
Small-World brain network and dynamic functional distribution in patients with

subcortical vascular cognitive impairment

Diagnosis Criteria about the Subjects

Subjects

Twenty-seven right-handed subjects with SVCI and twenty-two healthy right-handed

age-matched subjects were enrolled from the first affiliated hospital of Anhui Medical

University. Prior to the experiment, the purpose of the study was briefly explained to the

subjects. The diagnosis of SVCI was made by experienced neurologists and should meet the

following criteria[1]: 1) subjective cognitive complaints reported by the participant or his/her

caregiver; 2) objective cognitive impairments in any aspects including memory, language,

executive, attention, or visuospatial based on neuropsychological test; 3) any subcortical

vascular feature associated with a focal neurologic symptom or suggestive sign that included

corticobulbar signs, pyramidal signs, or parkinsonism, such as gait disorder, urgent urination,

motor slowness, dysarthria, lower facial weakness, or sensory deficit, and 4) magnetic

resonance imaging (MRI) exhibited significant ischemia, including lacunar infarcts or

significant white matter hyperintensities(WMH) on their MRI scans, which was defined as a

cap or band >10 mm and a deep white matter lesion >25 mm modified from the ischemia

criteria described in a previous study [2]. SVCI patients were further classified subcortical

vascular mild cognitive impairment (svMCI) and dementia (SVaD).

SVaD patients had more severe cognitive impairment and further met the diagnostic

criteria: 1) a Clinical Dementia Rating Scale (CDR) score >0.5; 2) objective cognitive

impairments meeting the Diagnostic and Statistical Manual of Mental Disorders, fourth

edition (DSM-V) criteria for dementia [3]. In current study, 27 SVCI patients were subtyped

as the 20 SMCI patients and 7 SVaD patients.

Participants were excluded if they had any of the following clinical characteristics: with a

history of acute stroke, head injury, Parkinson’s disease, epilepsy, major depression,

alcoholism,or other neuropsychiatric illness, and patients with severe visual or hearing loss,

dentures or metallic stent in vivo, who were unable to complete the MRI scanning and



assessment.

Additionally, the comparison of medical histories between the two groups was shown in

table 1.

Table 1 Baseline clinical characteristics of the subjects (n (%)

SVCI (n=23) Controls (n=20) P-value

Hypertensiona, no.(%) 13(56.5) 8(40.0) 0.364

Diabetes Mellitus b, no.(%) 6(26.17) 4(20.0) 0.728

Current smoker, no.(%) 3(13.0) 4(20.0) 0.687

Alcohol consumptiomc, no.(%) 5(21.7) 6(30.0) 0.728

Use of anti-platelet aggregation

medication, no.(%)

12(52.2) 8(40) 0.544

Use of blood pressure-lowering

medication , no.(%)

13(56.5) 8(13.4) 0.364

Use of plasma glucose-lowering

medication, no.(%)

6(26.1) 4(20.0) 0.728

Use of lipid-lowering medication,

no.(%)

10(43.5) 6(30.0) 0.528

Resting State fMRI Data Acquisition and Preprocessing

Here we provide a detailed description of the fMRI data acquisition and preprocessing

steps. Functional imaging data were performed using a 3.0 Tesla GE Signa HDxt MRI

scanner (GE, Milwaukee, WI, USA).).A Three-dimensional T1-weighted images was

acquired with the following parameters: TR=9.5 ms; TE=3.9 ms; TI=450 ms; flip angle=200;

field of view=256 mm; matrix size=512×512. The resting-state data were obtained using

echo-planar imaging (EPI). After structural MRI scans, resting-state fMRI scans were

acquired. During the resting scan, the participants were instructed to relax, keep their eyes

closed without falling asleep and not to think anything in particular. The 8-minute

resting-state scan was comprised of 240 contiguous echo planar imaging whole brain

functional volumes with the following parameters: TR=2 s, TE=30 ms, FOV=240 mm, flip

angle 800, matrix size 64 × 64, thickness=4mm, gap=0.6mm.



All resting state fMRI data preprocessing was carried out using statistical parametric

mapping (SPM8, http:// www.fil.ion.ucl.ac.uk/spm) and Data Processing Assistant for

Resting-State fMRI (DPARSF)[4].

Neuroanatomical data preprocessing

To examine or evaluate the potential effects of vascular lesions independently to relation

of the network metrics and cognition, the visible lesion of each subjects’ T2-fluid-attenuated

inversion recovery (FLAIR) images were overlapped manually slices by slices according to

SVCI group and controls separately. To inspect the difference between the two groups in

morphology, the overlapped images in controls was subtracted from the ones in SVCI group

to obtain discrepant images. The ischemia regions in extracted-overlay images were

considered as the target area of vascular factors to the SVCI patients approximately. Because

of the manual tracing technique, no automated spatial normalization was necessary. Lesion

maps were resampled led to a l-mm isotropic voxel size, smoothed with a Gaussian kernel

(4mm full width a thalf maximum), and binarized by using a threshold of 0.2 (http://www.

mccauslandcenter.sc.edu/mricro/mricro/overlay/index.html).

