Same as  | Cutoff for fold change ratio to be used for                      |
|                | Ratio    | Kinase/Phosphatase phospho-peptides                              |
| Correlation    | 0.8-0.9  | Correlation cutoff for resulting network. Default is 0.9 for     |
| Cutoff         |          | Pearson, 0.8 for other                                           |
| Correlation P- | 0.05     | Correlation significance cutoff                                  |
| value Cutoff   |          |                                                                  |
| Minimum        | 3        | Minimum samples in which peptides need to appear to be           |
| Samples        |          | considered                                                       |
| Merge          | MAX      | Choose max or average value when phospho-peptides are            |
| Method         |          | merged                                                           |
| Method         | Spearman | Choose correlation index among Spearman, Pearson and             |
|                |          | Kendall tau.                                                     |
| Motif file     | NONE     | Upload a file with additional motifs to search for               |
| Minimum        | 5        | Minimum number of proteins in Pathway or GO term to              |
| Paths          |          | consider for enrichment analysis                                 |

Table S2. Complete set of input parameters and their default values for SELPHI

Table S3. List of output files provided by SELPHI

| File                                                                                   | Analysis               | Description                                                                                                                                                                                                |  |
|----------------------------------------------------------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| .idsnotmapped                                                                          | Pre-<br>processing     | Proteins that SELPHI couldn't match to a UniprotID                                                                                                                                                         |  |
| .idsmapped                                                                             | Pre-<br>processing     | IDs maps to UniprotID,<br>GeneID,GeneName, KEGG_ID, KEGG<br>pathways, SMART domains, Pfam<br>domains, Transcription Factor families,<br>GO terms, Ensembl Gene and Protein (If<br>ID map was not provided) |  |
| .phosmapped                                                                            | Pre-<br>processing     | Maps of phospho-sites (if phospho-site map was not provided)                                                                                                                                               |  |
| .sitesnotfound.tsv                                                                     | Pre-<br>processing     | Phospho-sites that were not mapped<br>onto the sequence (tagged 'not found',<br>nf)                                                                                                                        |  |
| .datatable.tsv                                                                         | Pre-<br>processing     | Ratio cutoff filtered table with the sites<br>mapped to gene name and phosphosite<br>location                                                                                                              |  |
| .pathways.pvalues.tsv                                                                  | Pathway<br>enrichment  | pvalues, odds ratio and corrected pvalue of pathways                                                                                                                                                       |  |
| .pathmtxoddsratio.tsv<br>.pathmtx0304oddsratio.tsv<br>.pathmtx05oddsratio.tsv          | Pathway<br>enrichment  | odds ratio of pathways that made the<br>pvalue cutoff (0.05)<br>0304: signaling pathways, 05: disease<br>pathways                                                                                          |  |
| .pathmtx.tsv<br>.pathmtx0304.tsv<br>.pathmtx05.tsv                                     | Pathway<br>enrichment  | cumulative log change from input data of<br>pathways that made the pvalue cutoff<br>(0.05)<br>0304: signaling pathways, 05: disease<br>pathways                                                            |  |
| .pathdata.pdf<br>.pathdata0304.pdf<br>.pathdata05.pdf                                  | Pathway<br>enrichment  | plot of clustered pathway enrichment<br>with the pathmtx values represented in<br>color and the oddsratio in size of cells<br>0304: signaling pathways, 05: disease<br>pathways                            |  |
| .goterms.pvalues.tsv                                                                   | GO terms<br>enrichment | pvalues, log odds ratio and corrected<br>pvalue of GO terms                                                                                                                                                |  |
| .gotermsbpmtxoddsratio.tsv<br>.gotermsmfmtxoddsratio.tsv<br>.gotermsccmtxoddsratio.tsv | GO terms<br>enrichment | log odds ratio of Biological Process (BP),<br>Molecular Function (MF), Cellular<br>component (CC) GO terms (pvalue <0.05)                                                                                  |  |
| .gotermsbpmtx.tsv<br>.gotermsmfmtx.tsv<br>.gotermsccmtx.tsv                            | GO terms<br>enrichment | cumulative log change from input data of<br>BP,MF,CC GO terms that made the<br>pvalue cutoff (0.05)                                                                                                        |  |

| .gotermsbp.pdf<br>.gotermsmf.pdf<br>.gotermscc.pdf   | GO terms<br>enrichment               | plot of clustered XX (BP/MF or CC) GO<br>terms enrichment with the<br>gotermsXXmtx values represented in<br>color and the XX mtxoddsratio in size of<br>cells                                                |
|------------------------------------------------------|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| .correlations.tsv                                    | Correlation                          | Phospho-profile correlation pairs:<br>overall, only overlapping data points,<br>correlation p-value                                                                                                          |
| .allinfo.tsv                                         | Correlation<br>& Data<br>integration | Identified associations between<br>kinase/phosphatases-phosphopeptides<br>and annotations for these connections<br>(known phosphosites, motifs, substrate<br>similarity, pathway, genemania co-<br>function) |
| .stringoverlap.tsv<br>.stringoverlapgenes.tsv        | Correlation<br>& Data<br>integration | Known (STRING database >800 or also<br>experimental/database score>800)<br>connections amongst peptides/genes in<br>set and between them and phospho-<br>S/T/Y binding domain containing<br>proteins         |
| .allkinsubtable.tsv<br>.tyrkinsubtable.tsv           | Correlation                          | Correlations Table of All/only tyrosine kinases vs associated phospho-peptides                                                                                                                               |
| .allkinsubtable.tsv<br>.tyrkinsubtable.tsv           | Correlation                          | Correlations table of all/only tyrosine<br>phosphatases vs associated phospho-<br>peptides                                                                                                                   |
| .allkinvssubcluster.pdf<br>.tyrkinvssubcluster.pdf   | Correlation                          | Plots of clustered all/tyrosine only kinases vs associated phospho-peptides                                                                                                                                  |
| .allphosvssubcluster.pdf<br>.tyrphosvssubcluster.pdf | Correlation                          | Plots of clustered all/tyrosine only<br>phosphatases vs associated phospho-<br>peptides                                                                                                                      |
| . <number>.cluster</number>                          | Clustering                           | Cluster groups identified (one file for each group)                                                                                                                                                          |
| <number>.gotermstable</number>                       | Clustering                           | Funcassociate output for goterms<br>enrichment for each cluster group                                                                                                                                        |
| .gomtxcloddsratio.tsv                                | Clustering                           | table of log odds ratio for GO terms<br>enrichment in each cluster (top 10 only)                                                                                                                             |
| .gomtxclpvalues.tsv                                  | Clustering                           | table of pvalues for GO terms<br>enrichment in each cluster (top 10 only)                                                                                                                                    |
| .clusters                                            | Clustering                           | The assignment of the peptides to clusters                                                                                                                                                                   |
| .clusteredpeptides.pdf                               | Clustering                           | All sublusters of the peptides                                                                                                                                                                               |
| .gotermsclust.pvalues.tsv                            | Clustering                           | Pvalues, log odds ratio and adjusted<br>pvalues (only<0.05) for goterms                                                                                                                                      |

