

Supplementary Figure 1. Effects of immunosuppressive treatment on sBCMA levels. (a) sBCMA levels were measured by ELISA in plasma/serum pairs of 14 healthy controls (b) sBCMA in the CSF of 25 MS patients was determined before and 12 months after natalizumab treatment, which reduced sBCMA levels (****, p<0.0001, Wilcoxon matched-pairs ranked-test). (c) sBCMA levels in the serum of 10 MS patients were determined before, 3 days and 4 weeks after the beginning of high dose glucocorticoid treatment, which reduced sBCMA levels within 3 days (*, p<0.05, Friedman test followed by Dunn's Multiple Comparison Test).

Supplementary Figure 2. γ -secretase inhibitor DAPT blocks BCMA shedding in plasmacytoma cells resulting in enhanced APRIL-binding. (a,b) The human plasmacytoma cell line JK-6L was incubated overnight with DAPT or TAPI-1. Surface expression of BCMA was measured by flow cytometry (left panels) and sBCMA in the supernatant was determined by ELISA (right panels). Combined data of 3 independent experiments (mean±s.e.m.) (c) BCMA ligand APRIL (FLAG-tagged) was added to plasmacytoma cells after pretreatment with DAPT or vehicle and its binding was analyzed with anti-FLAG mAb. Representative of 3 independent experiments.

Supplementary Figure 3. Different types of γ -secretase inhibitors block the release of sBCMA. Human PBMCs were stimulated with R848 and IL-2 for 7 days and then CD19⁺ B cells were positively selected. (a) After an overnight culture with the indicated γ -secretase inhibitors the released sBCMA in the supernatant was measured by ELISA, (mean±s.e.m. of three experiments) (b) After an overnight culture with the indicated γ -secretase inhibitors, BCMA surface expression was determined after gating on CD19⁺CD38⁺ Ig-secreting cells, which represented in this experiment about 50% of the CD19⁺ cell population. Representative of 3 independent experiments. The concentrations of the γ -secretase inhibitors were DAPT 1 μ M, RO4929097 10 μ M, LY-411575-I 100 nM and LY685,458 1 μ M. Representative of 3 independent experiments, mean±s.e.m.

Supplementary Figure 4. sBCMA inhibits APRIL-mediated signaling via TACI. HEK293T cells were transfected with human TACI and activated with APRIL or BAFF as indicated. sBCMA (50 and 200 ng ml⁻¹) was applied as indicated. sBCMA and control supernatant were obtained from HEK293T cells that had been transfected with full-length human BCMA or an empty control vector. BCMA-Fc (50 and 200 ng ml⁻¹) was used as a positive control. Combined data of 3 independent experiments (mean±s.e.m., *, p<0.05, paired t-test).

Supplementary Figure 5. Effects of γ -secretase inhibitor LY-411575-I on mBCMA on plasma cells in the bone-marrow. Immunized (OVA-LPS in alum) C57/BL6 mice were treated with the γ -secretase inhibitor LY-411575-I or vehicle, bone marrow was harvested and the surface display of BCMA was measured by flow cytometry. BCMA expression on gated B220⁺CD138⁺ cells is shown, representative example (left) and compiled data from all 17 analyzed animals (right) (mean, p=0.046 unpaired t-test). The black symbols on the right indicate the samples shown on the left. Closed histograms indicate isotype controls.

Supplementary Figure 6. Features of recombinant sBCMA-AT. (a) Purified AT (lane 1) and sBCMA-AT (lane 2) were separated by SDS-PAGE and stained with Coomassie. (b) AT and sBCMA-AT were analyzed by gel-filtration. (c) HEK293T cells were transfected with human BCMA and activated with mouse APRIL as indicated. sBCMA-AT (100 and 500 ng ml⁻¹) or AT (100 and 500 ng ml⁻¹) as a control were was applied. Combined data of 5 independent experiments (mean±s.e.m, paired t-test). (d-f) 3 months old NZB/W mice were immunized intraperitoneally (OVA on alum). At 4 months, mice were treated for 4 weeks intraperitoneally with recombinant mouse sBCMA-AT resulting in a serum concentration of sBCMA-AT of 82 µg ml⁻¹ (±16 µg ml⁻¹). Total number of plasma cells (d), and of OVA-specific plasma cells (e) were determined in the spleen and bone marrow (BM). Immunoglobulin levels were measured by ELISA, mean±s.e.m. (f).

