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Construction of FlyNet 

Gold standard set for machine learning 

The inferred network links were benchmarked by ‘gold standard’ pairs of genes annotated by 
the same gene ontology (1) biological process (GO-BP) terms or MetaCyc (2) terms. GO-BP 
annotations for Drosophila melanogaster genes were based on FlyBase (3) release 5.54. 
Annotations only supported by IDA (inferred from direct assay), IPI (inferred from protein 
interaction), ISS (inferred from sequence or structural similarity) and TAS (traceable author 
statement) were used to achieve the high accuracy of the gold standard data. GO-BP terms 
below level 11 of the annotation hierarchy were excluded, because they provide highly 
specific definitions. In addition, large GO-BP terms that generate too many gene pairs, such 
as ‘regulation of transcription, DNA-templated’ (GO:0006355) and ‘translation’ 
(GO:0006412), ‘protein phosphorylation (GO:0006468)’, and ‘proteolysis (GO:0006508)’ 
were excluded in order to construct a functionally unbiased gold standard data set (4). The 
resultant gold standard data set from GO-BP terms contains 87,856 positive and 7,778,705 
negative pairs between 3,957 genes, covering ~28% of D. melanogaster coding genome. 
MetaCyc annotations were based on BioCyc Drosophila annotation version 4.0.1.1.1. 
Annotations by 18 super-pathways were excluded, because they are broad concepts, in which 
multiple subordinate pathway concepts are included. The resultant gold standard data set 
from MetaCyc terms contains 10,526 positive and 296,410 negative pairs between 784 genes. 
Finally, we combined these two sets to generate the final gold standard set of 97,267 positive 
and 9,890,948 negative pairs between 4,470 genes, which covers ~32% of D. melanogaster 
genome.  

 

Log likelihood score (LLS) scheme to unify multiple types of data-intrinsic scores 

Log likelihood score (LLS), a unified scoring scheme for heterogeneous data types, was 
previously developed and has proven useful in benchmarking and integrating diverse types of 
data (5). LLS can be calculated using the following equation: 

ܵܮܮ ൌ 	ln ቆ
ܲሺܧ|ܮሻ/ܲሺ႓ܧ|ܮሻ
ܲሺܮሻ/ܲሺ႓ܮሻ

ቇ 

, where P(L|E) and P(⌐L|E) represent the frequencies of positive (L) and negative (⌐L) gold 
standard pathway links observed in the given experimental or computational evidences (E), 
while P(L) and P(⌐L) represent the prior expectations (i.e., the total frequencies of all 
positive and negative gold standard pathway gene pairs, respectively). To avoid over-fitting, 
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we used ‘0.632 bootstrapping’ for all LLS calculations because of its credibility in estimating 
classifier error rates.  

For the gene pairs sorted by data-intrinsic scores, LLS scores were calculated for bins of equal 
numbers of gene pairs. A regression between data-intrinsic scores (e.g. mutual information, 
correlation coefficient and probability) and log likelihood scores based on gold standard gene 
pairs is used for interpolation to estimate LLS of individual gene pairs. Linear fits in general 
over-estimate LLS for the gene pairs in the most significant score range, whereas sigmoidal 
curve fits result in more conservative LLS for the same score range (4). 

 

Weighted Sum (WS) method for network integration 

Weighted sum (WS) (5,6) is a variant of the naïve Bayesian method, which accounts for the 
average correlation among integrated data. WS is calculated using the following equation: 

ܹܵ ൌ ܵ଴ ൅	෍
௜ܵ
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, where S0 is the best LLS score among all of the available LLSs for each link; D is a free 
parameter representing the degree of correlation among the scores; T is a threshold of LLS to 
be integrated; and i is the rank index from ordering in descending magnitude the n LLSs for 
each link. The values for the free parameters, D and T, were chosen to maximize overall 
performance on the benchmarks. To take the best case of integration, we also tested the 
performance of the naïve Bayesian integration of LLS scores, and then selected the 
integration conditions that maximizes the area under the plot of LLS versus genome coverage 
of the integrated network (4). 

 

Protein-protein interactions – based on high-throughput experiments (HT) and literature 
curation (LC) 

Protein-protein interaction (PPI) data was dealt as two categories: i) PPI by high-throughput 
experiments such as yeast-two-hybrid assay (Y2H) or affinity purification/mass spectrometry 
(AP/MS), and ii) PPI by small-scale experiments. Both categories of PPI data were obtained 
from iRefWeb (7) version 13.0, a consolidated database of several public protein interaction 
databases. Protein interactions are prioritized based on the significance calculated using 
Fisher’s exact test. 