| .gotermsclust.pvaluesweb.tsv              | Clustering | Top 10 pvalues <0.05 for goterms per sample                                                                                                                                                                                                                                                              |  |
|-------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| .gocldata.pdf                             | Clustering | Plot of GO terms enrichment in each sub<br>cluster                                                                                                                                                                                                                                                       |  |
| .clustersviolins.pdf                      | Clustering | Plot of phosphoprofiles for each cluster (violin format)                                                                                                                                                                                                                                                 |  |
| .motifstotaloverrep.tsv                   | Motifs     | Over representation of known motifs in overall dataset                                                                                                                                                                                                                                                   |  |
| <kinase>.peps</kinase>                    | Motifs     | List of peptides that the kinase is associated with                                                                                                                                                                                                                                                      |  |
| .controlpeps                              | Motifs     | Background peptides for use as<br>reference                                                                                                                                                                                                                                                              |  |
| <kinase>.eps</kinase>                     | Motifs     | Postscript file with weblogos for the motifs                                                                                                                                                                                                                                                             |  |
| phosphoinfo.attr                          | Cytoscape  | The attributes file for the fold change of phosphorylation (log transformed)                                                                                                                                                                                                                             |  |
| phosphoinfogenes.attr                     | Cytoscape  | The attributes file for the fold change of<br>phosphorylation (log transformed) of<br>your proteins (phosphopeptide info has<br>been removed: log(fold change) has<br>been averaged or kept the absolutely<br>maximum value depending on your<br>indication in the input (Merge Method,<br>default: max) |  |
| type.attr                                 | Cytoscape  | The attributes file that specifies if a node<br>is a kinase,phosphatase,transcription<br>factor and what kind                                                                                                                                                                                            |  |
| kinkin.net<br>kinkingenes.net             | Cytoscape  | SELPHI-network between kinases shown as peptides/genes                                                                                                                                                                                                                                                   |  |
| STkinSTkin.net<br>STkinSTkingenes.net     | Cytoscape  | SELPHI-network between<br>Serine/Threonine kinases shown as<br>peptides/genes                                                                                                                                                                                                                            |  |
| TYRkinSTkin.net<br>TYRkinSTkingenes.net   | Cytoscape  | SELPHI-network between Tyrosine<br>kinases and Serine/Threonine shown as<br>peptides/genes                                                                                                                                                                                                               |  |
| TYRkinTYRkin.net<br>TYRkinTYRkingenes.net | Cytoscape  | SELPHI-network between Tyrosine kinases shown as peptides/genes                                                                                                                                                                                                                                          |  |
| kinphosTF.net<br>kinphosTFgenes.net       |            | SELPHI-network between<br>kinases/phosphatases and transcription<br>factors shown as peptides/genes                                                                                                                                                                                                      |  |
| Ykinsubstr.net<br>Ykinsubstrgenes.net     | Cytoscape  | SELPHI-network between Tyrosine<br>kinases and their associated peptides<br>shown as peptides/genes                                                                                                                                                                                                      |  |

| kinkinphos.net<br>kinkinphosgenes.net       | Cytoscape | SELPHI-network amongst kinases and phosphatases shown as peptides/genes |
|---------------------------------------------|-----------|-------------------------------------------------------------------------|
| stringoverlap.net<br>stringoverlapgenes.net | Cytoscape | network as described above shown as peptides/genes                      |

# Table S4a. GO terms enrichment (Biological Process only) of hits associated with Group 1 kinases of Figure S2. The terms have been curated to remove redundancy.

| Log(odds ratio) | P-value | attrib name                                          |
|-----------------|---------|------------------------------------------------------|
| 1.23            | 0.002   | actin filament capping                               |
| 1.08            | 0.006   | mitotic nuclear envelope disassembly                 |
| 1.06            | 0.008   | nuclear envelope disassembly                         |
|                 |         | cellular component disassembly involved in execution |
| 0.95            | 0.011   | phase of apoptosis                                   |
| 0.93            | 0.006   | regulation of protein depolymerization               |
| 0.91            | <0.001  | establishment or maintenance of cell polarity        |
| 0.84            | 0.025   | regulation of protein complex disassembly            |
| 0.84            | 0.002   | negative regulation of cytoskeleton organization     |
| 0.79            | < 0.001 | mRNA transport                                       |
| 0.77            | 0.031   | regulation of microtubule cytoskeleton organization  |
| 0.71            | <0.001  | epidermal growth factor receptor signaling pathway   |
| 0.7             | < 0.001 | ERBB signaling pathway                               |
| 0.67            | 0.024   | Ras protein signal transduction                      |
| 0.67            | <0.001  | microtubule cytoskeleton organization                |
| 0.64            | 0.001   | nucleocytoplasmic transport                          |
| 0.63            | < 0.001 | neurotrophin TRK receptor signaling pathway          |
| 0.62            | < 0.001 | Fc receptor signaling pathway                        |
| 0.53            | 0.006   | regulation of Ras GTPase activity                    |
| 0.53            | < 0.001 | response to growth factor                            |
|                 |         | immune response-regulating cell surface receptor     |
| 0.51            | 0.034   | signaling pathway                                    |
| 0.46            | < 0.001 | viral process                                        |
| 0.44            | 0.031   | regulation of cell cycle process                     |
| 0.34            | 0.031   | cell death                                           |

Table S4b. GO terms enrichment (Biological Process only) of hits associated with Group 2 kinases of Figure S2.

| LOD  | P_adj  | attrib name                                                      |
|------|--------|------------------------------------------------------------------|
| 2.03 | 0.049  | regulation of vitamin D receptor signaling pathway               |
| 1.02 | 0.001  | Fc-gamma receptor signaling pathway involved in phagocytosis     |
| 1.01 | 0.001  | Fc receptor mediated stimulatory signaling pathway               |
| 0.61 | <0.001 | cytoskeleton organization                                        |
| 0.6  | <0.001 | transmembrane receptor protein tyrosine kinase signaling pathway |
| 0.48 | 0.007  | enzyme linked receptor protein signaling pathway                 |
| 0.44 | 0.05   | regulation of cell cycle                                         |
| 0.38 | <0.001 | organelle organization                                           |

# Table S4c. GO terms enrichment (Biological Process only) of hits associated with Group 3 kinases of Figure S2.

| Log(odds ratio) | P-value | attrib name                                 |
|-----------------|---------|---------------------------------------------|
|                 |         | regulation of microtubule polymerization or |
| 1.17            | 0.016   | depolymerization                            |
| 0.9             | 0.011   | mRNA transport                              |
| 0.88            | 0.014   | chromatin remodeling                        |
| 0.84            | 0.034   | RNA transport                               |
| 0.57            | 0.006   | cytoskeleton organization                   |
| 0.53            | 0.014   | cell cycle                                  |
| 0.46            | <0.001  | organelle organization                      |