Supplementary Figure 7. Effects of γ -secretase inhibition in vivo on different immune cell subsets. (a,b) Immunized (OVA-LPS in alum) C57/BL6 mice were treated with the γ -secretase inhibitor LY-411575-I or vehicle. Splenocytes were harvested and germinal center B cells (Fas^{high} CD38^{int}) were identified by FACS. (a) Frequency of GC cells (left panel) in regard to the whole B cell population in treated and untreated mice. (unpaired t test, p=0.0003) and absolute number of GC B cells (right panel) in treated and untreated mice (unpaired t test, p=0.0023). (b) BCMA expression on GC B cells in treated and untreated mice. (c) NZB/W mice were treated with LY-411575-I for 7 days. Absolute number of T cells and B-cell subsets in the spleen and in the bone marrow (BM). (n=10) mean±s.e.m., 2way Anova, Bonferonni's multiple comparison test).

Supplementary Figure 8. LY-411575-I inhibits shedding of BCMA and C99. HEK293T cells were transfected with human BCMA or with the established γ -secretase substrate C99 and treated overnight with either DAPT (1 μ M), with LY-411575-I (100 nM) or with the appropriate vehicle. Surface expression of BCMA or C99 was measured in by flow cytometry. (a) Surface expression of human BCMA or C99 upon DAPT and LY-411575-I treatment. Mean±s.e.m. of 6 replicates, *, p <0,05; **, p<0,01, unpaired t-test. (b) Representative histograms of BCMA and C99 surface expression upon DAPT (1 μ M) and LY-411575-I (100 nM) treatment.

Supplementary Figure 9. Original images of the cropped blots and gels shown in the paper. BCMA Western blot from supernatant of plasmacytoma cells (a), serum (b), and from supernatant of human purified B cells (c) of Fig. 1f. The bands indicated in b contained : IgG heavy chain (i), complement component1 subA (ii) and IgG light chain (iii) as seen by mass-spectrometry. (d) Silver gel of immunoprecipated sBCMA from supernatant of plasmocytoma cells, Fig. 1g. (e) PSEN1 Western blot of Fig. 4c. (f) Nicastrin Western blot of Fig. 4c (g) β -actin Western blot of Fig. 4c. (h) BCMA Western blot of Fig. 4c. (i) Coomassie gel of supplementary Fig. 6.a.

Age (vear)	sex	Diagnosis	Treatment	Related Figure	
52	F	RRMS	GA + GCS	Supplementary Figure 1c	
41	F	RRMS	GA + GCS	Supplementary Figure 1c	
50	М	RRMS	GCS	Supplementary Figure 1c	
40	М	RRMS	GCS	Supplementary Figure 1c	
39	Μ	RRMS	AZA + GCS	Supplementary Figure 1c	
29	F	RRMS	GCS	Supplementary Figure 1c	
51	F	RRMS	GCS	Supplementary Figure 1c	
29	М	RRMS	IFN-beta 1a + GCS	Supplementary Figure 1c	
32	F	CIS	GCS	Supplementary Figure 1c	
33	F	RRMS	GA + GCS	Supplementary Figure 1c	
50	F	RRMS	NTZ	Supplementary Figure 1b	
33	F	RRMS	NTZ	Supplementary Figure 1b	
34	Μ	RRMS	NTZ	Supplementary Figure 1b	
28	Μ	RRMS	NTZ	Supplementary Figure 1b	
50	F	RRMS	NTZ	Supplementary Figure 1b	
56	М	RRMS	NTZ	Supplementary Figure 1b	
37	F	RRMS	NTZ	Supplementary Figure 1b	
38	F	RRMS	NTZ	Supplementary Figure 1b	
31	F	RRMS	NTZ	Supplementary Figure 1b	
56	М	RRMS	NTZ	Supplementary Figure 1b	
24	F	RRMS	no treatment	Figure 1a,b,c	
26	F	CIS	no treatment	Figure 1a,b,c	
28	Μ	RRMS	no treatment	Figure 1a,b,c	
34	F	RRMS	no treatment	Figure 1a,b,c	
24	F	CIS	no treatment	Figure 1a,b,c	
43	F	CIS	no treatment	Figure 1a,b,c	
33	F	RRMS	no treatment	Figure 1a,b,c	
38	F	RRMS	no treatment	Figure 1a,b,c	
32	F	RRMS	no treatment	Figure 1a,b,c	
44	F	RRMS	no treatment	Figure 1a,b,c	
37	F	CIS	no treatment	Figure 1a,b,c	
45	F	RRMS	no treatment	Figure 1a,b,c	
62	F	RRMS	no treatment	Figure 1a,b,c	
51	Μ	RRMS	no treatment	Figure 1a,b,c	
21	F	RRMS	no treatment	Figure 1a,b,c	
59	F	RRMS	no treatment	Figure 1a,b,c	
42	F	RRMS	no treatment	Figure 1a,b,c	
40	F	CIS	no treatment	Figure 1a,b,c	
21	Μ	CIS	no treatment	Figure 1a,b,c	
33	F	CIS	no treatment	Figure 1a,b,c	

