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SUMMARY

Depression risk is exacerbated by genetic factors and
stress exposure; however, the biological mechanisms
throughwhich these factors interact to confer depres-
sion risk are poorly understood. One putative biolog-
ical mechanism implicates variability in the ability of
cortisol, released in response to stress, to trigger a
cascade of adaptive genomic and non-genomic pro-
cesses through glucocorticoid receptor (GR) activa-
tion. Here, we demonstrate that common genetic
variants in long-range enhancer elements modulate
the immediate transcriptional response to GR activa-
tion in human blood cells. These functional genetic
variants increase risk for depression and co-heritable
psychiatric disorders. Moreover, these risk variants
areassociatedwith inappropriateamygdala reactivity,
a transdiagnostic psychiatric endophenotype and an
important stress hormone response trigger. Network
modeling and animal experiments suggest that these
geneticdifferences inGR-induced transcriptional acti-
vation may mediate the risk for depression and other
psychiatricdisordersbyalteringanetworkof function-
ally related stress-sensitive genes in blood and brain.

INTRODUCTION

Major depressive disorder (MDD) has a lifetime prevalence of up

to 17% (Kessler et al., 2005), resulting in one of the highest global
burden of disease ratings by the World Health Organization

(Ustün et al., 2004). Despite its prevalence and impact, the etio-

logical and pathophysiological mechanisms underlying MDD are

poorly understood, resulting in sub-optimal treatments with high

rates of recurrence and treatment resistance (Warden et al.,

2007). Family, twin, and population studies point to both genetic

as well as environmental risk factors for depression. Genetic fac-

tors contribute up to 40% of the risk and are complemented

largely by individual-specific environmental exposure to adverse

life events (Kendler et al., 2006). Both sensitivity and resilience to

the long-term effects of exposure to adverse life events may be

modulated by genetic variation (Kendler, 2013).

Stress results in activation of the stress hormone system,

which culminates in the activation of glucocorticoid receptors

(GRs) by cortisol. The GR is a nuclear hormone receptor, and

upon activation it translocates from the cytoplasm to the nu-

cleus, where it binds to glucocorticoid response elements

(GREs) and regulates gene expression (McKay and Cidlowski,

1999; Phuc Le et al., 2005). Activation of this receptor not only

initiates adaptive physiological changes in the body to confront

an imminent threat, but also facilitates the termination of these

changes once the threat has been overcome. Thus, genetically

driven variability in GR regulation of the stress hormone

response may functionally interact with environmental risk fac-

tors, thereby producing individual differences in risk for MDD.

Consistent with thismodel, dysfunction of GR-mediated nega-

tive feedback has been reported in MDD (de Kloet et al., 2005) as

well as in individuals exposed to early adversity (Heim and

Binder, 2012; Wilkinson and Goodyer, 2011), one of the stron-

gest risk factors for the development of MDD. Moreover, genetic

variation in pathways regulating GR signaling has been linked

with MDD risk (van Rossum et al., 2006). Here, we show that
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Figure 1. Summary Figure Illustrating the

Sequence of Experiments and Analyses

Applied in This Study

The main hypothesis tested in this study is that

common genetic variants that alter the short-term

transcriptional response to GR activation also alter

the risk for stress-related psychiatric disorders and

related neural endophenotypes.
common genetic variants that modulate the initial transcriptional

response to GR activation increase the risk for MDD as well as

other psychiatric disorders. Gene network modeling and animal
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experiments suggest that these ge-

netic differences in the transcriptional

response to GR activation may mediate

risk for depression and other psychiatric

disorders by altering a network of co-ex-

pressed genes that are responsive to

stress and glucocorticoids in the brain.

In addition, these genetic variants shape

the response of the amygdala, which is it-

self an important trigger of the stress hor-

mone response and a functional neural

phenotype implicated in the etiology and

pathophysiology of depression and other

forms of psychopathology (Jankord and

Herman, 2008; Phillips et al., 2003). The

main hypotheses and the experimental

approach are summarized in Figure 1.

RESULTS

Genetic Regulation of GR-
Stimulated Gene Expression
We first identified genetic variants that

alter GR-stimulated gene expression

changes by adopting a stimulated

expression quantitative trait locus (eQTL)

approach (Figure 2A). Gene expression

profiles in peripheral blood cells from

160 male individuals of the Max-Planck

Institute of Psychiatry (MPIP) cohort (91

cases and 69 controls, see Experimental

Procedures) were obtained at baseline

and 3 hr after stimulation with the selec-

tive GR agonist dexamethasone (Fig-

ure S1A) and combined with genome-

wide SNP data. All individuals showed a

strong endocrine response to dexameth-

asone (Cortisol: F1,159 = 43.93, p =

5.02 3 10�10 and ACTH: F1,158 = 37.96,

p = 5.76 3 10�9; Figures S1B and S1C).