 

Co-expression (CX) of genes across biological conditions 

More than 2,000 microarray and RNA-seq samples are publicly available from Gene 
Expression Omnibus (GEO) (8). We analyzed GEO series (GSE) based on two Affymetrix 
chip platforms, GPL72 and GPL1322, which support the largest number of gene expression 
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samples. GSE with less than 12 samples were excluded, because correlation coefficient by 
low dimensional data tends to give many promiscuous co-functional links. Overall, 53 GSE 
comprising 1,873 expression samples were analyzed and the full list of GSE series are 
represented in Supplementary Table S1. The degree of co-expression was measured by 
Pearson’s correlation coefficient.  

 

Comparative genomics-based computational methods – Phylogenetic profiling (PG) and 
Gene neighborhood (GN) 

The phylogenetic profiling (PG) method is based on the observation that functionally related 
genes tend to be gained or lost together during the evolutionary process (i.e., co-inherited) 
because they both might be required to operate the same biological pathways. To identify co-
functionality between genes from the co-inheritance pattern, we conducted BLASTp for all D. 
melanogaster genes against the genome set generated based on each of three domains of life; 
sets of 122 completely sequenced genomes for Archaea, 1,626 for Bacteria and 396 for 
Eukarya. We found that this divide-and-integrate approach based on domain-specific 
phylogenetic profiles substantially improves network coverage as well as accuracy. 
Phylogenetic profile matrices were constructed with BLAST hit scores and the similarity 
between profiles of two genes was calculated as mutual information (MI) score as described 
in a previous study (9).  

The gene neighborhood (GN) method is based on the observation that genes located in the 
bacterial genomic vicinity tend to be co-regulated, and thus functionally associated. We used 
1,748 bacterial genomes (122 from Archaea and 1,626 from Bacteria) for the analysis. There 
are two different measures of genomic vicinity: i) physical distance between neighboring 
genes (10-12), and ii) relative distance measured by the probability of neighborhood (13). It 
has been reported that these two methods are complementary and the integration of two 
methods improves prediction performance of the network (14).  

 

Text mining from research articles – Co-citation (CC) 

Co-citation of genes in the same articles is a relatively simple but effective method to identify 
functionally associated genes (15). We inferred co-citation-based links by scanning PubMed 
Central full text articles and Medline abstracts (as of January 2014) that contain the word 
“melanogaster”. Co-cited genes in the same articles were paired to generate links and 
measured the statistical significance using Fisher’s exact test. 

 

Co-occurrence of protein domains – Domain co-occurrence (DC) 

Because protein domains are generally considered as functional units, proteins that share 
domains could have similar functions. Based on the presence of domains by InterPro database 
(16), we generated domain profiles for proteins. With these profiles, we measured 
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significance of domain co-occurrence between two proteins. Accounting for inverse 
relationship between occurrence and functional specificity of domains, we used ‘weighted 
mutual information’ scheme which gives more weight on rarer domains.  

 

Functional information transferred by orthology – Associalogs 

Due to the evolutionary conservation of biological pathways across species, functional 
association between genes in a target organism can be inferred from a functional association 
between orthologs in a reference organism, based on the algorithm namely ‘associalog’ (6). 
We used Inparanoid (17) for the orthology mapping, which allows identification of co-
orthologs. We transferred co-functional links from AraNet v2 (18), WormNet v3 (19), 
YeastNet v3 (20), and unpublished co-functional networks for human and zebra fish.  

 

Spatiotemporal-specific network (STN) 

The data of spatiotemporal expressions of D. melanogaster genes were obtained from the 
recent Drosophila transcriptome atlas data from the modENCODE project (21). For all 
expression samples based on RNA-seq, we took genes with BPKM (bases per kilobase per 
million mapped bases) > 1 only. We classified 41 selected spatiotemporal expression samples 
into four developmental stages (embryo, larvae, pupae and adult) and ten tissue types 
(imaginal disc, CNS, salivary gland, fat body, digestive system, carcass, heads, accessory 
gland, ovary and testes). As the result, we generated 14 sets of genes associated with different 
developmental stages and tissue types. These 14 gene sets were used to filter FlyNet for 14 
spatiotemporal networks. We then compared the networks for four developmental stages to 
identify specific network links for each developmental stage, and compared the networks for 
ten tissue types to identify specific network links for each tissue type. These spatiotemporal-
specific links (i.e., links found in only one of four developmental stages or in only one of ten 
tissue types) generate 14 spatiotemporal-specific networks (STNs) summarized in 
Supplementary Table S2. Edge information of the 14 STNs are also available from FlyNet 
server. 