Supplementary Table 1. Clinical data of patients included in this study

53	М	RRMS	no treatment	Figure 1a,b,c
32	М	RRMS	no treatment	Figure 1a,b,c
24	F	CIS	no treatment	Figure 1a,b,c
37	F	RRMS	no treatment	Figure 1a,b,c
38	F	RRMS	no treatment	Figure 1a,b,c
45	F	RRMS	no treatment	Figure 1a,b,c
24	F	RRMS	no treatment	Figure 1a,b,c
27	F	RRMS	no treatment	Figure 1a,b,c
22	F	RRMS	no treatment	Figure 1a,b,c
26	F	RRMS	no treatment	Figure 1a,b,c
62	F	SPMS	no treatment	Figure 1a,b,c
46	F	SPMS	no treatment	Figure 1a,b,c
59	Μ	SPMS	no treatment	Figure 1a,b,c
62	М	SPMS	no treatment	Figure 1a,b,c
39	Μ	SPMS	no treatment	Figure 1a,b,c
45	F	SPMS	no treatment	Figure 1a,b,c
54	F	SPMS	no treatment	Figure 1a,b,c
46	F	Neuroborreliosis	no treatment	Figure 1b,c
69	F	Neuroborreliosis	no treatment	Figure 1b,c
66	M	Neuroborreliosis	no treatment	Figure 1b,c
55	M	Neuroborreliosis	no treatment	Figure 1b,c
61	Μ	Neuroborreliosis	no treatment	Figure 1b,c
45	F	SLE	no treatment	Figure 1d,e,f
47	F	SLE	no treatment	Figure 1d,e,f
33	F	SLE	no treatment	Figure 1d,e,f
27	F	SLE	no treatment	Figure 1d,e,f
62	F	SLE	no treatment	Figure 1d,e,f
38	F	SLE	no treatment	Figure 1d.e.f
40	F	SLE	no treatment	Figure 1d.e.f
40	F	SLE	no treatment	Figure 1d e f
31	F	SLE	no treatment	Figure 1d e f
30	F	SLE	no treatment	Figure 1d e f
26	F	SLE	no treatment	Figure 1d o f
20	Г	SLE		Figure 1d e f
22	Г	SLE	no treatment	
20	F	SLE	no treatment	Figure Id,e,f
22	F	SLE	no treatment	Figure 1d,e,f
43	F	SLE	no treatment	Figure 1d,e,f
55	F	SLE	no treatment	Figure 1d,e,f
21	F	SLE	no treatment	Figure 1d,e,f
1				
29	F	SLE	Pred, HCQ	Figure 1d,e,f