#### Table S5. Serine/Threonine kinase associations with transcription factor peptides

| TF family | kinase       | TF          |
|-----------|--------------|-------------|
| TF: CSD   | MAPK14_Y182  | CARHSP1_S52 |
| TF: CSD   | MAPK1_Y187   | CARHSP1_S52 |
| TF: CSD   | МАРК3_Т202   | CARHSP1_S52 |
| TF: CSD   | MAPK3_Y204   | CARHSP1_S52 |
| TF: CSD   | RPS6KA3_T577 | CARHSP1_S52 |
| TF: ETS   | САМКК2_\$100 | ETV6_T18    |
| TF: ETS   | CDK12_S685   | ETV6_T18    |
| TF: ETS   | CDK13_T1058  | ETV3_\$159  |
| TF: ETS   | CDK17_S180   | ETV6_T18    |
| TF: ETS   | CLK3_S157    | ETV6_T18    |
| TF: ETS   | MAP3K2_S153  | ETV6_T18    |
| TF: ETS   | PRKD2_S198   | ETV6_T18    |
| TF: ETS   | ROCK2_S1374  | ETV6_T18    |
| TF: ETS   | TTK_\$436    | ETV3_S159   |

| TF: ETS                  | ULK1_S623    | ETV3_\$159   |
|--------------------------|--------------|--------------|
| TF: HMG                  | CDK13_T1058  | HMGXB4_S197  |
| TF: HMG                  | MAP2K2_T394  | TOX4_T175    |
| TF: HMG                  | MARK2_S631   | HMGXB4_S197  |
| TF: HMG                  | TTK_\$436    | HMGXB4_S197  |
| TF: HMGI/HMGY            | CDK18_S117   | HMGA1_S44    |
| TF: HMGI/HMGY            | CDK18_S117   | HMGA1_T42    |
| TF: HMGI/HMGY            | CDK18_S117   | HMGA1_T53    |
| TF: HMGI/HMGY            | CHEK2_S303   | HMGA1_S44    |
| TF: HMGI/HMGY            | CHEK2_S303   | HMGA1_T42    |
| TF: HMGI/HMGY            | CHEK2_S303   | HMGA1_T53    |
| TF: HMGI/HMGY            | CHEK2_S422   | HMGA1_S44    |
| TF: HMGI/HMGY            | CHEK2_S422   | HMGA1_T42    |
| TF: HMGI/HMGY            | CHEK2_S422   | HMGA1_T53    |
| TF: HMGI/HMGY            | CHEK2_T421   | HMGA1_S44    |
| TF: HMGI/HMGY            | CHEK2_T421   | HMGA1_T42    |
| TF: HMGI/HMGY            | CHEK2_T421   | HMGA1_T53    |
| TF: HMGI/HMGY            | MARK3_\$469  | HMGA1_T53    |
| TF: HMGI/HMGY            | STK10_T952   | HMGA1_S44    |
| TF: HMGI/HMGY            | STK10_T952   | HMGA1_T53    |
| TF: HSF                  | CAMKK2_S100  | HSF1_S363    |
| TF: HSF                  | CDK12_T692   | HSF1_S363    |
| TF: HSF                  | CDK16_S227   | HSF1_S363    |
| TF: HSF                  | CLK3_S157    | HSF1_S363    |
| TF: HSF                  | SIK3_S673    | HSF1_S363    |
| TF: MBD                  | CDK16_S227   | MECP2_S228   |
| TF: MBD                  | CDK18_S14    | MBD3_S56     |
| TF: MBD                  | CIT_S2035    | BAZ2A_\$1397 |
| TF: MBD                  | MELK_S529    | MBD3_S56     |
| TF: MBD                  | SIK3_S673    | MECP2_S228   |
| TF: MYB                  | CDK12_T692   | SMARCC1_S330 |
| TF: MYB                  | CDK16_S217   | SMARCC1_S330 |
| TF: MYB                  | CDK18_S117   | TERF2_\$323  |
| TF: MYB                  | CHEK2_\$303  | TERF2_\$323  |
| TF family                | kinase       | TF           |
| TF: MYB                  | CHEK2_S422   | TERF2_S323   |
| TF: MYB                  | CHEK2_T421   | TERF2_S323   |
| TF: MYB                  | MELK_S529    | MYSM1_S110   |
| TF: P53                  | CDK18_S117   | TP53_\$315   |
| TF: Retinoicacidreceptor | CDK18_S117   | SF1_S214     |
| TF: SRF                  | САМКК2_\$100 | MEF2D_S251   |
| TF: SRF                  | CDK16_S227   | MEF2A_S255   |

| TF: SRF     | CLK3 S157      | MEF2D S251   |
|-------------|----------------|--------------|
| TF: SRF     | PRKCD S304     | MEF2D S180   |
| TF: SRF     | PRKCD S304     | MEF2D S231   |
| TF: SRF     | PRKCD S304     | MEF2D S251   |
| TF: SRF     | ROCK2 \$1374   | MEF2D S180   |
| TF: SRF     | ROCK2 S1374    | MEF2D S231   |
| TF: SRF     | ROCK2 \$1374   | MEF2D S251   |
| TF: SRF     |                |              |
| TF: STAT    | CDK18_S117     | STAT3_S727   |
| TF: STAT    | MAPK1_Y187     | STAT3_S727   |
| TF: STAT    | MAPK3_Y204     | STAT3_S727   |
| TF: STAT    | RPS6KA3_T577   | STAT3_S727   |
| TF: TF_bZIP | САМКК2_\$100   | JUN_S63      |
| TF: TF_bZIP | CDK12_T692     | JUN_S63      |
| TF: TF_bZIP | CDK16_S227     | JUN_S63      |
| TF: TF_bZIP | PAK1_S204      | JUN_S63      |
| TF: TF_bZIP | SIK3_S673      | JUN_S63      |
| TF: ZBTB    | CDK12_T692     | ZBTB7A_S525  |
| TF: ZBTB    | CDK16_S217     | ZBTB7A_S525  |
| TF: ZBTB    | CLK3_S157      | ZBTB7A_S525  |
| TF: ZBTB    | MAP3K2_S153    | ZBTB7A_S525  |
| TF: ZBTB    | МАРК3_Т202     | ZNF295_S435  |
| TF: ZBTB    | МАРК3_Ү204     | ZNF295_S435  |
| TF: ZBTB    | TNIK_S707      | ZNF295_S411  |
| TF: bHLH    | CDK13_T1058    | TFE3_S556    |
| TF: bHLH    | MAP2K2_T394    | TFE3_S556    |
| TF: bHLH    | MARK2_S631     | TCF3_S379    |
| TF: bHLH    | MARK2_S631     | TFE3_S556    |
| TF: bHLH    | TTK_S436       | TFE3_S556    |
| TF: zf-C2H2 | AKT1_S122      | ZNF217_S407  |
| TF: zf-C2H2 | САМКК2_\$100   | ZNF444_S232  |
| TF: zf-C2H2 | CDC42BPG_S1482 | ZNF800_\$336 |
| TF: zf-C2H2 | CDK12_T692     | WIZ_S294     |
| TF: zf-C2H2 | CDK12_T692     | ZFP91_S82    |
| TF: zf-C2H2 | CDK12_T692     | ZNF444_S232  |
| TF: zf-C2H2 | CDK16_S217     | WIZ_S294     |
| TF: zf-C2H2 | CDK16_S217     | ZNF644_S1189 |
| TF: zf-C2H2 | CDK16_S227     | ZNF444_S232  |
| TF: zf-C2H2 | CLK3_S157      | ZNF444_S232  |
| TF: zf-C2H2 | MARK2_S631     | WIZ_S289     |
| TF: zf-C2H2 | PAK1_S204      | ZFP91_S82    |
| TF: zf-C2H2 | PAK1 S204      | ZNF444 S232  |