After quality control, 4,447 gene expres-

sion probes that exhibited strong regula-

tion following dexamethasone adminis-

tration (absolute fold change in gene

expression from baseline to 3 hr post-
dexamethasoneR 1.3 in at least 20% of all samples) were com-

bined with genotype data of �2 million imputed SNPs (see

Experimental Procedures). Using the log fold change in gene
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Figure 2. GR-Response-Modulating cis-eQTLs

(A) Study design for GR-stimulated gene expression in whole blood of 160 male individuals from the Max Planck Institute of Psychiatry cohort.

(B) Circularized Manhattan plot displaying cis-associations for GR-response eQTL bins (n = 320) and their respective significance (�log10 Q values). Displayed

from the outer to the inner circle are the number of chromosomes, the ideograms for the human karyotype (hg18), genes nearby eSNPs, and Manhattan plots for

the eQTL bins that survived correction for multiple testing.

(C and D) Boxplots of human gene expression values for ADORA3, which is an example of a significant GR-response eQTL. Expression levels are stratified based

on the eSNP genotypes for ADORA3. Baseline (6 p.m.) measures are displayed in blue and GR-stimulated measures (9 p.m.) in red. Microarrays data are

displayed in (C) and their qPCR validation in (D). Q value in (C) is derived from GR-response cis-eQTL analysis and the p value in (D) from the qPCR linear

regression model.
expression standardized to baseline values as the outcome and

restricting the analysis to a ± 1Mb cis-region around each probe,

we found that 3,820 GR-response-modulating cis-eQTLs (GR-

response eQTLs) remained significant after accounting for dis-

ease status, age, and BMI and correction for multiple testing
(see Experimental Procedures). These comprised 297 unique

array probes and 3,662 unique SNPs. The 3,662 unique GR-

response cis-expression SNPs (eSNPs) can be summarized in

terms of independent tag SNPs into 296 uncorrelated GR-

response cis-eSNP bins, i.e., sets of SNPs in linkage
Neuron 86, 1189–1202, June 3, 2015 ª2015 The Authors 1191
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Bar graph illustrating the enrichment of GR-

response eSNPs for enhancers in multiple tissues

from the Roadmap Epigenome Project, including

brain tissue. The x axis shows the fold enrichment

and the y axis all brain enhancers all well as the

mean fold enrichment among all hematopoietic

cells (see Figure S2) and brain enhancers. The fold

enrichment for GR-response eSNPs is illustrated
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which passes a Bonferroni corrected significance

threshold (corrected for the number of all tested

tissues or cells, n = 62) is illustrated. * p % 0.05,

obtained by binomial enrichment test and Bon-

ferroni correction, error bars ± SD.
disequilibrium (LD; see Experimental Procedures). We defined

the tag eSNP as the eSNP showing the highest association per

bin (lowest Q value). These 296 GR-response cis-eSNP bins

correspond to 320 GR-response cis-eQTL bins, i.e., cis-eSNP

bin-probe combinations, as one cis-eSNP bin can be associated

with the regulation of more than one transcript and vice versa.

These GR-response cis-eQTL bins are listed in Table S1 and

illustrated in Figures 2B–2D. Including dexamethasone serum

levels or the blood cell count as covariate did not change the re-

sults, excluding any confounding effects of individual differences

in dexamethasone concentration and cellular composition (see

Supplemental Information).

To assess the robustness of these GR-response eQTLs, we

validated them in an independent sample of n = 58 (see Experi-

mental Procedures) by performing a sample size-weighted

Z score meta-analysis across both samples. In this analysis,

72% of the GR-response eQTLs could be validated, i.e., showed

a meta-analysis p value equal to or more significant than in the

discovery sample alone (see Experimental Procedures). This

method accounts for the small size of the validation sample

and suggests the robustness ofmost of theGR-response eQTLs.

Characterization of GR-Response eSNPs
To better understand the properties of these GR-response

eQTLs, we first mapped the GR-eSNPs (n = 3,662 SNPs) to

GR binding regions as defined by ChIP-seq peaks in lympho-

blastoid cell line (LCL) GM12878 (see Experimental Procedures).

We observed a significant enrichment of GR-response eSNPs in

GR binding sites as compared to random SNPs (fold enrich-

ment = 2.4, permutation-based FDR % 0.001).