 

Dataset for the assessment of human disease prioritization 

Fly X-chromosome genes whose human orthologs are associated with neurodevelopmental 
diseases were collected from a recent study of fly mutagenesis screen (22). Human genes 
with de novo mutations in neurological disorders from the following references: autism (23-
26), epilepsy (27), and schizophrenia (28-31).  
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Supplementary Figure 1. The assessment of 21 component networks of the FlyNet against 
gene pairs derived from GenomeRNAi phenotype terms 
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Supplementary Figure 2. The assessment of networks including FlyNet with no links by co-
cited fly genes (FlyNet w/o DM-CC) using gene pairs derived from GenomeRNAi phenotype 
terms. 
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Supplementary Table S1. Summary of FlyNet construction 

 Description # Genes # Links
Network 

genes 
13,942 protein coding genes from FlyBase r5.54 

Gold 
standard 

gene 
pairs for 
training 

Gene pairs that share the same Gene Ontology biological process terms 
as supported by GO evidence of IDA, IPI, ISS, TAS, or same MetaCyc 

pathway terms 
4,470 97,267 

Network 
size 

779,484 links, 13,119 genes (94.1% of FlyBase r5.54 coding genes ) 13,119 779,484

DM-CC 
Co-citation of genes in PubMed Central full text articles and Medline 

abstracts 
6,027 503,475

DM-CX 

Integrated co-expression gene links from 53 GEO series comprising 
1,873 experiments using the Affymetrix DNA-chip (GPL : GSEs) 

(GPL72 : GSE3057, 3060, 3854, 6493, 6558, 7159, 8751, 9889, 10012, 
11203, 42255) 

(GPL1322 : GSE2863, 5404, 5430, 7614, 7763, 8775, 8892, 8938, 9107, 
10940, 11695, 12160, 14517, 14531, 14779, 16152, 16713, 17013, 
17803, 17874, 21520, 22308, 23802, 24729, 24917, 24978, 26246, 
26726, 27163, 27345, 31564, 33100, 33779, 33801, 34400, 36582, 

37708, 38036, 46550, 47176, 48385, 48997) 

11,718 275,033

DM-DC Co-occurrence of InterPro protein domains between two genes 4,407 7,604 

DM-GN 
Genomic proximity, integration of a distance-based (DGN) and a 

probability-based (PGN) 
1,979 15,820 

DM-HT 
PPI from high-throughput experiments, downloaded from iRefWeb 

v13.0 
7,759 15,820 

DM-LC 
PPI excluding high-throughput experiments, downloaded from iRefWeb 

v13.0 
1,202 2,226 

DM-PG 
Integrated links of 3 networks from phylogenetic profiles of 122 

Archaea genomes, 1626 bacterial genomes and 396 Eukaryote genomes
3,357 80,506 

AT-CC Associalogs from AraNet v2 1,747 17,502 

AT-CX 

Associalogs from AraNet v2, integrated co-expression gene links from 
18 GEO series 

(GSE1491, 4847, 5629-34, 5636-39, 9674, 10670, 11262, 12402, 12403, 
13739, 18071, 18971, 18975, 18978, 19700, 21684, 30492, 35325, 

35544) 

1,105 9,455 

AT-HT Associalogs from AraNet v2, PPI from 4 high-throughput screens 1,013 2,823 

AT-LC 
Associalogs from AraNet v2, PPI from TAIR, IntAct, MINT, BioGrid, 

DIP 
856 1,977 

CE-CX 
Associalogs from WormNet v3, integrated co-expression gene links 

from 2 GEO series 
(GSE2180, 11055) 

1,434 17,497 

DR-CX 
Integrated associalogs of co-expression gene links from 8 GEO series 

(GSE9020, 10188, 11893, 11107, 14495, 16264, 39731, 48806) 
3,223 55,515 

HS-CX 
Integrated associalogs of co-expression gene links from 8 GEO series 

(GSE3307, 7390, 9419, 9874, 11877, 11903, 14994, 37201) 
3,366 32,482 

HS-HT 
Integrated associalogs of high-throughput physical interactions from 6 

literature sources 
2,741 12,520 

HS-LC 
Integrated associalogs from the PPI network from HPRD, BioGrid, 

IntAct, MINT, DIP, iRefWeb 
5,254 50,488 

SC-CC Associalogs from YeastNet v3 2,449 48,473 

SC-CX 
Integrated associalogs of co-expression gene links from 7 GEO series 

(GSE12442, 16799, 17716, 24888, 25582, 36954, 38848) 
1,674 18,488 
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SC-GT Associalogs from YeastNet v3 1,254 6,482 
SC-HT Associalogs from YeastNet v3 1,622 18,300 
SC-LC Associalogs from YeastNet v3 2,016 16,481 