| TF family    | kinase       | TF           |
|--------------|--------------|--------------|
| TF: zf-C2H2  | PAK2_S197    | ZNF768_\$83  |
| TF: zf-C2H2  | PAK2_S197    | ZNF800_S336  |
| TF: zf-C2H2  | SIK3_S673    | ZFP91_S82    |
| TF: zf-C2H2  | SIK3_S673    | ZNF444_S232  |
| TF: zf-C2H2  | STK39_T354   | ZKSCAN1_S208 |
| TF: zf-C2H2  | TNIK_S678    | ZKSCAN1_S208 |
| TF: zf-C2H2  | TNIK_\$707   | ZKSCAN1_S208 |
| TF: zf-C2H2  | TNIK_\$707   | ZNF217_S407  |
| TF: zf-C2H2  | TTK_\$436    | WIZ_S289     |
| TF: zf-GATA  | CDK18_S117   | MTA1_\$576   |
| TF: zf-GATA  | CHEK2_\$303  | MTA1_\$576   |
| TF: zf-GATA  | CHEK2_S422   | MTA1_\$576   |
| TF: zf-GATA  | CHEK2_T421   | MTA1_\$576   |
| TF: zf-GATA  | MARK3_S469   | MTA1_\$576   |
| TF: zf-GATA  | STK10_T952   | MTA1_\$576   |
| TF: zf-NF-X1 | САМКК2_\$100 | NFX1_S50     |
| TF: zf-NF-X1 | CDK12_S685   | NFX1_S50     |
| TF: zf-NF-X1 | CDK17_S180   | NFX1_S50     |
| TF: zf-NF-X1 | CLK3_S157    | NFX1_S50     |
| TF: zf-NF-X1 | MAP3K2_\$153 | NFX1_\$50    |
| TF: zf-NF-X1 | ROCK2_S1374  | NFX1_S50     |

#### Table S6. List of peptides associated with MAPK1

| -             |        |                            |             |
|---------------|--------|----------------------------|-------------|
|               | Corre- |                            | Aligned     |
| Phospho-site  | lation | Modified peptide           | sequence    |
| NEDD4L_S448   | 0.984  | SLpSSPTVTLSAPLEGAK         | XXXSLSSPTVT |
| CLASP2_S1113  | 0.998  | NTGNGTQSSMGpSPLTRPTPR      | QSSMGSPLTRP |
| PFKFB2_S466   | 0.973  | RRPpSAASLMLPC              | XXRRPSAASLM |
| SH3KBP1_S230  | 0.999  | pSIEVENDFLPVEK             | XXXXXSIEVEN |
| NDRG1_T366    | 0.984  | SHpTSEGAHLDITPNSGAAGNSAGPK | XXXSHTSEGAH |
| EHBP1L1_S1273 | 0.958  | AHGpSFSHVR                 | XXAHGSFSHVR |
| C10orf47_S215 | 0.996  | MAGNEALSPTpSPFR            | ALSPTSPFRXX |
| TNKS1BP1_S691 | 0.962  | WLDDLLApSPPPSGGGAR         | DDLLASPPPSG |
| SENP2_S333    | 0.992  | LGpSGSNGLLR                | XXXLGSGSNGL |
| AHNAK_S3426   | 0.951  | VSMPDVELNLKpSPK            | ELNLKSPKXXX |
| PANK2_S169    | 0.954  | ASpSASVPAVGASAEGTRR        | XXXASSASVPA |
| STAT3_S727    | 0.992  | FICVTPTTCSNTIDLPMpSPR      | IDLPMSPRXXX |
| DOCK7_\$2098  | 0.986  | AVLPVTCHRDpSFSR            | TCHRDSFSRXX |
| MLLT4_S1718   | 0.985  | LFpSQGQDVSNKVK             | XXXLFSQGQDV |
| SLC9A1_S703   | 0.983  | IGpSDPLAYEPK               | XXXIGSDPLAY |
| TRIM47_\$588  | 0.982  | RGGIPApSPIDPFQSR           | GGIPASPIDPF |

|                | Corre- |                                 | Aligned     |
|----------------|--------|---------------------------------|-------------|
| Phospho-site   | lation | Modified peptide                | sequence    |
| MLPH_S337      | 0.953  | ASpSESQGLGAGVR                  | XXXASSESQGL |
| CAST_S230      | 0.968  | ELLAKPIGPDDAIDALSSDFTCGpSPTAAGK | DFTCGSPTAAG |
| KIAA0284_S1179 | 0.985  | AGpSFTGTSDPEAAPAR               | XXXAGSFTGTS |
| ZFR_\$1054     | 0.951  | RRDpSDGVDGFEAEGK                | XXRRDSDGVDG |
| NUP153_S614    | 0.964  | EGSVLDILKpSPGFASPK              | LDILKSPGFAS |
| EGFR_T693      | 0.987  | ELVEPLpTPSGEAPNQALLR            | LVEPLTPSGEA |
| SVIL_S547      | 0.965  | pSLSDFTGPPQLQALK                | XXXXXSLSDFT |
| EHBP1L1_S310   | 0.955  | LRKGpSDALRPPVPQGEDEVPK          | XLRKGSDALRP |
| ARHGEF2_S886   | 0.994  | pSLPAGDALYLSFNPPQPSR            | XXXXXSLPAGD |
| DOCK7_\$1352   | 0.969  | MNpSLTFKK                       | XXXMNSLTFKK |
| DOCK7_\$180    | 0.989  | pSMSIDDTPR                      | XXXXXSMSIDR |
| AHNAK_S2397    | 0.981  | ISMPDLDLHLKpSPK                 | DLHLKSPKXXX |
| SRRM2_S2272    | 0.977  | TPAAAAAMoxNLApSPR               | OXNLASPRXXX |
| C10orf47_S212  | 0.982  | MAGNEALpSPTSPFR                 | GNEALSPTSPF |
| CARHSP1_S52    | 0.967  | TRTFpSATVR                      | XTRTFSATVRX |
| C10orf47_S43   | 0.983  | SRpSFTLDDESLK                   | XXXSRSFTLDD |
| SPECC1L_S832   | 0.972  | RSpSTSSEPTPTVK                  | XXXRSSTSSEP |
| RAPH1_S610     | 0.982  | MESMNRPYTSLVPPLpSPQPK           | LVPPLSPQPKX |
| NUP98_S623     | 0.992  | NLNNSNLFSPVNRDSENLApSPSEYPENGER | SENLASPSEYP |
| KANK2_S548     | 0.958  | ERVPpSVAEAPQLRPAGTAAAK          | XERVPSVAEAP |
| RICTOR_S1302   | 0.959  | RAQpSLKAPSIATIK                 | XXRAQSLKAPS |
| AHNAK_S135     | 0.965  | LKpSEDGVEGDLGETQSR              | XXXLKSEDGVE |
| AHNAK_S5110    | 0.986  | FKAEAPLPpSPK                    | EAPLPSPKXXX |
| DOCK1_S1704    | 0.964  | RNpSKHQEIFEK                    | XXXRNSKHQEI |
| TPR_\$2155     | 0.957  | TDGFAEAIHpSPQVAGVPR             | AEAIHSPQVAG |
| GTSE1_S186     | 0.995  | LLApSSPALPSSGAQAR               | XXLLASSPALP |
| DLG5_\$1666    | 0.953  | RLpSMSEVKDDNSATK                | XXXRLSMSEVK |
| CDCA5_S75      | 0.997  | RIVAHAVEVPAVQpSPR               | VPAVQSPRXXX |
| PALM2-         |        |                                 |             |
| AKAP2_\$951    | 0.993  | TLpSMIEEEIR                     | XXXTLSMIEEE |
| SMG7_S735      | 0.998  | AVPALGKpSPPHHSGFQQYQQADASK      | PALGKSPPHHS |
| KIF16B_S662    | 0.965  | pSFHIENK                        | XXXXXSFHIEK |
| METTL1_S27     | 0.975  | AHpSNPMADHTLR                   | XXXAHSNPMAD |
| RANBP2_T1396   | 0.987  | ELVGPPLAETVFpTPKTpSPENVQDR      | AETVFTPKTSP |
| SPTBN1_T2328   | 0.961  | AQpTLPTSVVTITSESSPGKR           | XXXAQTLPTSV |
| CRTC2_S433     | 0.967  | VPLpSPLSLLAGPADAR               | XXVPLSPLSLL |
| DAP_S3         | 0.998  | SpSPPEGKLETK                    | XXXXSSPPEGK |
| PLEC_S4276     | 0.990  | SSpSVGSSSSYPISPAVSR             | XXXSSSVGSSS |
| SART1_S448     | 0.996  | RVpSEVEEEKEPVPQPLPSDDTR         | XXXRVSEVEEE |
| FAM63A_S489    | 0.969  | VLpSLQGR                        | XXXVLSLQGRX |