Next, we mapped the distance of the 320 GR-response eQTL

bins to the genomic location of the probe sequence of the respec-

tive regulated transcript (utilizing the closest SNPwithin a bin) and

compared this to the probe distance for baseline cis-eQTL bins,

i.e., the eSNP-probe combinations that showed a significant as-

sociation of the genotype with transcription levels at baseline

(see Supplemental Information). The GR-response eSNP bin-to-

probe distance (mean = 406 kb, standard deviation [SD] =

303 kb, n = 320 bins) was significantly longer (Wilcoxon

p value = 1.033 10�50) than baseline eSNPbin-to-probe distance

(mean = 149 kb, SD = 232 kb, n = 1,148 bins; Supplemental Infor-
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mation). This suggests that GR stimulation is associated with

significantlymore long-range transcriptional regulation thanbase-

line gene expression and that distinct regulatory elementsmay be

involved in baseline versus GR-stimulated gene transcription.

To determine the regulatory potential of GR-response eSNPs,

we investigated whether they are enriched within enhancer re-

gions as defined by the Roadmap Epigenome Project (Kundaje

et al., 2015) (see Experimental Procedures). GR-response tag

eSNPs were significantly enriched within enhancers in 62

different tissues, including blood cells, but also non-hematopoi-

etic tissue such as brain (see Figure S2). When testing baseline

tag eSNPs, we only observed an enrichment in enhancers in

54% of these 62 tissues. Whether combined enrichment of

both GR-response tag eSNPs and baseline tag eSNPs was

observed seemed to be tissue specific (see Figure S2). In fact,

GR-response eSNPs were more enriched in brain enhancers

than baseline eSNPs, i.e., only one of the eight brain enhancers

significantly enriched with GR-response eSNPs also displayed a

significant enrichment for baseline eSNPs (see Figure 3). In

contrast, we observed equal enrichment for GR-response as

well as baseline eSNPs in primary hematopoietic tissues (see

Figure S2). These results further support the viewpoint that

GR-response eSNPs affect different transcriptional regulators

than baseline eSNPs and suggest possible cross-tissue effects

of these SNPs.

To evaluate whether the long-range regulation of GR-

response eQTLs may be associated with long-range physical

chromatin interaction, we compared our data with that from a

chromatin interaction analysis with paired-end tag sequencing

(ChIA-PET) generated by ENCODE (ENCODE Project Con-

sortium, 2011) in the leukemia cell line K562. For this, we exam-

ined whether regions containing the GR-response eSNP bin and

the corresponding probe gene overlapwith physically interacting

ChIA-PET tags (see Experimental Procedures). Twenty-five

percent of the GR-response eSNP bin-probe gene combinations

overlapped with chromatin interaction signals. This was signifi-

cantly greater than 1,000 equally sized sets of randomly distrib-

uted GR-response eSNP bin, especially when restricting the

analysis to more long-range eSNP bin-probe gene pairs with

distances > 100 kb (fold enrichment>100kb = 1.57, permutation-

based FDR>100kb = 0.007; see Experimental Procedures). To



validate these long-range chromatin interactions, we used a

chromatin conformation capture (3C) assay to confirm a physical

interaction between the eSNP bin regions of the GR-response

eSNP tag rs1379868 in the NRTN locus and the corresponding

GR-stimulated transcript LONP1 (see Figures 4A and 4B), which

is over 130 kb upstream. This eSNP bin includes a GR binding

site and ChIA-PET tags (see Figure 4C), which interact with the

transcription start site of the LONP1 gene. The 3C assay

confirmed an increased chromatin interaction (p = 3.35 3

10�23, c2 = 115.15 at baseline) of the eSNP bin with the TSS of

the LONP1 gene (P4 in Figures 4C and 4D) in five LCLs. The

average interaction frequency of these two sites was higher

following stimulation with the GR-agonist dexamethasone

(4.83 versus 5.65). These results suggest that long-range regula-

tion of GR-response eQTLs could be mediated by direct chro-

matin interaction of enhancer regions with the respective

transcription start sites.

