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Supplementary Online Methods 

Defining a gene set for RiceNet v2 

From 39,054 Non-TE locus from Os-Nipponbare-Reference-IRGSP-1.0 (1), we excluded 2,619 
hypothetical proteins from the genes for RiceNet v2. We also excluded ChrSy and ChrUn genes 
because these genes were not mapped to any chromosomes. Including mitochondrial and 
chloroplast genes, total 36,736 genes were considered in constructing RiceNet v2. If either of 
two genes of a network link does not belong to these genes, the link was removed.  

 

Gold standard gene pairs for training RiceNet v2 

The Gene Ontology biological process (GO-BP) terms annotated by Biofuel Feedstock 
Genomics Resource (2), Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic 
pathways (3), MapMan metabolic pathways (4) and known/predicted biochemical pathways 
from RiceCyc (5) have been used to generate gold standard gene pairs to train the networks. The 
gold standard gene pairs were generated by pairing all the genes in each annotated terms. This 
method can give rise to training bias if a term has too many annotated genes because there will 
be too many gold standard gene pairs from a single term which may cause functional bias 
towards those terms. To minimize the training bias, ten biggest GO-BP terms were ignored 
during gold standard set construction. The gold standard set from GO-BP annotations was 
composed of 75,732 positive gene pairs and 4,937,629 negative gene pairs covering 3,167 O. 
sativa genes, ~9% of the 36,736 genes for network construction. For the same purpose of bias 
reduction during construction of a gold standard set based on KEGG, we ignored two biggest 
terms and five broad-concept terms of the KEGG pathways (release 72.0). Excluding the seven 
metabolic pathway terms resulted in a gold standard set of 290,809 positive and 8,384,886 
negative gene pairs for 4,166 O. sativa genes, ~11% of the 36,736 genes. To generate gold 
standard from MapMan metabolic pathways, we generated gene pairs from pathways of third or 
fourth subBINs of hierarchy, because first and second BIN contains broad concept terms. We 
also ignored all the BINs starting with 35 because they are unknown. We ignored 11 pathways 
with vast number of annotated genes during gene pairing, resulted in a gold standard set of 
201,359 positive and 22,29,3919 negative gene pairs for 6,708 genes, ~18% of the 36,736 genes. 
Lastly, for RiceCyc (version 3.3), we generated the gold standard pairs with ignoring three 
biggest pathways, resulted in 90,014 positive and 3,001,327 negative gene pairs for 2,487 genes, 
~7% of the 36,736 genes. We combined all of the four sets of gold standard gene pairs to 
generate the integrated gold standard set, composing 591,664 positive and 58,416,152 negative 
gene pairs for 10,864 O. sativa genes, ~30% of the 36,736 genes. The excluded pathway terms 
during gold standard construction are listed at Supplementary table 2. 
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Benchmarking and integrating inferred functional links 

Functional associations between genes from experimental, computational data were inferred by 
calculating the likelihood ratio (Log likelihood score, LLS) based on Bayesian statistics 
framework. LLS was calculated with the following equation; 

LLS ൌ ln ቆ
ܲሺܦ|ܮሻ/ܲሺܦ|ܮሻ
ܲሺܮሻ/ܲሺܮሻ

ቇ 

where P(L|D)/P(¬L|D) is the  odds of gold standard positives (P(L|D)) and negatives (P(¬L|D)) 
for a given data. P(L) /P(¬L) is the odds of all gold standard positives (P(L)) and negatives 
(P(¬L)). A network functional link can be supported by many multiple data types with different 
LLSs. Since not all of the data for integration are fully independent, naïve Bayesian integration is 
not a plausible approach. Hence, we used the weighted sum (WS) formula to integrate the data by 
modifying naïve Bayesian (6). The WS is defined as 

  ܹܵ ൌ ܵ 	∑
ௌ
ൈ
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where S is the LLS. S0 is the best LLSs and Si is LLS of ith rank. D is a free parameter that is used 
to give weight. T is the minimum LLS threshold. Weighted sum takes full score of the top LLS 
and partial scores of the rest of the LLS by weight factor to alleviate the addition of redundant 
information. 