|                                                                                                                                                                                                                                                                                           | Corre-                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                       | Aligned                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Phospho-site                                                                                                                                                                                                                                                                              | lation                                                                                                                                                                                                               | Modified peptide                                                                                                                                                                                                                                                                                                                                                                                      | sequence                                                                                                                                                                                                                                                                                                 |
| FAM122B_S134                                                                                                                                                                                                                                                                              | 0.974                                                                                                                                                                                                                | RIDFTPVpSPAPpSPTR                                                                                                                                                                                                                                                                                                                                                                                     | DFTPVSPAPSP                                                                                                                                                                                                                                                                                              |
| PPFIA1_T1159                                                                                                                                                                                                                                                                              | 0.963                                                                                                                                                                                                                | GLAAGSAEpTLPANFR                                                                                                                                                                                                                                                                                                                                                                                      | AGSAETLPANF                                                                                                                                                                                                                                                                                              |
| TNS3_S1149                                                                                                                                                                                                                                                                                | 0.978                                                                                                                                                                                                                | ASEAApSPLPDSPGDKLVIVK                                                                                                                                                                                                                                                                                                                                                                                 | ASEAASPLPDS                                                                                                                                                                                                                                                                                              |
| FAM122A_S62                                                                                                                                                                                                                                                                               | 0.963                                                                                                                                                                                                                | RNpSTTFPSR                                                                                                                                                                                                                                                                                                                                                                                            | XXXRNSTTFPS                                                                                                                                                                                                                                                                                              |
| DENND4C_S1042                                                                                                                                                                                                                                                                             | 0.975                                                                                                                                                                                                                | RSpSLPLDHGSPAQENPESEK                                                                                                                                                                                                                                                                                                                                                                                 | XXXRSSLPLDH                                                                                                                                                                                                                                                                                              |
| RBM14_S618                                                                                                                                                                                                                                                                                | 0.959                                                                                                                                                                                                                | RLpSESQLSFR                                                                                                                                                                                                                                                                                                                                                                                           | XXXRLSESQLS                                                                                                                                                                                                                                                                                              |
| ADD1_S12                                                                                                                                                                                                                                                                                  | 0.983                                                                                                                                                                                                                | AAVVTpSPPPTTAPHKER                                                                                                                                                                                                                                                                                                                                                                                    | AAVVTSPPPTT                                                                                                                                                                                                                                                                                              |
| LARP1_T299                                                                                                                                                                                                                                                                                | 0.999                                                                                                                                                                                                                | KFDGVEGPRpTPK                                                                                                                                                                                                                                                                                                                                                                                         | VEGPRTPKXXX                                                                                                                                                                                                                                                                                              |
| MACF1_S1376                                                                                                                                                                                                                                                                               | 0.976                                                                                                                                                                                                                | MLpSSSDAITQEFMDLR                                                                                                                                                                                                                                                                                                                                                                                     | XXXMLSSSDAI                                                                                                                                                                                                                                                                                              |
| FAM129B_S696                                                                                                                                                                                                                                                                              | 0.952                                                                                                                                                                                                                | AAPEASpSPPApSPLQHLLPGK                                                                                                                                                                                                                                                                                                                                                                                | APEASSPPASP                                                                                                                                                                                                                                                                                              |
| LARP1_T572                                                                                                                                                                                                                                                                                | 0.955                                                                                                                                                                                                                | ILIVTQpTPHYMR                                                                                                                                                                                                                                                                                                                                                                                         | LIVTQTPHYMR                                                                                                                                                                                                                                                                                              |
| ACIN1_S561                                                                                                                                                                                                                                                                                | 0.954                                                                                                                                                                                                                | RApSHTLLPSHR                                                                                                                                                                                                                                                                                                                                                                                          | XXXRASHTLLP                                                                                                                                                                                                                                                                                              |
| CAPZB_S2                                                                                                                                                                                                                                                                                  | 0.952                                                                                                                                                                                                                | pSDQQLDCALDLMR                                                                                                                                                                                                                                                                                                                                                                                        | XXXXXSDQQLD                                                                                                                                                                                                                                                                                              |
| ADAM17_T735                                                                                                                                                                                                                                                                               | 0.967                                                                                                                                                                                                                | IIKPFPAPQpTPGR                                                                                                                                                                                                                                                                                                                                                                                        | FPAPQTPGRXX                                                                                                                                                                                                                                                                                              |
| NDRG1_T328                                                                                                                                                                                                                                                                                | 0.955                                                                                                                                                                                                                | SRpTApSGSSVTSLDGTR                                                                                                                                                                                                                                                                                                                                                                                    | XXXSRTASGSS                                                                                                                                                                                                                                                                                              |
| STX12_S139                                                                                                                                                                                                                                                                                | 0.952                                                                                                                                                                                                                | ARAGpSRLSAEER                                                                                                                                                                                                                                                                                                                                                                                         | XARAGSRLSAE                                                                                                                                                                                                                                                                                              |
| STMN1_S25                                                                                                                                                                                                                                                                                 | 0.994                                                                                                                                                                                                                | RApSGQAFELILpSPR                                                                                                                                                                                                                                                                                                                                                                                      | XXXRASGQAFE                                                                                                                                                                                                                                                                                              |
| PLEKHM1_S435                                                                                                                                                                                                                                                                              | 0.971                                                                                                                                                                                                                | LVVSSPTpSPK                                                                                                                                                                                                                                                                                                                                                                                           | VSSPTSPKXXX                                                                                                                                                                                                                                                                                              |
| PIK3C2A_S259                                                                                                                                                                                                                                                                              | 0.957                                                                                                                                                                                                                | VSNLQVpSPK                                                                                                                                                                                                                                                                                                                                                                                            | SNLQVSPKXXX                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                      | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                          |
| CDC42EP4_S174                                                                                                                                                                                                                                                                             | 0.990                                                                                                                                                                                                                | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K                                                                                                                                                                                                                                                                                                                                                                   | AAGPHSPDPLL                                                                                                                                                                                                                                                                                              |
| CDC42EP4_S174<br>TBC1D4_T642                                                                                                                                                                                                                                                              | 0.990<br>0.965                                                                                                                                                                                                       | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK                                                                                                                                                                                                                                                                                                                                                  | AAGPHSPDPLL<br>XXXAHTFSHPP                                                                                                                                                                                                                                                                               |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26                                                                                                                                                                                                                                            | 0.990<br>0.965<br>1.000                                                                                                                                                                                              | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK                                                                                                                                                                                                                                                                                                                         | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP                                                                                                                                                                                                                                                                |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289                                                                                                                                                                                                                              | 0.990<br>0.965<br>1.000<br>0.996                                                                                                                                                                                     | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR                                                                                                                                                                                                                                                                                                | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX                                                                                                                                                                                                                                                 |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119                                                                                                                                                                                                              | 0.990<br>0.965<br>1.000<br>0.996<br>0.950                                                                                                                                                                            | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK                                                                                                                                                                                                                                                                                | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV                                                                                                                                                                                                                                  |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483                                                                                                                                                                                               | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970                                                                                                                                                                   | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR                                                                                                                                                                                                                                                           | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP                                                                                                                                                                                                                   |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151                                                                                                                                                                                 | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972                                                                                                                                                          | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK                                                                                                                                                                                                                                          | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX                                                                                                                                                                                                    |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22                                                                                                                                                                    | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971                                                                                                                                                 | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK                                                                                                                                                                                                                   | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET                                                                                                                                                                                     |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210                                                                                                                                                      | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987                                                                                                                                        | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK                                                                                                                                                                                                      | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK                                                                                                                                                                      |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210<br>RPS6KA3_T577                                                                                                                                      | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987<br>0.952                                                                                                                               | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK<br>AENGLLMpTPCYTANFVAPEVLKR                                                                                                                                                                          | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK<br>NGLLMTPCYTA                                                                                                                                                       |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210<br>RPS6KA3_T577<br>SHC1_S139                                                                                                                         | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987<br>0.952<br>0.983                                                                                                                      | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK<br>AENGLLMpTPCYTANFVAPEVLKR<br>HGpSFVNKPTR                                                                                                                                                           | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK<br>NGLLMTPCYTA<br>XXXHGSFVNKP                                                                                                                                        |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210<br>RPS6KA3_T577<br>SHC1_S139<br>ARHGEF12_T703                                                                                                        | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987<br>0.987<br>0.952<br>0.983<br>0.973                                                                                                    | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK<br>AENGLLMpTPCYTANFVAPEVLKR<br>HGpSFVNKPTR<br>QVGETSAPGDTLDGpTPR                                                                                                                                     | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK<br>NGLLMTPCYTA<br>XXXHGSFVNKP<br>DTLDGTPRXXX                                                                                                                         |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210<br>RPS6KA3_T577<br>SHC1_S139<br>ARHGEF12_T703<br>AHNAK_S511                                                                                          | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987<br>0.952<br>0.983<br>0.973<br>0.973                                                                                                    | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK<br>AENGLLMpTPCYTANFVAPEVLKR<br>HGpSFVNKPTR<br>QVGETSAPGDTLDGpTPR<br>ISMQDVDLSLGpSPK                                                                                                                  | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK<br>NGLLMTPCYTA<br>XXXHGSFVNKP<br>DTLDGTPRXXX<br>DLSLGSPKXXX                                                                                                          |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210<br>RPS6KA3_T577<br>SHC1_S139<br>ARHGEF12_T703<br>AHNAK_S511<br>BOD1L1_S1077                                                                          | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987<br>0.983<br>0.973<br>0.973<br>0.977<br>0.971                                                                                           | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK<br>AENGLLMpTPCYTANFVAPEVLKR<br>HGpSFVNKPTR<br>QVGETSAPGDTLDGpTPR<br>ISMQDVDLSLGpSPK<br>RGpSLSQEMAKGEEK                                                                                               | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK<br>NGLLMTPCYTA<br>XXXHGSFVNKP<br>DTLDGTPRXXX<br>DLSLGSPKXXX<br>XXXRGSLSQEM                                                                                           |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210<br>RPS6KA3_T577<br>SHC1_S139<br>ARHGEF12_T703<br>AHNAK_S511<br>BOD1L1_S1077<br>FAM21A_S288                                                           | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987<br>0.952<br>0.983<br>0.973<br>0.973<br>0.977<br>0.971<br>0.971                                                                         | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK<br>AENGLLMpTPCYTANFVAPEVLKR<br>HGpSFVNKPTR<br>QVGETSAPGDTLDGpTPR<br>ISMQDVDLSLGpSPK<br>RGpSLSQEMAKGEEK<br>pSRPTpSFADELAAR                                                                            | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK<br>NGLLMTPCYTA<br>XXXHGSFVNKP<br>DTLDGTPRXXX<br>DLSLGSPKXXX<br>XXXRGSLSQEM<br>XXXXRGSLSQEM                                                                           |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210<br>RPS6KA3_T577<br>SHC1_S139<br>ARHGEF12_T703<br>AHNAK_S511<br>BOD1L1_S1077<br>FAM21A_S288<br>SVIL_T657                                              | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987<br>0.983<br>0.973<br>0.973<br>0.977<br>0.971<br>0.971<br>0.959<br>0.981                                                                | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK<br>AENGLLMpTPCYTANFVAPEVLKR<br>HGpSFVNKPTR<br>QVGETSAPGDTLDGpTPR<br>ISMQDVDLSLGpSPK<br>RGpSLSQEMAKGEEK<br>pSRPTpSFADELAAR<br>FRpTQPITSAER                                                            | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK<br>NGLLMTPCYTA<br>XXXHGSFVNKP<br>DTLDGTPRXXX<br>DLSLGSPKXXX<br>XXXRGSLSQEM<br>XXXRGSLSQEM<br>XXXXRGSLSQEM                                                            |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210<br>RPS6KA3_T577<br>SHC1_S139<br>ARHGEF12_T703<br>AHNAK_S511<br>BOD1L1_S1077<br>FAM21A_S288<br>SVIL_T657<br>AHNAK_S5762                               | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987<br>0.983<br>0.973<br>0.973<br>0.973<br>0.973<br>0.971<br>0.971<br>0.971<br>0.959<br>0.981<br>0.961                                     | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK<br>AENGLLMpTPCYTANFVAPEVLKR<br>HGpSFVNKPTR<br>QVGETSAPGDTLDGpTPR<br>ISMQDVDLSLGpSPK<br>RGpSLSQEMAKGEEK<br>pSRPTpSFADELAAR<br>FRpTQPITSAER<br>ASLGSLEGEAEAEApSSPKGK                                   | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK<br>NGLLMTPCYTA<br>XXXHGSFVNKP<br>DTLDGTPRXXX<br>DLSLGSPKXXX<br>XXXRGSLSQEM<br>XXXXRGSLSQEM<br>XXXXXSRPTSF<br>XXXFRTQPITS<br>AEAEASSPKGK                              |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210<br>RPS6KA3_T577<br>SHC1_S139<br>ARHGEF12_T703<br>AHNAK_S511<br>BOD1L1_S1077<br>FAM21A_S288<br>SVIL_T657<br>AHNAK_S5762<br>ZMYND8_S445                | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987<br>0.983<br>0.973<br>0.973<br>0.973<br>0.973<br>0.977<br>0.971<br>0.971<br>0.959<br>0.981<br>0.961<br>0.958                            | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK<br>AENGLLMpTPCYTANFVAPEVLKR<br>HGpSFVNKPTR<br>QVGETSAPGDTLDGpTPR<br>ISMQDVDLSLGpSPK<br>RGpSLSQEMAKGEEK<br>pSRPTpSFADELAAR<br>FRpTQPITSAER<br>ASLGSLEGEAEAEApSSPKGK<br>RIpSLSDMPR                     | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK<br>NGLLMTPCYTA<br>XXXHGSFVNKP<br>DTLDGTPRXXX<br>DLSLGSPKXXX<br>XXXRGSLSQEM<br>XXXRGSLSQEM<br>XXXRRTQPITS<br>AEAEASSPKGK<br>XXXRISLSDMP                               |
| CDC42EP4_S174<br>TBC1D4_T642<br>GIGYF2_S30_S26<br>SYTL4_S289<br>TRIM33_S1119<br>PFKFB2_S483<br>AKAP1_S151<br>NCBP1_S22<br>UBAP1_S210<br>RPS6KA3_T577<br>SHC1_S139<br>ARHGEF12_T703<br>AHNAK_S511<br>BOD1L1_S1077<br>FAM21A_S288<br>SVIL_T657<br>AHNAK_S5762<br>ZMYND8_S445<br>NUP153_S516 | 0.990<br>0.965<br>1.000<br>0.996<br>0.950<br>0.970<br>0.972<br>0.971<br>0.987<br>0.987<br>0.983<br>0.973<br>0.973<br>0.973<br>0.971<br>0.971<br>0.971<br>0.971<br>0.959<br>0.981<br>0.981<br>0.961<br>0.958<br>0.972 | RNGAAGPHpSPDPLLDEQAFGDLTDLPVVP<br>K<br>AHpTFSHPPSSTK<br>ALSSGGSITpSPPLpSPALPK<br>SVIDLRPEDVVHESGpSLGDR<br>LKpSDERPVHIK<br>NYpSVGSRPLKPLSPLR<br>SIPLECPLSpSPK<br>KTpSDANETEDHLESLICK<br>VLpSPPHIK<br>AENGLLMpTPCYTANFVAPEVLKR<br>HGpSFVNKPTR<br>QVGETSAPGDTLDGpTPR<br>ISMQDVDLSLGpSPK<br>RGpSLSQEMAKGEEK<br>pSRPTpSFADELAAR<br>FRpTQPITSAER<br>ASLGSLEGEAEAEApSSPKGK<br>RIpSLSDMPR<br>VQMTpSPSSTGSPMFK | AAGPHSPDPLL<br>XXXAHTFSHPP<br>GGSITSPPLSP<br>VHESGSLGDRX<br>XXXLKSDERPV<br>XXXNYSVGSRP<br>ECPLSSPKXXX<br>XXXKTSDANET<br>XXXVLSPPHIK<br>NGLLMTPCYTA<br>XXXHGSFVNKP<br>DTLDGTPRXXX<br>DLSLGSPKXXX<br>XXXRGSLSQEM<br>XXXXRGSLSQEM<br>XXXXRSFTSF<br>XXXFRTQPITS<br>AEAEASSPKGK<br>XXXRISLSDMP<br>XVQMTSPSSTG |