GR-Response eSNPs Are Enriched in Loci Nominally
Associated with MDD and Other Psychiatric
Disorders as well as in Genome-wide Significant
Schizophrenia Loci
Besides their functional characterization, an important question

was to assess whether the genetic variants that alter the imme-

diate transcriptional response to GR activation (GR-response

eSNPs) would also be associatedwith risk for stress-related psy-

chiatric disorder. To assess this, we first tested whether our GR-

response eSNPs were overrepresented among SNPs associ-

ated with MDD in the genome-wide association study (GWAS)

results of the Psychiatric Genomics Consortium (PGC), which in-

cludes approximately 9,000 cases and the same number of con-

trols (Ripke et al., 2013). Among nominally associated loci with

MDD (at meta-analysis p value% 0.05), 282 SNPs also represent

a GR-response eSNP. Permutation analysis (see Experimental

Procedures) predicted an expected mean overlap of 210 SNPs

from 1,000 randomly selected SNP sets (fold enrichment =

1.34, permutation-based FDR < 0.001; Figure 5A). We next

investigated whether GR-response eSNPs were also enriched

over baseline eSNPs, as SNPs associated with transcriptional

changes have been shown to be more enriched in GWASs in

general (Roussos et al., 2014). Again the mean overlap for

1,000 permuted baseline cis-eSNP sets (218 SNPs) was signifi-

cantly lower than the actual overlap of GR-response eSNPs (fold

enrichment = 1.29, permutation-based FDR < 0.001; Figure 5A).

These enrichments remain significant when using only the tag

eSNPs (n = 285) to control for possible confounding due to link-

age disequilibrium (LD) structure (fold enrichment = 1.31, permu-

tation-based FDR = 0.082).

The 282 GR-response eSNPs that overlap with MDD-associ-

ated SNPs correspond to 23 unique eSNP bins (reflecting 26

eQTL bins) that regulate 25 unique transcripts (Table S2). We

call these 23 eSNP bins ‘‘MDD-related GR eSNP bins’’ in the

remainder of the manuscript to refer to GR-response eSNPs

that also show a nominal association with MDD.

Validation of Enrichment and Extension to Other

Psychiatric Disorders

Wenext examinedwhether theseMDD-relatedGR eSNPswould

also be associated with MDD in an independent sample. For this
we constructed a genetic risk profile score (GRPS) using the

tagging SNPs of the 23 MDD-related GR eSNP bins for each in-

dividual in an independent validation sample of 1,005 MDD

cases and 478 controls (Table S3; see also Experimental Proce-

dures). We found these GRPSs to be significantly associated

with MDD and that individuals with higher GRPSs were overrep-

resented in the case group (Z = 3.76, p = 0.00017; Figure 5B).

This GRPS explains about 2.6% of the total variance for MDD

in this sample, and the association of these MDD-related GR

eSNP GRPSs was more significant than GRPSs constructed

from 1,000 randomly generated SNP profiles (permutation-

based FDR = 0.008; see Experimental Procedures).

As exposure to stressful life events is a strong risk factor not

only for MDD but also for other psychiatric disorders, including

bipolar disorder (BPD) and schizophrenia (SCZ) (Dohrenwend

and Egri, 1981; Kendler and Karkowski-Shuman, 1997), we

tested whether the GR-response eSNPs were also overrepre-

sented among SNPs associated with other psychiatric disorders

utilizing meta-analysis data from the PGC. Using this approach,

we tested for for significant GR-response eSNP enrichment

compared to 1,000 randomly generated baseline eSNP sets

in the PGC for four additional psychiatric disorders and the

cross-disorders analysis including also MDD (see Table 1). In

the latest multi-stage SCZ GWAS, which includes up to 36,989

cases and 113,075 controls (Schizophrenia Working Group of

the Psychiatric Genomics Consortium, 2014), we detected a

significant enrichment of GR-response eSNPs compared to

baseline eSNPs with SNPs associated with SCZ at p % 0.05

(fold enrichment 1.29, permutation-based FDR % 0.001). When

we limited the enrichment analysis to genome-wide significant

SCZ loci, we detected 134 GR-response eSNPs that overlapped

SNPs associated with SCZ at p% 53 10�8. This corresponds to

a 10-fold enrichment over baseline eSNPs and is 7.75-fold higher

than for nominally associated SCZ SNPs (see Table 1). A sig-

nificant negative enrichment was identified for loci associated

with attention deficit-hyperactivity disorder (permutation-based

FDR% 0.012; ADHD; 840 cases and 1,947 trio cases) and autism

spectrum disorder (ASD; permutation-based FDR % 0.001; 161

cases and 4,788 trio cases) but not BPD (see Table 1).

To test whether these enrichments of GR-response eSNPs as

compared to baseline eSNPs are specific to psychiatric disor-

ders, we mapped these variants to GWAS for rheumatoid

arthritis, Crohn’s disease, and height but found no enrichment

more than 1.06-fold (see Table 1). These analyses suggest that

GR-response eSNPs are unrelated to these medical disorders

or general quantitative traits but specifically contribute to the

risk for MDD and SCZ.