 

Inferring links from genomic context: Phylogenetic profile similarity (PG) and Gene 
neighborhood (GN)   

Similar evolutionary conservation pattern between two genes across species are sometimes due 
to their functional relatedness. This genomic context similarity enables us to infer co-functional 
links between genes. For constructing RiceNet v2, we used the two most widely used genomic 
context based network link inferring methods, Phylogenetic profile similarity (PG) (7-9) and 
gene neighborhood (GN) (10-12). A total of 2,144 sequenced genomes were used. (122 Archae, 
1,626 Bacteria and 396 Eukarya genomes) 

Phylogenetic profile similarity of two rice genes reflects their co-inheritance during speciation. 
Co-functionality of genes can be inferred from co-inheritance because genes that function 
together tend to be inherited together. To measure probability of co-inheritance of two genes, we 
first ran BLASTp for all O. sativa genes against the 2,144 genomes. With the best BLASTp 
scores for each of genomes, 36,736 (number of O. sativa genes) by 2,144 (number of genomes) 
phylogenetic profile matrix was constructed. The association between two genes based on 
phylogenetic profiles was measured by mutual information (MI) scores as described in Date et al. 
(13). We did not use the whole concatenated profile of the 2,144 genomes. Rather, sub-profiles 
for each of three domains of life (Archaea, Bacteria, Eukarya) were separately used which 
resulted in constructing three networks. These were subsequently integrated to construct a single 
network. We found that there was substantial increase in the network coverage and accuracy by 
using this divide-and-integrate approach based on domain-specific phylogenetic profiles. 
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Two distinct measures of genomic neighborhood exist: i) direct physical distance between 
neighboring genes (11,12,14), and ii) neighborhood probability (10). There have been evidences 
that these two measures are complementary (15). We reasoned that if the two methods give 
complementary information, both of the measurements can be useful. Thus, we inferred co-
functional links with both measures. They were subsequently integrated to generate a single GN 
co-functional network. 

 

Inferring links from literature curated (LC) protein-protein interactions (PPI)   

Observing protein-protein interactions (PPIs) in the cell is one of the most popular and certain 
way to discover the functional associations between genes. To infer the PPI interaction based 
functional associations for rice, we mined three PPI databases: DIP(16), IntAct (17), MINT (18).   

 

Inferring links from co-expression (CX) patterns  

Genes with similar biological functions tend to co-express in diverse biological contexts. High 
dimensional microarray and RNA-seq data can be used to infer co-functional links between co-
expressed genes. We analyzed expression data sets based on four array platforms in GEO (Gene 
Expression Omnibus) database (19): GPL2025, GPL13160, GPL6864 and GPL8852. To infer 
co-functional linkages by co-expression patterns, we first created a vector for each gene that 
contains expression profiles across microarray experiments (GEO samples) in each GEO series. 
Then we calculated all pairwise Pearson correlation coefficients between vectors to address for 
co-expression patterns. GEO series with less than 12 samples were not used because measuring 
correlation with short vectors can generate many promiscuous co-expression patterns between 
genes. Each GEO series (see Supplementary table 1) generated a single co-functional network. 
Benchmarking with the gold standard set resulted in 39 co-functional networks. They were 
further integrated into a single CX network for rice. 

 

Links transferred from other species’ networks by orthology (Associalogs) 

Many biological functions of genes are evolutionarily conserved across species by orthology. 
This allows transferring the functional information of genes from one species to another. We 
transferred co-functional linkages from networks of other organisms to RiceNet v2 using the 
associalog method (20). The links were transferred from three organisms with published genome 
scale functional gene networks: YeastNet v3 (21) for Saccharomyces cerevisiae, WormNet v3 
(22) for Caenorhabtitis elegans, AraNet v2 (23) for Arabidopsis thaliana. In addition, 
unpublished network links were transferred from three other organisms: Homo sapiens, Danio 
rerio, and Drosophila melanogaster. Orthology between genes were mapped by using 
Inparanoid (24).  
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Supplementary table 1. Comparison between RiceNet v1 and RiceNet v2 

Network RiceNet v1 RiceNet v2 
Gold 

standard 
gene pairs 

for 
network 
training 

Gene pairs that share the same Gene 
Ontology biological process terms annotated 
by TIGR Rice Genome Annotation release 5.