|                | Corre- |                             | Aligned     |
|----------------|--------|-----------------------------|-------------|
| Phospho-site   | lation | Modified peptide            | sequence    |
| AHNAK_T4100    | 0.989  | ADIDVpSGPKVDIDTPDIDIHGPEGK  | ADIDVSGPKVD |
| PANK2_S189     | 0.991  | LGpSYSGPTSVSR               | XXXLGSYSGPT |
| CD44_S697      | 0.981  | LVINSGNGAVEDRKPpSGLNGEASK   | EDRKPSGLNGE |
| AHNAK_T4564    | 0.966  | VGIDpTPDIDIHGPEGK           | XVGIDTPDIDI |
| PHLDB1_S1017   | 0.977  | SALLTQNGTGpSLPR             | QNGTGSLPRXX |
| SEC22B_T140    | 0.955  | NLGpSINTELQDVQR             | XXNLGSINTEL |
| CDK13_T1058    | 0.959  | TNpTPQGVLPSSQLK             | XXXTNTPQGVL |
| CABLES1_T415   | 0.985  | RNpTIDSTSSFSQFR             | XXXRNTIDSTS |
| PPP1R12A_\$507 | 0.953  | LApSTSDIEEK                 | XXXLASTSDIE |
| MYO9B_\$1354   | 0.985  | RTpSFSTSDVSK                | XXXRTSFSTSD |
| GIT1_S605      | 0.965  | HGpSGADpSDYENTQSGDPLLGLEGKR | XXXHGSGADSD |
| NEK9_T333      | 0.978  | SSpTVTEAPIAVVTSR            | XXXSSTVTEAP |
| MAP2K2_T394    | 0.962  | LNQPGpTPTRTAV               | LNQPGTPTRTA |