Functional Relevance of Transcripts Regulated by
MDD-Related GR eSNPs
Gene Network Analysis of MDD-Related GR Genes

Next, we investigated whether the probe genes (n = 24), regu-

lated by the MDD-related GR eSNPs, are part of specific path-

ways that may be relevant for the pathophysiology of psychiatric

disorders. Using the GeneMANIA tool (Montojo et al., 2014), we

were able to generate a gene network containing 23 of the 24

MDD-related GR genes (see Figure 6A and Experimental Proce-

dures). Within this network, the type of interactions between the
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A B Figure 5. GR-Response eSNPs Are En-

richedamongVariantsAssociatedwithMDD

(A) The dotted red line shows the enriched number

of GR-response eSNPs that overlap with SNPs in

our meta-analysis for MDD (= MDD-related GR

eSNPs; 8,864 cases and 8,982 controls). The dis-

tribution of the observed overlap for sets of 1,000

random SNPs (gray) and 1,000 random baseline

eSNPs (blue) are represented as histograms (null

distributions). Both permuted data sets never

reached the same overlap with MDD-associated

SNPs as the GR-response eSNPs.

(B) The distribution of the MDD-related GR eSNP

genetic risk profile scores (GRPSs) for an inde-

pendent sample of MDD cases (n = 1,005 cases;

red) and controls (n = 478; gray) are represented as

density plots. Individuals with MDD display higher

GRPSs (p = 0.00017). p value by logistic regression

model.
MDD-related GR genes that were most enriched were: co-

expression (1.21 times the number expected when using other

GR-stimulated transcript sets), co-localization (genes are ex-

pressed in the same tissue or proteins are found in the same

location; fold enrichment = 1.21), and shared protein domains

(fold enrichment = 3.77). Several genes, e.g., FTH1, CCT7,

RPS2, IMPDH2, and PELI1, presented more than ten interac-

tions. Additional co-expression analysis identified that the

MDD-related GR genes are more tightly co-regulated in blood

than in 1,000 sets of randomly chosen transcripts selected

from all GR-responsive transcripts (fold enrichment = 1.04, per-

mutation-based FDR = 0.078). These data provide support that

the MDD-related GR genes functionally interact to perform an

orchestrated function, i.e., they are coordinated in their tran-

scriptional response to GR activation or stress. A limited network

analysis through manually curated interactions from the scienti-

fic literature (Lechner et al., 2012) revealed that these genes

show associations with MDD, SCZ, BPD, neurodevelopmental

disorders, posttraumatic stress disorder, and response to anti-

depressant treatment in independent datasets (see Figure S3).

In addition, they seem predominantly involved in pathways asso-

ciated with ubiquitination and proteasome degradation and the

inflammatory response, systems that have been implicated in

the pathophysiology of MDD and SCZ, as well as in stress-

related changes in synaptic plasticity (Miller et al., 2009;

Schizophrenia Working Group of the Psychiatric Genomics Con-

sortium, 2014; Tai and Schuman, 2008).
Figure 4. Long-Range Chromatin Interaction of GR-Response eQTLs

(A) Long-range chromatin interaction as exemplified by the eSNP region containin

five lymphoblastoid cell lines (LCLs) each, homozygous for the two opposite SN

NRTN locus (rs1379868) affects the differentially regulated gene expression of

Baseline (6 p.m.) measures are displayed in blue and GR-stimulated measures (

(B) SNP effect on GR-dependent gene transcription was validated by qPCR in th

(C) Characterization of the eSNP locus. Top panel, ideogram for chromosome 1

Bottom panel: 3C-primers (green track) were designed at the LONP1 TSS (C1, an

includes a GR binding site in blood cells (pink track). ChIA-PET tags from the leu

between theNRTN eSNP locus and the regulated gene LONP1. The paired ChIA-P

track) and blood cells (yellow track).

(D) Chromatin conformation capture interaction data. A 3C physical interaction bet

in the 3C libraries made from LCLs (p = 3.35 3 10�23, c2 = 115.15) with a strong

Q values in (A) are derived from GR-response cis-eQTL analysis, and p values in
Convergent Functional Genomics: Integrating Human

MDD-Related GR Genes with Relevant Mouse Models

To establish whether the transcripts regulated by acute GR acti-

vation in blood are also regulated in the brain within a similar time

frame, we investigated whether the orthologs of the 24 MDD-

related GR transcripts were differentially regulated in mouse

blood and brain (prefrontal cortex [PFC], hippocampus [HC],

and amygdala [AM]) 4 hr following dexamethasone administra-

tion (10 mg/kg dexamethasone i.p.). In this experiment, 17 of

the 24 genes had a mouse orthologous gene, and 16 were ex-

pressed above microarray detection threshold. One-third of

the genes showed significant changes at FDR % 0.1 and

53.3% at p % 0.05 in one or more of the investigated brain re-

gions. Over 86% of the genes were significantly regulated

(FDR % 0.1) in mouse blood (see Figure 6B left panel).