Gene pairs that share pathway terms annotated by at 
least one of the four databases: i) Biofuel Feedstock 

Genomics Resource, ii) Kyoto Encyclopedia of Gene 
and Genomes (KEGG), iii) MapMan, and iv) RiceCyc 

as of November 2014, 

Network 
size 

588,221 links, 19,647 genes 1,775,000 links, 25,765 genes  

AT-CX 

Associalogs from AraNet v1. Which was 
constructed by integrating co-expression links 

from 11 sets comprised of 242 experiments 
from TAIR 

Associalogs from AraNet v2. Which was constructed 
by integrating co-expression gene links  

from 64 GEO series comprising 1,261 experiments 
using the Affymetrix DNA-chip (GPL198) 

(GSE1491, 2473 , 3350, 4847, 5617, 5620, 5621, 
5623, 5624, 5625, 5626, 5627, 5628, 5629, 5630, 
5631, 5632, 5633, 5634, 5636, 5637, 5638, 5639, 
5686, 5696, 6160, 6176, 7631, 8955, 9674, 9719, 

10670, 11262, 12402, 12403, 12887, 13739, 15165, 
15689, 16722, 17159, 18071, 18975, 18978, 19520, 
19700, 20039, 20454, 21684, 2473, 25067, 26297, 
26983, 27985, 30030, 30223, 30492, 31158, 31587, 

34667, 35325, 35544, 39384, 42896, 30166 

AT-CC Not Included Associalogs from AraNet v2 (23) 

AT-HT Not Included Associalogs from AraNet v2 
AT-LC Associalogs from AraNet v1 (25) Associalogs from AraNet v2 
CE-CC Associalogs from WormNet v2 (26) Associalogs from WormNet v3 (22) 

CE-CX Associalogs from WormNet v2  

Associalogs from WormNet v3 which was constructed 
by integrating co-expression links from 12 GEO series 
of experiments using the Affymetrix DNA-chip (GEO 
platform GPL200) (GSE11055, 12298, 16050, 19310, 
2180, 23528, 25633, 32339, 35354, 6547, 8462, 9682)

DM-CX Not Included 

 Associalogs from the co-expression networks of 30 
GEO series (GSE2863, 3057, 3854, 5430, 7159, 7614, 

7763, 8751, 8892, 10012, 11695, 14517, 14531, 
14779, 16152, 16713, 17013, 17874, 21520, 24978, 
27163, 27345, 33100, 33779, 33801, 34400, 42255, 

46550, 47176, 48997) were integrated. 

DM-HT Not Included 
Associalogs from Drosophila high-throughput protein-

protein interactions by iRefWeb 4.1 (27)   

DR-CX Not Included 

Associalogs from the co-expression networks of 21 
GEO series (GSE4201, 8856, 9020, 10188, 11107, 
11893, 12991, 13068, 13371, 14495, 14979, 16264, 
16740, 17949, 19754, 24528, 32360, 33981, 39731, 

47039, 48806) were integrated. 
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HS-CX 
Associalogs from the integrated co-

expression network (HS-CX) of HumanNet 
(28) 

Associalogs from the individual co-expression 
networks of 50 GEO series (GSE2113, 3218, 3307, 
5847, 6365, 6477, 6740, 7390, 8052, 8218, 8401, 

9419, 9874, 989110327, 10445, 11903, 12662, 13355, 
13425, 14034, 14062, 14209, 14323, 14994, 15935, 
16015, 16131, 16214, 16476, 17356, 17700, 17855, 
17967, 18723, 19577, 20910, 21122, 24427, 26366, 
26713, 27155, 28497, 29354, 34211, 34620, 34733, 

36701, 39411,) were integrated 

HS-HT 

Integrated associalogs from affinity 
purification mass spectrometry analysis data 

(HS-MS) and high throughput yeast two 
hybrid data (HS-YH) 

Integrated associalogs of high-throughput protein-
protein interactions from 6 published literatures.  