Network Construction and Topological Metrics Calculation

Network construction

To define the network node, the functional images were registered with the standard

Montreal Neurological Institute (MNI) template and further divided into 90 regions using an

automated anatomical labeling template(AAL) [6], which has been used in several previous

studies[7, 8]. The mean time series from each of the 90 regions were calculated by averaging

the time series of all of the voxels within that region. To reduce the effects of physiological

processes, average signals from the global brain, white matter (WM), cerebral spinal fluid

(CSF), gray matter (GM), along with the motion parameters(3 rotational and 3 translation)

were regressed out and removed from the data. Then, regression residuals were substituted for

http://www.fil.ion.ucl.ac.uk/spm)


the raw mean time series of the corresponding region. Next, the interregional correlation

matrix of functional connectivity network was defined as a 90×90 undirected graph for each

subjects by calculating Pearson’s correlation coefficients between the averaged time series of

each possible pair of 90 regions.. Then, a Fisher r-to-z transformation was adopted to improve

the normality of the partial correlation coefficient and construct a binary network. If the

absolute z (i,j) (Fisher r-to-z of the partial correlation coefficient) of between a pair of brain

regions, i and j, exceeds a given threshold T, an edge was assumed to exist; otherwise it does

not exist. To determine the threshold T, the network sparsity,(Sthr) ,which was defined as the

actual number edges in a graph divided by the maximum possible number of edges, was

applied to each adjacent matrix [9]. Using sparsity-specific threshold enables that the

resulting networks of both groups have the same density level. Given the fact that the

selection of Sthr is critical to the topological metrics of networks, we constructed the

individual brain networks over a wide range of network density, 0.05 ≤ Sthr ≤ 0.4, with an

increment of 0.01, where the small-world metrics are analyzed [10]. Sparse networks of each

subject were constructed using a minimum spanning tree method followed by global

thresholds.

Gray Matter volumes

On T1-weighted images, normalized mean gray matter (GM) volumes were calculated

using the Structural Imaging Evaluation of Normalized Atrophy (SIENAx) software.[11]

Global GM volumes, including the 90 AAL cortical and subcortical regions were measured

using voxel-based morphometry (VBM) and the Diffeomorphic Anatomical Registration

using Exponentiated Lie algebra (DARTEL) registration method [12] in SPM8. First,

individual anatomical images were classified into gray matter, white matter and cerebrospinal

fluid as well as three extra-cerebral tissue classes. Then, GM maps were normalized to the

GM population-specific template generated from the complete image set using DARTEL [12].

Spatially normalized images were then modulated by multiplying with the Jacobian

determinants derived from the spatial normalization. Then, the AAL template was resampled

in the DARTEL space. Global GM volumes of each subject were calculated as the mean value



of all the voxels within the all regions. To further study the difference of single region gray

matter volume between the two groups, the GM map of each subject was finally smoothed

with an 8-mm full-width at half maximum kernel and put into the building general linear

model(GLM).To test the result, on T1-weighted images, normalized mean gray matter (GM)

volumes were also calculated using the Structural Imaging Evaluation of Normalized Atrophy

(SIENAx) software.[12]

Small-world network

The clustering coefficient C is equal to the number of connections of a node with its

nearest nodes proportional to the maximum of possible neighboring connections. The

characteristic path length L is corresponding to the average number of minimum connections

that are required to join any two nodes [7, 13]. Networks having small-worldness properties

are defined as those significantly more clustered than random networks but having

approximately the same characteristic path length as random networks. Thus, normalized

clustering coefficient and characteristic path length are obtained: γ= Cp / Crandom and λ= Lp /

Lrandom. The ratio σ=γ/λ is often used and must be >1 (γ>1 and λ≈1) to define the

small-worldness of a network [14, 15].The Brain Connectivity Toolbox was used to construct

the random network at different threshold[16]. For comparison, 50 random networks were

computed with the same number of nodes, total edges,and degree of the original network[17].

Efficiency

Global efficiency is a measure of the network’s capacity for parallel information transfer

between nodes via multiple series of edges. There is strong evidence that the brain supports

massively parallel information processing; therefore, it is conceptually preferable to adopt

efficiency metrics of brain functional network topology.

Global efficiency is inversely related to the “classical “small-world metric of average

minimum path length. Thus, a small-world network will have global efficiency greater than

a regular lattice but global efficiency less than a random network. The global efficiency of a



graph G is calculated as[13, 15]:
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Where Li,j is the shortest path length between regions i and j.The path length between

regions i and j is defined as the sum of the edge lengths along this path, while the shortest

path length Li,j between regions i and j is the path length with the shortest length between the

two regions.

The local efficiency of the graph Gi, a subgraph of whole graph G, is the average of the

local efficiency of all of its nodes in this subgraph. It can measure how efficient the

information is transferred in the subgraph.and be defined as [15]:
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Statistical analysis

To compare the topological properties (clustering coefficient, characteristic path length,

local efficiency, global efficiency) throughout the preselected sparsity threshold between the

two groups, a two-sample t-test was performed. We selected a range of sparsity thresholds,

0.05 ≤ Sthr ≤ 0.4, with an increment of 0.01.The area under the curve (AUC) was used to

conduct the group comparisons of the metric over the threshold in the GAT

toolbox[18].The false discovery rate (FDR) correction was applied for multiple comparisons

and the threshold restricting the expected proportion of type I errors to lower than 0.05 was

estimated. The nodes with significantly different metrics (P<0.05, FDR corrected) were

chosen as region of interests. These regions of interests were displayed by using BrainNet

Viewer (Version 1.0 RC1, http://www.nitrc.org/projects/bnv/). Pearson’s correlation was

applied to analyze the relationship between network or node parameters (clustering

coefficient, characteristic path length, global efficiency, local efficiency) and cognitive scores

in the SVCI group. A P-value<0.05 after correction for multiple comparisons by using FDR

was considered to indicate a significant difference.

http://www.nitrc.org/projects/bnv/).
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