In order to extend these results from pharmacologic GR ago-

nism, we further evaluated whether acute social defeat stress,

which is commonly used to induce depressive-like behavior,

differentially regulates these same 24 MDD-related genes in

mice. In this experiment, 17 orthologous genes were analyzed

in blood, PFC, AM, and HC samples 4 hr after exposure to an

aggressive resident mouse with short attack latency (Wagner

et al., 2013). Here, three (MKNK2, SLCO3A1, and OCIAD2) of

the five genes that were significantly differently regulated after

dexamethasone stimulation were also significantly regulated

following social defeat (FDR % 0.1) in in one or more of the

analyzed brain regions (see Figure 6B right panel). This suggests
g the NRTN locus (chr10: 5,690,000–5,840,000; hg19) was confirmed by 3C in

P alleles, both in the presence and absence of dexamethasone. A SNP in the

LONP1 in human whole blood cells (based on GR-response eQTL analysis).

9 p.m.) in red.

e LCLs used for the 3C assay.

9 (p13.3). A red box isolates the region shown (enlarged) in the bottom panel.

chor) and multiple regions (P1–P6) in and around the eSNP bin. The eSNP bin

kemia cell line (brown and green tracks) validate a direct chromatin interaction

ET tags coincide with DNaseI hypersensitivity sites in the leukemia cell line (red

ween the LONP1 TSS and eSNP bin (P4), emphasized by a gray box, was found

er interaction following stimulation with the GR-agonist (p = 0.06, c2 = 3.35).

(B) and (D) are derived from linear mixed model; error bars ± SD.
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Table 1. Proportion of GR-Response eSNPs Overlapping with GWAS SNPs with Nominal Significance

GR-Response

eSNPs Random SNPs Fold

enrichment

Baseline eSNPs Fold

enrichmentCount Mean counta Range FDR Mean counta Range FDR

CDA 115 86.5 ± 8.99 SD 61–119 0.001 1.33 102.03 ± 8.57 SD 71–130 0.066 1.13

BPD 91 70.36 ± 8.34 SD 44–100 0.009 1.29 86.18 ± 8.2 SD 59–115 0.295 1.05

SCZ 157 84.08 ± 8.79 SD 61–111 <0.001 1.87 129.07 ± 9.61 SD 99–158 0.027 1.22

SCZ2 948 533.29 ± 21.59 SD 469–615 <0.001 1.78 736.55 ± 22.32 SD 676–813 < 0.001 1.29

SCZ2 (5 3 10�8)b 134 6.43 ± 2.52 SD 0–18 <0.001 20.94 13.37 ± 3.32 SD 4–24 < 0.001 10.02

ADHD 29 55.69 ± 7.14 SD 36-79 <0.001c �1.89 42.23 ± 5.78 SD 25–63 0.012c �1.44

ASD 34 63.73 ± 7.62 SD 44–91 <0.001c �1.85 114.94 9.09 SD 80–147 < 0.001c �3.35

MDD 282 210 ± 13.9 SD 168–255 <0.001 1.34 218.11 ± 13.49 SD 174–268 < 0.001 1.29

CD 149 83.16 ± 8.89 SD 61–112 <0.001 1.8 150.5 ± 10.27 SD 121–182 0.591 �1.006

RA 396 71.9 ± 8.06 SD 46–100 <0.001 5.56 372.37 ± 16.08 SD 323–430 0.078 1.06

Height 350 146.01 ± 11.9 SD 108–188 <0.001 2.4 340.84 ± 14.91 SD 294–390 0.268 1.03

Schizophrenia, SCZ; bipolar disorder, BPD; attention deficit-hyperactivity disorder, ADHD; Crohn’s disease, CD; autism spectrum disorder, ASD;

major depressive disorder, MDD; cross-disorder associations, CDA; rheumatoid arthritis, RA.
aProportion of the number of GR-response eSNPs observed for 1,000 permuted random SNPs and baseline eSNPs.
bOverlap at genome-wide significance level.
cNegative enrichment and inverse fold enrichment.
that a subset of MDD-related GR genes is also regulated by

acute social defeat, providing an important extension to

stress-related risk for depression.