# Figure S1. Biological Process GO term enrichment analysis for phospho-peptides changed in the EGFR case study(20).





Figure S3. Demonstration of significant enrichment of known or predicted kinasesubstrate associations in higher correlation and lower correlation p-value values for the case study dataset.



### Supplementary Note 1. SELPH-Convert Tool

As an accompanying tool we have developed SELPH-Convert. The tool takes as input the report (tab-delimited or comma separated) from any phospho-proteomics analysis tool, or files from publications that describe the data and converts them to SELPHI-useable format. The user is at minimum expected to define the columns in that file that contain the Proteins, Peptides, Phospho-site location (if the peptides didn't have annotations about the phosphorylated residues) and the columns containing the phosphoproteomics data. If the user wishes, they can indicate which columns describe the Intensity and Score of the peptides. To generate the 'phosphomap' files, SELPH-Convert requires the definition of the column that has at least the start location of the peptide or the global sequence location of the first phosphosite appearing on the peptide. Finally to generate the 'idmap' SELPH-Convert requires the definition of the species, and allows the indication of columns (beyond the Protein column) that could help with mapping, such as protein description or Gene Name columns. The resulting '.dat' files can be given as input to SELPHI and if the 'phosmap' and 'idmaps' were successfully generated they can also be used. Alternatively, the user can provide the database used to search for their phospho-peptides and SELPHI will try to generate these files.

## Supplementary Note 2. Correlation and p-value calculations

If the user provides a very small number of data points e.g. 3-5, the statistical power of SELPHI to calculate individual p-values for the correlated peptide pairs is limited, as is the quality of the overall results. SELPHI nevertheless still proceeds with the exploratory analysis so that the user can get an overview of their dataset and be pointed to hypotheses worthy of further experiments. The value of SELPHI even in these 'low-power' settings is supported by our example with only four data points. Here we still see a marked enrichment of true kinase/substrate associations despite low statistical power (Main text and Figure S3). If preferred, the user can set the p-value cutoff to 1 so that significance testing will not be considered at all in an exploratory analysis.

### Supplementary Note 3. Discussion of serine/threonine kinase SELPHI network

Figure S2 shows the correlation-based network among the kinases in the EGFR case study. We calculate a 'change' value by adding the log(ratios) of all the phosphopeptides found for each gene in each condition and color the nodes according to the difference of the 'change' value for each gene between the strains expressing the TKI resistant EGFR<sup>L858R/T790M</sup> gene, and the TKI sensitive EGFR<sup>L858R</sup> gene, in the presence of erlotinib.

Four subgroups, potentially representing signaling branches, are apparent. Group one is mostly colored red, indicating that in the resistant strain these proteins are either unaffected or increase their phosphorylation, whilst in the sensitive strain the phosphorylation is reduced. Many kinases exhibit involvement in MAP kinase signaling. We also find ROCK2, which regulates the cytoskeleton and cell polarity. The major GO terms enriched (21) with the downstream proteins associated with these kinases (Table S4a) involve receptor tyrosine kinase signaling, nuclear envelope disassembly, apoptosis and cytoskeletal organization.