(29-34) 

HS-LC 
Associalogs from five protein-protein 

interaction databases (HPRD (35), BIND 
(36), BioGRID (37), IntAct, MINT) 

Associalogs from an integrated protein-protein 
interactions by HPRD,  BioGrid,  IntAct, MINT, DIP, 

iRefWeb data  

OS-CX 

Integrated individual co-expression networks 
from 11 GEO series with 274 experiments 
(GSE4409, 4438,6893, 6901, 7071, 7531, 

7532, 7951, 10373, 11157, 16793) 

Integrated individual co-expression networks from the  
39 GEO series comprising 1345 experiments 

(GSE6719, 7951, 10373, 11025, 12069, 13988, 
14298, 14299, 18361, 18685, 21396, 21397, 21398, 
25647, 30136, 30583, 30941, 31077, 31834, 36042, 
36043, 36271, 36777, 39426, 39427, 39429, 39635, 
39687, 40964, 41556, 41798, 43780, 45571, 48500, 

51289, 53417, 54724, 57645, 63110) 

OS-GN Used a probability-based method only 
Integration of distance-based and probability-based 

methods 
OS-LC Not included Protein-protein interactions from DIP, MINT, IntAct 

OS-PG 
Inferred co-functional linkages from the 

phylogenetic profiles of 424 bacterial 
genomes 

Integrated co-functional linkages generated from the 
profiles of 2144 genomes.(122 Archaea, 396 

Eukaryote and 1626 Bacterial genomes) 
SC-CC Associalogs from SC-CC of YeastNet v2 (6) Associalogs from SC-CC of YeastNet v3 (21) 

SC-CX 
Associalogs from the integrated co-

expression network (SC-CX) of YeastNet v2 

Associalogs from the individual co-expression 
networks from 6 Stanford microarray database sets 

(Cell cycle, DNA damage, Diauxic, Nutrition, 
Osmotic stress, and YPD stationary growth) and 40 
GEO series (GSE7645, 8799, 9320, 10031, 12220, 
12221, 12442, 13684, 14748, 15254, 15936, 16799, 

1693, 17364, 17877, 19213, 1934, 20108, 22269, 
22832, 23012, 23204, 24802, 24888, 25582, 26829, 
26923, 27062, 27235, 30052, 30054, 3076, 31774, 

32974, 33276, 33427, 34964, 38848, 40399, 40817) 
were integrated 

SC-GT Associalogs from the SC-GT of YeastNet v2 Associalogs from the SC-GT of YeastNet v3  

SC-HT 
Associalogs from links by affinity 

purification mass spectrometry analysis data 
(represented as SC-MS in YeastNet v2).  

Associalogs from the SC-HT of YeastNet v3  

SC-LC Associalogs from the SC-LC of YeastNet v2 Associalogs from the SC-LC of YeastNet v3 
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AT-DC 
CE-GT 
CE-LC 
CE-HT 
CE-GT 
HS-DC     
SC-DC 
SC-TS 

Included 
Excluded  

The networks show low prediction power when 
trained with the new gold standard set. 

Datasets described above are denoted by XX-YY. XX represents the names of the species: AT: Arabidopsis thaliana, 
CE: Caenorhabtitis elegans, DM: Drosophila melanogaster, DR: Danio rerio, HS: Homo sapiens, OS: Oryza sativa, 
SC: Saccharomyces cerevisiae. YY represents the type of data used to infer network links: CX: inferred from co-
expression pattern of genes, CC: inferred from co-citation of genes across published papers, DC: inferred from 
protein domain co-occurrence pattern of the genes, GN: inferred from gene neighborhood, GT: inferred from genetic 
interactions, HT: inferred from high-throughput protein-protein interaction experiments, LC: inferred by curating 
protein-protein interactions from the literature, PG: inferred by measuring phylogenetic profile similarity, TS: 
inferred from protein tertiary structure based protein-protein interaction model. 
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Supplementary table 2. Ignored pathway terms during generation of gold standard gene pairs 