Cumulative Risk Scores for the MDD-Related GR eSNPs
Correlate with Dysfunctional Amygdala Reactivity
To investigate the relationship between MDD-related GR eSNPs

and variability in stress-related brain function in humans, we

applied an imaging genetics strategy to data from 647 partici-

pants (171 individuals with current or past DSM-IV Axis I disor-

ders and 476 controls; 306 of participants were self-reported

European-Americans [EUR-AM]; Table S5 and see also Experi-

mental Procedures) of the Duke Neurogenetics Study (DNS)

(see Experimental Procedures). Our analyses focused on centro-

medial amygdala reactivity to canonical threat-related angry and

fearful facial expressions (Figure 7A), because this phenotype is

clearly implicated in the etiology and pathophysiology of stress-

related disorders, including depression (Phillips et al., 2003).

Moreover, amygdala reactivity can trigger rapid physiological

and behavioral responses to threat, including activation of the

stress hormone response via projections from the medial divi-

sion of the central nucleus of the amygdala, (captured in our

analysis by our centromedial amygdala region of interest) to

the paraventricular nucleus of the hypothalamus (Ulrich-Lai

and Herman, 2009). Lastly, amygdala function is influenced by

the slow-acting, presumably genomic effects of hydrocortisone

administration (Henckens et al., 2010), further highlighting its

importance as a systems-level phenotype sensitive to our

observed GR-induced transcriptional responses.

Higher MDD-related GR tag eSNP GRPSs (Table S4; see also

Experimental Procedures) were associated with blunted centro-

medial amygdala response to angry and fearful facial expres-

sions relative to neutral expressions in the EUR-AM subsample,

even after accounting for age, sex, and the presence of an Axis I
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disorder (F1,301 = 7.06, p = 0.008; Figure 7B). This effect was also

observed in the entire sample after accounting for population

stratification (F1,637 = 6.05, p = 0.014; Figure S4A). Permutation

analyses that formed random SNP profiles (n = 1,000; matched

for MAF and not exceeding the maximum correlation among

profile SNPs; see Experimental Procedures) indicated that the

actual GRPS were more likely to be associated with these

differences in amygdala reactivity than 1,000 sets of random

SNP profiles (EUR-AM subsample: permutation-based FDR =

0.003; entire sample: permutation-based FDR = 0.012). Post

hoc analyses revealed that this differential effect was driven

by higher centromedial amygdala reactivity to neutral facial

expressions relative to our control condition in participants

with higher GRPS (EUR-AM subsample: F1,301 = 6.47, p =

0.011; Figure 7D; entire sample: F1,637 = 8.52, p = 0.004; Figures

S4A and S4C). There were no effects of GRPS on amygdala

reactivity to angry and fearful facial expressions relative to our

control condition (EUR-AM subsample: F1,301 = 0.2, p = 0.65;

Figure 7C and entire sample: F1,637 = 0.09, p = 0.76; Figures

S4A and S4B).

This pattern of altered amygdala reactivity in individuals with

higher GRPS is suggestive of impaired threat-related cue

learning with inappropriately increased reactivity to neutral ex-

pressions, which do not convey threat (Britton et al., 2011; Oli-

veira et al., 2013). Thus, higher GRPS may be associated with

non-specific or overgeneralized threat and stress responses,

which are consistently observed in depression as well as other

mood and anxiety disorders (Britton et al., 2011; Oliveira et al.,

2013).

DISCUSSION

We have shown that common variants in long-range enhancer

elements alter the transcriptional responsiveness of GR target
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Figure 6. Functional Annotation of Transcripts Regulated by MDD-Related GR Risk Variants

(A) Gene network produced using GeneMANIA. The network consists of 43 genes (circles) connected by 164 interactions (edges). Genes that are within a black

filled circle indicate our MDD-related GR transcripts (n = 24), while those within a gray filled circle indicate additional genes (n = 20). The interactions found

between these genes, which were more enriched than expected, are shown (co-expression: purple lines, shared protein domains: yellow lines, and co-locali-

zation: blue lines).