Group 2 starts from the tyrosine kinase MET and seems to be much less phosphorylated in the resistant strain after treatment with erlotinib. MET is known to be up-regulated and to contribute to resistance of the sensitive strain in the presence of erlotinib, therefore we observe this difference because its phosphorylation is increased in the sensitive strain and reduced or unchanged (relative to no treatment) in the resistant strain. CDK18 and CDC42BPG kinases may be responsible for the activation of downstream pathways to compensate for the erlotinib treatment. Indeed we find cytoskeletal rearrangement and cell cycle regulation GO terms to be enriched amongst the downstream targets of these kinases (Table S4b).

Group 3 starts from the tyrosine kinase EPHA2 and shows similar results as Group 2. In addition to cytoskeletal rearrangement and cell cycle regulation the downstream associated proteins are also enriched for RNA transport (Table S4c), a function that has also been seen in other studies (22).Group 3 starts from the tyrosine kinase EPHA2 and shows results similar to those of Group 2. In addition to cytoskeletal rearrangement and cell cycle regulation the downstream associated proteins are also enriched for RNA transport (Table S4c), a function that has also been seen in other studies (22).

#### Supplementary Note 4. Results interpretation

SELPHI networks provide potential associations of kinases and phosphatases with a specific subset of identified phospho-peptides. These associations are enriched for kinase-substrate relationships, and therefore are a great place to look for such relationships, however a large fraction of associations may represent peptides simply co-changing because of upstream effects. It can be considered as a representation of the data similar to peptide clustering, providing groups of potentially co-functioning peptides, but focusing mainly on likely 'drivers' of the signaling process, i.e. kinases and phosphatases, making it easier to form hypotheses about the flow of signaling and to design follow up experiments to uncover the mechanistic details behind it.

### References

- 1. Hornbeck, P.V., Zhang, B., Murray, B., Kornhauser, J.M., Latham, V. and Skrzypek, E. (2014) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. *Nucleic Acids Res.*
- Dinkel, H., Chica, C., Via, A., Gould, C.M., Jensen, L.J., Gibson, T.J. and Diella, F. (2011) Phospho.ELM: a database of phosphorylation sites--update 2011. *Nucleic Acids Res*, **39**, D261-267.
- 3. Gnad, F., Gunawardena, J. and Mann, M. (2011) PHOSIDA 2011: the posttranslational modification database. *Nucleic Acids Res*, **39**, D253-260.
- 4. Yang, C.Y., Chang, C.H., Yu, Y.L., Lin, T.C., Lee, S.A., Yen, C.C., Yang, J.M., Lai, J.M., Hong, Y.R., Tseng, T.L. *et al.* (2008) PhosphoPOINT: a comprehensive human kinase interactome and phospho-protein database. *Bioinformatics*, **24**, i14-20.
- 5. Duan, G., Li, X. and Kohn, M. (2015) The human DEPhOsphorylation database DEPOD: a 2015 update. *Nucleic Acids Res*, **43**, D531-535.
- 6. Lachmann, A. and Ma'ayan, A. (2009) KEA: kinase enrichment analysis. *Bioinformatics*, **25**, 684-686.
- 7. Wong, Y.H., Lee, T.Y., Liang, H.K., Huang, C.M., Wang, T.Y., Yang, Y.H., Chu, C.H., Huang, H.D., Ko, M.T. and Hwang, J.K. (2007) KinasePhos 2.0: a web server for identifying protein kinase-specific phosphorylation sites based on sequences and coupling patterns. *Nucleic Acids Res*, **35**, W588-594.
- 8. Linding, R., Jensen, L.J., Pasculescu, A., Olhovsky, M., Colwill, K., Bork, P., Yaffe, M.B. and Pawson, T. (2008) NetworKIN: a resource for exploring cellular phosphorylation networks. *Nucleic Acids Res*, **36**, D695-699.
- 9. Linding, R., Jensen, L.J., Ostheimer, G.J., van Vugt, M.A., Jorgensen, C., Miron, I.M., Diella, F., Colwill, K., Taylor, L., Elder, K. *et al.* (2007) Systematic discovery of in vivo phosphorylation networks. *Cell*, **129**, 1415-1426.
- 10. Horn, H., Schoof, E.M., Kim, J., Robin, X., Miller, M.L., Diella, F., Palma, A., Cesareni, G., Jensen, L.J. and Linding, R. (2014) KinomeXplorer: an integrated platform for kinome biology studies. *Nat Methods*, **11**, 603-604.
- 11. Bennetzen, M.V., Cox, J., Mann, M. and Andersen, J.S. (2012) PhosphoSiteAnalyzer: a bioinformatic platform for deciphering phospho proteomes using kinase predictions retrieved from NetworKIN. *J Proteome Res*, **11**, 3480-3486.
- 12. Obenauer, J.C., Cantley, L.C. and Yaffe, M.B. (2003) Scansite 2.0: Proteomewide prediction of cell signaling interactions using short sequence motifs. *Nucleic Acids Res*, **31**, 3635-3641.
- 13. Xue, Y., Ren, J., Gao, X., Jin, C., Wen, L. and Yao, X. (2008) GPS 2.0, a tool to predict kinase-specific phosphorylation sites in hierarchy. *Mol Cell Proteomics*, **7**, 1598-1608.
- 14. Wang, L., Hou, L., Qian, M. and Deng, M. (2012) Integrating phosphorylation network with transcriptional network reveals novel functional relationships. *PLoS One*, **7**, e33160.

- 15. Chen, W.M., Danziger, S.A., Chiang, J.H. and Aitchison, J.D. (2013) PhosphoChain: a novel algorithm to predict kinase and phosphatase networks from high-throughput expression data. *Bioinformatics*, **29**, 2435-2444.
- 16. Huang, K.Y., Wu, H.Y., Chen, Y.J., Lu, C.T., Su, M.G., Hsieh, Y.C., Tsai, C.M., Lin, K.I., Huang, H.D. and Lee, T.Y. (2014) RegPhos 2.0: an updated resource to explore protein kinase-substrate phosphorylation networks in mammals. *Database (Oxford)*, **2014**, bau034.
- 17. Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger, D.A., Klamt, S. and Sorger, P.K. (2009) Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. *Mol Syst Biol*, **5**, 331.
- 18. Mitsos, A., Melas, I.N., Siminelakis, P., Chairakaki, A.D., Saez-Rodriguez, J. and Alexopoulos, L.G. (2009) Identifying drug effects via pathway alterations using an integer linear programming optimization formulation on phosphoproteomic data. *PLoS Comput Biol*, **5**, e1000591.
- 19. Zhang, Y., Kweon, H.K., Shively, C., Kumar, A. and Andrews, P.C. (2013) Towards systematic discovery of signaling networks in budding yeast filamentous growth stress response using interventional phosphorylation data. *PLoS Comput Biol*, **9**, e1003077.
- 20. Zhang, X., Belkina, N., Jacob, H.K., Maity, T., Biswas, R., Venugopalan, A., Shaw, P.G., Kim, M.S., Chaerkady, R., Pandey, A. *et al.* (2014) Identifying novel targets of oncogenic EGF receptor signaling in lung cancer through global phosphoproteomics. *Proteomics*.
- 21. Berriz, G.F., Beaver, J.E., Cenik, C., Tasan, M. and Roth, F.P. (2009) Next generation software for functional trend analysis. *Bioinformatics*, **25**, 3043-3044.
- 22. Omerovic, J., Hammond, D.E., Prior, I.A. and Clague, M.J. (2012) Global snapshot of the influence of endocytosis upon EGF receptor signaling output. *J Proteome Res*, **11**, 5157-5166.