Each  datasets are denoted as XX-YY, where XX represents species names (DM: Drosophila melanogaster, AT: 
Arabidopsis thaliana, CE: Caenorhabtitis elegans, DR: Danio rerio, HS: Homo sapiens, SC: Saccharomyces 
cerevisiae), and YY represents the data type (CX: inferred from co-expression of genes, CC: inferred from co-
citation, DC: inferred from domain co-occurrence, GN: inferred from gene neighborhood, GT: inferred from 
genetic interaction, HT: inferred from high-throughput protein-protein interactions, LC: inferred from literature 
curated protein-protein interactions, PG: inferred from phylogenetic profile similarity) 

 

Supplementary Table S2. Summary of spatiotemporal-specific network (STN) 

Specific networks Used expression set # Genes # Links 

Developmental 
Stage-specific 

Embryo 

em0-2hr 
em2-4hr 
em4-6hr 
em6-8hr 
em8-10hr 
em10-12hr 
em12-14hr 
em14-16hr 
em16-18hr 
em18-20hr 
em20-22hr 
em22-24hr

3,183 7,169 

Larvae 

L3_Carcass 
L3_CNS 
L3_DigestiveSystem 
L3_FatBody 
L3_ImaginalDiscs 
L3_SalivaryGlands 

1,316 2,135 

Pupae 

WPP_2days_CNS 
WPP_2days_Fat 
WPP_FatBody 
WPP_SalivaryGlands 

1,250 1,892 

Adult 

AdMatedF_Ecl_1day_Heads 
AdMatedF_Ecl_4days_Heads 
AdMatedF_Ecl_20days_Heads 
AdVirginF_Ecl_1day_Heads 
AdVirginF_Ecl_4days_Heads 
AdVirginF_Ecl_20days_Heads 
AdMatedM_Ecl_1day_Heads 
AdMatedM_Ecl_4days_Heads 
AdMatedM_Ecl_20days_Heads 
AdMixedMF_Ecl_1day_Carcass 
AdMixedMF_Ecl_4days_Carcass 
AdMixedMF_Ecl_20days_Carcass 
AdMixedMF_Ecl_1day_DigestiveSystem 
AdMixedMF_Ecl_4day_DigestiveSystem 
AdMixedMF_Ecl_20days_DigestiveSystem 
AdMatedM_Ecl_4days_Testes 
AdMatedM_Ecl_4days_AccessoryGlands 
AdVirginF_Ecl_4days_Ovaries 
AdMatedF_Ecl_4days_Ovaries 

4,766 14,445 
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Tissue-specific 

Imaginal Disc L3_ImaginalDiscs 1,004 1,160 

Central Nervous 
System 

L3_CNS 
WPP_2days_CNS 

1,108 1,613 

Salivary Gland 
L3_SalivaryGlands 
WPP_SalivaryGlands 

667 805 

Fat Body 
L3_FatBody 
WPP_2days_Fat 
WPP_FatBody 

2,051 3,314 

Digestive System 

AdMixedMF_Ecl_1day_DigestiveSystem 
AdMixedMF_Ecl_4day_DigestiveSystem 
AdMixedMF_Ecl_20days_DigestiveSystem 
L3_DigestiveSystem 

1,981 3,758 

Carcass 

AdMixedMF_Ecl_1day_Carcass 
AdMixedMF_Ecl_4days_Carcass 
AdMixedMF_Ecl_20days_Carcass 
L3_Carcass 

1,537 2,421 

Heads 

AdMatedF_Ecl_1day_Heads 
AdMatedF_Ecl_4days_Heads 
AdMatedF_Ecl_20days_Heads 
AdVirginF_Ecl_1day_Heads 
AdVirginF_Ecl_4days_Heads 
AdVirginF_Ecl_20days_Heads 
AdMatedM_Ecl_1day_Heads 
AdMatedM_Ecl_4days_Heads 
AdMatedM_Ecl_20days_Heads 

2,062 3,741 

Accessory Gland AdMatedM_Ecl_4days_AccessoryGlands 556 632 

Ovaries 
AdVirginF_Ecl_4days_Ovaries 
AdMatedF_Ecl_4days_Ovaries 

402 455 

Testes AdMatedM_Ecl_4days_Testes 1,010 1,036 
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