Pathway database Ignored pathway terms 

BFGR GO-BP 

DNA integration (GO:001574) 
Protein phosphorylation (GO:0006468) 
oxidation-reduction process (GO:0055114) 
RNA-dependent DNA replication (GO:0006278) 
regulation of transcription DNA template (GO:0006355) 
transmembrane transport (GO:0055085) 
translation (GO:0006412) 
carbohydrate metabolic process (GO:0005975) 
proteolysis (GO:0006508) 
transport (GO:0006810) 

KEGG 

dosa01100-Metabolic pathways 
dosa01110-Biosynthesis of secondary molecules 
dosa01200-Carbon metabolism 
dosa01210-2-Oxocarboxylic acid metabolism 
dosa01212-Fatty acid metabolism 
dosa01230-Biosynthesis of amino acids 
dosa01220-Degradation of aromatic compounds 

MapMan 

29.5.11 protein.degradation.ubiquitin 
30.2.17 signalling.receptor kinases.DUF 26 
27.3.99 RNA.regulation of transcription.unclassified 
20.1.7 stress.biotic.PR-proteins 
29.2.1 protein.synthesis.ribosomal protein 
30.2.99 signalling.receptor kinases misc 
29.4.1 protein.postranslational modification.kinase 
27.3.25 RNA.regulation of transcription.MYB domain transcription factor family 
30.2.24 signalling.receptor kinases.S-locus glycoprotein like 
20.2.1 stress.abiotic.heat 

RiceCyc 
PWY-2881 cytokinins 7-N-glucoside biosynthesis 
PWY-2901 cytokinins 9-N-glucoside biosynthesis 
PWY-2902 cytokinins-O-glucoside biosynthesis 

 

  



8 

 

Supplementary references 

1. Kawahara, Y., de la Bastide, M., Hamilton, J.P., Kanamori, H., McCombie, W.R., 
Ouyang, S., Schwartz, D.C., Tanaka, T., Wu, J., Zhou, S. et al. (2013) Improvement of 
the Oryza sativa Nipponbare reference genome using next generation sequence and 
optical map data. Rice, 6, 4. 

2. Childs, K.L., Konganti, K. and Buell, C.R. (2012) The Biofuel Feedstock Genomics 
Resource: a web-based portal and database to enable functional genomics of plant biofuel 
feedstock species. Database (Oxford), 2012, bar061. 

3. Kanehisa, M., Goto, S., Sato, Y., Kawashima, M., Furumichi, M. and Tanabe, M. (2014) 
Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids 
Res, 42, D199-205. 

4. Thimm, O., Blasing, O., Gibon, Y., Nagel, A., Meyer, S., Kruger, P., Selbig, J., Muller, 
L.A., Rhee, S.Y. and Stitt, M. (2004) MAPMAN: a user-driven tool to display genomics 
data sets onto diagrams of metabolic pathways and other biological processes. Plant J, 37, 
914-939. 

5. Jaiswal, P., Ni, J., Yap, I., Ware, D., Spooner, W., Youens-Clark, K., Ren, L., Liang, C., 
Zhao, W., Ratnapu, K. et al. (2006) Gramene: a bird's eye view of cereal genomes. 
Nucleic Acids Res, 34, D717-723. 

6. Lee, I., Li, Z. and Marcotte, E.M. (2007) An improved, bias-reduced probabilistic 
functional gene network of baker's yeast, Saccharomyces cerevisiae. PLoS One, 2, e988. 

7. Huynen, M., Snel, B., Lathe, W., 3rd and Bork, P. (2000) Predicting protein function by 
genomic context: quantitative evaluation and qualitative inferences. Genome Res, 10, 
1204-1210. 