39	F	SLE	Pred, HCQ, CYC	Figure 1d,e,f
54	F	SLE	Pred, AZA	Figure 1d,e,f
47	F	SLE	Pred. HCO	Figure 1d.e.f
63	F	SLE	HCO, AZA	Figure 1d.e.f
28	F	SLE	НСО	Figure 1d.e.f
38	F	SLE	Pred	Figure 1d e f
36	F	SLE	Pred MMF	Figure 1d e f
41	F	SLE	Pred HCO	Figure 1d e f
30	F	SLE	Α7Α	Figure 1d e f
60	F	SLE	HCO AZA	Figure 1d e f
25	F	SLE	HCQ	Figure 1d e f
31	F	SLE	Pred HCO MMF	Figure 1d e f
27	F	SLE	Pred CYC	Figure 1d e f
45	F	SLE SLE	Pred HCO CYC	Figure 1d e f
22	F	SLE	Pred HCO CYC	Figure 1d e f
22	F	SLE	Pred HCO AZA	Figure 1d e f
20	F	SLE	Pred	Figure 1d e f
25	Г	SLE	Prod CVC	Figure 1d o f
2.1	Г	SLE	Prod AZA	Figure 1d o f
22	Г	SLE	Pred Drad	Figure 1d o f
32	Г	SLE	ricu	Figure 10,e,i
		OND (Sensineuronal		
38	F	hearing deficit)		Figure 1a.b
		OND		,
		(Cerebrovascular		
68	F	disease)		Figure 1a,b
20	м	OND (Sensory		Figure 1a h
2)	111	OND (Sensorv		
34	F	symptoms)		Figure 1a,b
45	F	OND (Migraine)		Figure 1a,b
		OND (Sensory		
26	Μ	symptoms)		Figure 1a,b
41	Б	OND (Sensory		Figura 1a h
10	Г	OND (Vartico)		Figure 1a b
19	Г	OND (Verligo)		
31	М	symptoms)		Figure 1a,b
35	F	OND (Syringomyelia)		Figure 1a,b
51	М	OND (Spinal stenosis)		Figure 1a,b
30	F	OND (Neurastenia)		Figure 1a,b
		OND (Alcohol-related		
65	Μ	spastic paraparesis)		Figure 1a,b
27	Б	OND (Sensory		Eigung 1a b
5/	Г Г	symptoms)		Figure 1a,b
49	F	OND (Hearing deficit)		Figure 1a,b
53	F	UND (Depression)		Figure 1a,b
52	F	OND		Figure 1a,b

33	F	Fatigue	Figure 1b,c
40	М	Bipolar disorder	Figure 1b,c
32	Μ	Schizophrenia	Figure 1b,c

Abbreviations used in this table: GA: Glatiramer Acetate; GCS: Glucocorticosteroid, NTZ: Natalizumab, PRED: Prednisolon, HCQ: Hydroxychloroquine, AZA: Azathioprine, MMF: Mycophenolate mofetil, CYC: Cyclophosphamide.

Supplementary Table 2. Antibodies used in the study

Antibody	Source	Dilution
anti-hBCMA (C12A3.2)	Biogen Idec	FC: $1\mu g m l^{-1}$
		WB: $1\mu g ml^{-1}$
anti-hBCMA (A7D12.2)	Biogen Idec	FC: 5µg ml ⁻¹
anti-presenilin (PSEN1)	Epitomics	WB: 1:2500
anti-nicastrin (N1660)	Sigma-Aldrich	WB: 1:5000
anti-CD40L, FITC (TRAP1)	BD PharMingen	FC: 1:40
anti-CD138, FITC (B-A38)	Diaclone	FC: 1:10
anti-CD19, PE (HIB19)	BD PharMingen	FC: 1/40
anti-CD19, Cy7 (HIB19)	Ebioscience	FC: 1:40
anti-CD27, Cy7 (O323)	Ebioscience	FC: 1:20
anti-CD38, eFluor® 450 (HB7)	Ebioscience	FC: 1:20
anti-CD138, PE (281-2)	BD Biosciences	FC: 1:100
anti-kappa, Pacific Orange (187.1)	DRFZ	FC: 1:50
anti-CD21 (7E9)	BioLegend	FC: 1:100
anti-CD23 (B3B4)	BioLegend	FC: 1:100
anti-CD24 (M1/69)	BD Biosciences	FC: 1:200
anti-CD93 (AA4.1)	BioLegend	FC: 1:50
anti-CD117 (2B8)	BD Biosciences	FC: 1:200
anti-IgM (RMM-1)	BioLegend	FC: 1:20
anti-B220 (RA3-6B2)	DRFZ	FC: 1:400
anti-IgD (11-26c)	DRFZ	FC: 1:200
anti-GL-7 (GL-7)	DRFZ	FC: 1:200
anti-CD4 (GK1.5)	DRFZ	FC: 1:200
anti-CD8 (53-6.7)	BioLegend	FC: 1:50
anti-FLAG™ (M2)	Sigma-Aldrich	FC: 5µg ml ⁻¹ ELISA: 5µg ml ⁻¹
goat-anti-mouse IgG2b, Alexa Fluor® 647	Invitrogen	FC: 1:500
goat-anti-mouse Ig, PE	Dako	FC: 1:50
goat-anti-mouse IgG, HRP (True blot®)	Ebioscience	WB: 1:1000
anti-rabbit IgG, HRP	Promega	WB: 1:2500-5000
mouse anti-C99 (4G8)	Covance	FC: 2 μ g ml ⁻¹

Abbreviations used in this table: WB: Western blot; FC: flow cytometry; DRFZ: Deutsches Rheuma-Forschungszentrum