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Appendix S1

Modeling methods, estimation of model parameters, analysis cross checks, and

model validation

Maximum likelihood estimation of self-excitation contagion model parameters

Given a set of data events, Xi, observed at times si with i = 1, ..., Q, we create a new vector, ~t, of

sequential days from time s1 to sQ (ie; this vector is of length M = sQ − s1 + 1). We also create a new

data vector, ~Y , also of length M , where the vector is filled at the appropriate dates with the data in X,

and is zero otherwise.

We consider a self-excitation contagion model with an additional baseline (i.e.; non-contagion related)

average number of events per day of N0(t). Taking into account all prior events in some stochastic data

realization, the total number of expected events, N exp, on day tn for that realization is thus

N exp(tn) = N0(tn) +Nsecondary

∑

∀ti<tn

P (tn|ti, Texcite), (1)

where the summation is over all prior events. The parameters of this contagion model are the average

number of secondary events inspired by the contagion of a single event, Nsecondary, the duration of the

contagion process, Texcite, and whatever parameters are needed to describe the temporal evolution of the

baseline number of events, N0(t).

Let us refer to the parameters of the self-excitation contagion model forN exp(t) in Equation 1 as vector

~θ (these parameters include Nsecondary, Texcite, and whatever parameters are needed to parameterize the

temporal evolution of the baseline average number of events per day, N0). We find the best-fit model to

the data by finding the value of ~θ that minimizes the negative Poisson log-likelihood

− logL(~Y |~θ) =
M∑

i=i0

N exp(ti|~θ)− Yi logN
exp(ti|~θ), (2)

where the fit is performed to observations i0 to M ; to take into account the fact that the data are

left censored, meaning that information about possible earlier events in the self-excitation process are

missing, and to avoid potential bias this censoring might cause in the estimation of the parameters of

the self-excitation process, we choose i0 to be large enough that the calculation of N exp includes several
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prior events. We nominally take i0 = 365 days, and cross-check each analysis with i0 equal to two years

to ensure that the results do not significantly change.

We simulated data samples of the same sizes and temporal variation (including weekday and seasonal

variation) of the samples used in this study to affirm that the fitting ansatz produced unbiased and

efficient estimates of Texcite and Nsecondary.

With additional simulation studies, we examined the effect of incomplete observations of the data;

that is to say that only a fraction, fobserved, of the true number of incidents is actually contained within a

particular data set, as would for instance occur if some killings or school shootings did not receive media

attention. We found that for such data the estimates of Texcite were unbiased and efficient, but that the

estimates of Nsecondary and N0 were scaled by fobserved. Thus the estimates of Nsecondary obtained from

the fits to the data samples used in this analysis are lower bounds on the true value.

Simulation of self-excitation contagion processes

To simulate a self-excitation process under some hypothesis of Nsecondary and Texcite, along with a func-

tional parameterisation of N0(t), we start with 0 events on day t1 and calculate the expected number of

events on the next day N exp(t2) using Equation 1. The number of events on day t2 is then simulated

with a random number drawn from the Poisson distribution with mean N exp(t2). On each subsequent

day, ti, the number of events depends on the timing of the past events, and is simulated with a random

number drawn from the Poisson distribution with mean N exp(ti). This is repeated for the desired length

of the time series.

Running mean estimation of baseline number of incidents per day

In order to obtain an estimate of the temporal evolution of the baseline (non contagion-related) number

of events per day, N0(t), from the data itself, we assume that the changes in N0(t) occur on a relatively

longer time frame compared with the changes due to the self-excitation process, and employ the approach

of Reference [1] using a Gaussian kernel weighted running mean of the data, with weights that decline

as one moves away from the time point of interest. Given a set of events, Xi, observed at times si with

i = 1, ..., Q, the estimate of the average number of events per day not due to self-excitation, N0, at time

t is obtained from the running mean of all points in the time series that are less than ∆t days from time
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t,

N0(t) =
1

σ
√
2π

∑
∀i s.t. |si−t|<∆t

Xie
−(t−si)

2

2σ2 (3)

where σ is a bin-width parameter. The parameter ∆t must be chosen to be large enough that points close

in time to t that may be due to self-excitation do not bias the estimate of N0. Similarly the bin-width

σ must also be chosen to be large enough to avoid similar bias (and include enough data events within

the bin-width in order to ensure accurate estimates of the true value of N0(t)), yet small enough that

the running mean provides unbiased estimates the short-term changes in the temporal evolution of the

baseline process. Using simulated data sets similar to the size of the sets used in these studies, with a

simulated self-excitation process with various hypotheses of Texcite between 7 to 28 days and Nsecondary

between 0 to 0.5, we found that σ = 365/2 days and ∆t = 30 days yielded unbiased and efficient estimates

of Nsecondary and Texcite for simulated samples of the same sizes and roughly the same temporal trends

as the data sets.

We cross-checked our studies by repeating all of the fits with σ = 365 and σ = 365/4 days, and

∆t = 15 and ∆t = 45 days, and found no significant difference in the central values returned by any of

the fits.

Model validation

To ensure that the model reliably detects when no contagion is present, and to ensure that day-of-week

or seasonal effects do not spuriously make it appear that significant contagion is evident when none in

fact is, we generated 100 simulated samples under the null hypothesis of no contagion, with the samples

having similar size and similar weekday and seasonal variation as the Brady Campaign school shooting

data set (this particular data set exhibited the most extreme variations by weekday and season of the

three data sets considered in this analysis); from this data set we determined the average number of

events occuring within month and weekday, and used this as our expected model.

The contagion model fit to these samples yielded values of Nsecondary consistent with zero in 98 out

of the 100 trials.

In addition, in order to ensure that the contagion model has good predictive power for our data, for

each data set we perform 100 bootstrap iterations where half of the sample is randomly selected as the
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training sample and the remainder is selected as the test sample. The parameters of the self-excitation

model in Equation 1 are fit to the training data, and the parameters are then used to calculate the

likelihood for the test sample via Equation 2. This likelihood is then compared with the likelihood

calculated from the null (no contagion) model. If the contagion model has predictive power, the full

model will yield a likelihood greater than the null model for the test sample more than 50% of the time.

For the USA Today data, the full model with parameters fit to the training sample is more likely than

the null model for the test sample 68% of the time.

For the Brady Campaign school shooting data, the full model with parameters fit to the training

sample is more likely than the null model for the test sample 79% of the time. For the shooting incident

data the full model with parameters fit to the training sample is more likely than the null model for the

test sample 92% of the time.

For the Brady Campaign mass shooting data, the full model with parameters fit to the training sample

is more likely than the null model for the test sample 58% of the time.

Other cross-checks

In addition to model validation, we perform cross-checks for each data sample where the dates of each

incident are randomly shifted by time ∆T , where ∆T is sampled from the discrete uniform distribution

from −90 to +90 days. Simulation studies show this shift is large enough to destroy any self-excitation

effects with Texcite < 90/3, yet is short enough to still preserve the overall temporal shape of the kernel

weighted running mean of the sample (thus confirming that the overall temporal distribution of the data

is not in itself responsible for potential spurious evaluation of significant contagion when in fact none is

present). For all three data samples, this cross-check yielded values of Nsecondary consistent with zero.
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