8. Pellegrini, M., Marcotte, E.M., Thompson, M.J., Eisenberg, D. and Yeates, T.O. (1999) 
Assigning protein functions by comparative genome analysis: protein phylogenetic 
profiles. Proc Natl Acad Sci U S A, 96, 4285-4288. 

9. Wolf, Y.I., Rogozin, I.B., Kondrashov, A.S. and Koonin, E.V. (2001) Genome alignment, 
evolution of prokaryotic genome organization, and prediction of gene function using 
genomic context. Genome Res, 11, 356-372. 

10. Bowers, P.M., Pellegrini, M., Thompson, M.J., Fierro, J., Yeates, T.O. and Eisenberg, D. 
(2004) Prolinks: a database of protein functional linkages derived from coevolution. 
Genome Biol, 5, R35. 

11. Dandekar, T., Snel, B., Huynen, M. and Bork, P. (1998) Conservation of gene order: a 
fingerprint of proteins that physically interact. Trends Biochem Sci, 23, 324-328. 

12. Overbeek, R., Fonstein, M., D'Souza, M., Pusch, G.D. and Maltsev, N. (1999) The use of 
gene clusters to infer functional coupling. Proc Natl Acad Sci U S A, 96, 2896-2901. 

13. Date, S.V. and Marcotte, E.M. (2003) Discovery of uncharacterized cellular systems by 
genome-wide analysis of functional linkages. Nat Biotechnol, 21, 1055-1062. 

14. Korbel, J.O., Jensen, L.J., von Mering, C. and Bork, P. (2004) Analysis of genomic 
context: prediction of functional associations from conserved bidirectionally transcribed 
gene pairs. Nat Biotechnol, 22, 911-917. 

15. Shin, J., Lee, T., Kim, H. and Lee, I. (2014) Complementarity between distance- and 
probability-based methods of gene neighbourhood identification for pathway 
reconstruction. Mol Biosyst, 10, 24-29. 



9 

 

16. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U. and Eisenberg, D. (2004) 
The Database of Interacting Proteins: 2004 update. Nucleic Acids Res, 32, D449-451. 

17. Orchard, S., Ammari, M., Aranda, B., Breuza, L., Briganti, L., Broackes-Carter, F., 
Campbell, N.H., Chavali, G., Chen, C., del-Toro, N. et al. (2014) The MIntAct project--
IntAct as a common curation platform for 11 molecular interaction databases. Nucleic 
Acids Res, 42, D358-363. 

18. Licata, L., Briganti, L., Peluso, D., Perfetto, L., Iannuccelli, M., Galeota, E., Sacco, F., 
Palma, A., Nardozza, A.P., Santonico, E. et al. (2012) MINT, the molecular interaction 
database: 2012 update. Nucleic Acids Res, 40, D857-861. 

19. Barrett, T., Wilhite, S.E., Ledoux, P., Evangelista, C., Kim, I.F., Tomashevsky, M., 
Marshall, K.A., Phillippy, K.H., Sherman, P.M., Holko, M. et al. (2013) NCBI GEO: 
archive for functional genomics data sets--update. Nucleic Acids Res, 41, D991-995. 

20. Kim, E., Kim, H. and Lee, I. (2013) JiffyNet: a web-based instant protein network 
modeler for newly sequenced species. Nucleic Acids Res, 41, W192-197. 

21. Kim, H., Shin, J., Kim, E., Kim, H., Hwang, S., Shim, J.E. and Lee, I. (2014) YeastNet 
v3: a public database of data-specific and integrated functional gene networks for 
Saccharomyces cerevisiae. Nucleic Acids Res, 42, D731-736. 

22. Cho, A., Shin, J., Hwang, S., Kim, C., Shim, H., Kim, H., Kim, H. and Lee, I. (2014) 
WormNet v3: a network-assisted hypothesis-generating server for Caenorhabditis elegans. 
Nucleic Acids Res, 42, W76-82. 

23. Lee, T., Yang, S., Kim, E., Ko, Y., Hwang, S., Shin, J., Shim, J.E., Shim, H., Kim, H., 
Kim, C. et al. (2015) AraNet v2: an improved database of co-functional gene networks 
for the study of Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids 
Res, 43, D996-D1002. 

24. Sonnhammer, E.L. and Ostlund, G. (2015) InParanoid 8: orthology analysis between 273 
proteomes, mostly eukaryotic. Nucleic Acids Res, 43, D234-239. 

25. Lee, I., Ambaru, B., Thakkar, P., Marcotte, E.M. and Rhee, S.Y. (2010) Rational 
association of genes with traits using a genome-scale gene network for Arabidopsis 
thaliana. Nat Biotechnol, 28, 149-156. 

26. Lee, I., Lehner, B., Vavouri, T., Shin, J., Fraser, A.G. and Marcotte, E.M. (2010) 
Predicting genetic modifier loci using functional gene networks. Genome Res, 20, 1143-
1153. 

27. Turinsky, A.L., Razick, S., Turner, B., Donaldson, I.M. and Wodak, S.J. (2014) 
Navigating the global protein-protein interaction landscape using iRefWeb. Methods Mol 
Biol, 1091, 315-331. 

28. Lee, I., Blom, U.M., Wang, P.I., Shim, J.E. and Marcotte, E.M. (2011) Prioritizing 
candidate disease genes by network-based boosting of genome-wide association data. 
Genome Res, 21, 1109-1121. 

29. Ewing, R.M., Chu, P., Elisma, F., Li, H., Taylor, P., Climie, S., McBroom-Cerajewski, L., 
Robinson, M.D., O'Connor, L., Li, M. et al. (2007) Large-scale mapping of human 
protein-protein interactions by mass spectrometry. Mol Syst Biol, 3, 89. 

30. Havugimana, P.C., Hart, G.T., Nepusz, T., Yang, H., Turinsky, A.L., Li, Z., Wang, P.I., 
Boutz, D.R., Fong, V., Phanse, S. et al. (2012) A census of human soluble protein 
complexes. Cell, 150, 1068-1081. 



10 

 

31. Hutchins, J.R., Toyoda, Y., Hegemann, B., Poser, I., Heriche, J.K., Sykora, M.M., 
Augsburg, M., Hudecz, O., Buschhorn, B.A., Bulkescher, J. et al. (2010) Systematic 
analysis of human protein complexes identifies chromosome segregation proteins. 
Science, 328, 593-599. 

32. Sowa, M.E., Bennett, E.J., Gygi, S.P. and Harper, J.W. (2009) Defining the human 
deubiquitinating enzyme interaction landscape. Cell, 138, 389-403. 

33. Wang, J., Huo, K., Ma, L., Tang, L., Li, D., Huang, X., Yuan, Y., Li, C., Wang, W., 
Guan, W. et al. (2011) Toward an understanding of the protein interaction network of the 
human liver. Mol Syst Biol, 7, 536. 

34. Yu, H., Tardivo, L., Tam, S., Weiner, E., Gebreab, F., Fan, C., Svrzikapa, N., Hirozane-
Kishikawa, T., Rietman, E., Yang, X. et al. (2011) Next-generation sequencing to 
generate interactome datasets. Nat Methods, 8, 478-480. 

35. Keshava Prasad, T.S., Goel, R., Kandasamy, K., Keerthikumar, S., Kumar, S., 
Mathivanan, S., Telikicherla, D., Raju, R., Shafreen, B., Venugopal, A. et al. (2009) 
Human Protein Reference Database--2009 update. Nucleic Acids Res, 37, D767-772. 

36. Galperin, M.Y. (2008) The Molecular Biology Database Collection: 2008 update. Nucleic 
Acids Res, 36, D2-4. 

37. Chatr-Aryamontri, A., Breitkreutz, B.J., Oughtred, R., Boucher, L., Heinicke, S., Chen, 
D., Stark, C., Breitkreutz, A., Kolas, N., O'Donnell, L. et al. (2015) The BioGRID 
interaction database: 2015 update. Nucleic Acids Res, 43, D470-478. 

 