(B) Heatmap of gene expression changes (log2) between stress versus vehicle groups of mouse in brain and blood (n = 17 mice, left panel) as well as between

baseline and GR-stimulation in human blood cells (blue, middle panel) and in mouse brain and blood (n = 22 mice, right panel). Investigated tissues are labeled

within the bottom row of the heatmap (prefrontal cortex [PFC], hippocampus [HC], and amygdala [AM]). p valueswere computed by using linear regressionmodel,

and significance is indicated by a black box (FDR % 0.1, dotted box p % 0.05).
genes to the GR and that these variants cumulatively increase

the risk for psychiatric disorders, includingMDD and SCZ. These

findings suggest that the risk of developing MDD after adverse

life events may be influenced by an individual’s sensitivity to

the downstream, transcriptional effects of cortisol released dur-

ing the stressful adverse events. In addition, the findings suggest

that the changes seen in the initial transcriptional response to

stressmay influence how an individual processes stressful expo-

sures. Indeed, the risk variants were also associated with over-

generalized centromedial amygdala reactivity to non-threat

stimuli. This is consistent with dysfunctional behavioral and

physiological hyper-responsiveness to threat in MDD and other

psychiatric disorders.

One of our notable genetic findings is that the distance be-

tween the GR-response eSNPs and the regulated gene expres-

sion probe was significantly longer than the distances previously

reported for baseline eQTLs (149 kb baseline eQTLs versus 406

kb for GR-response eQTLs in our dataset). Our data support and

extend previous observations that indicated a long-range tran-

scriptional regulation by the GR (Hakim et al., 2011; John et al.,

2011; So et al., 2007). In fact, a combined analysis of our GR-

response eQTLs and ChIA-PET data from the ENCODE project

(ENCODEProject Consortium, 2011) as well as a validation using

3C analysis suggests that there could be a physical long-range

interaction between the eSNP locus and the promoter of the
GR-regulated transcript for at least 25% of the GR-response

eQTLs. Additional experiments are necessary in order to investi-

gate the direct effects of the different alleles on the enhancer

function and chromatin conformation in other tissues, including

the brain, to further validate this.

More broadly, our results indicate that stimulated eQTL ap-

proaches using disease-risk-relevant transcriptional stimuli (in

our case GR activation and stress) can identify novel risk genes

for common disorders that may otherwise go undetected. Previ-

ous studies have used eQTLs or DNAmethylation QTLs (mQTLs)

for the annotation of GWAS results and indicated the importance

of using eQTLs and mQTLs from disease-relevant tissues (Ga-

mazon et al., 2013; Nicolae et al., 2010). While we do not observe

a significant enrichment of baseline blood eQTLs, GR-response

eQTLs from this tissue were significantly enriched, even over

baseline SNPs, among the variants associated with MDD and

SCZ (see Table 1). Interestingly, GR-response eSNPs identified

in whole blood were enriched in enhancers specific to brain tis-

sue, while this was not the case for baseline eSNPs identified in

blood (see Figures 3 and S2). This suggests that GR-response

eSNPs may have more relevance for cross-tissue effects, espe-

cially in the brain. This pattern may underlie the observation that

GR-response eSNPs were associated with psychiatric disorders

and amygdala function, but not with other medical disorders or

height. Our findings support the notion that not only the tissue
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Figure 7. GR-ResponseMDD-Related eSNP

GRPS Correlate with Overgeneralized

Amygdala Reactivity

(A) Statistical parametric map illustrating left cen-

tromedial amygdala reactivity to facial expressions

with an ‘‘Angry & Fearful > Neutral’’ contrast in the

entire sample (15 contiguous voxels; max voxel

MNI coordinate, x = �24, y = �10, z = �14,

t = 4.35, p = 7.76 3 10�6).

(B) Higher MDD-related GR eSNP genetic risk

profile scores (GRPSs) in the European-American

subsample of the DNS cohort (n = 306) predicted

amygdala reactivity to threat-related facial ex-

pressions in comparison to neutral facial expres-

sions.

(C and D) Post hoc analyses revealed that GRPSs

did not predict amygdala reactivity to threat-

related expressions (C), but that higher GRPSs

predicted elevated amygdala reactivity to neutral

facial expressions (D) in comparison to non-face

control stimuli. The 95% confidence interval is

displayed as gray shaded band in (B)–(D).
but also the type of stimulation, e.g., mimicking aspects of stress

in our experiments, can be relevant for using such QTL studies in

annotating GWAS results.

While these common genetic variants were discovered in pe-

ripheral blood cells, we provide evidence for their importance in

neural circuits that are critical for generating and regulating the

stress axis response to adversity. First, GR-response eSNP re-

gions are enriched in enhancers relevant in brain tissue. Second,

a number of the transcripts affected by these MDD-related GR

eSNPs in their GR-regulated gene expression in human blood

were also regulated by short-term GR activation or following

exposure to acute social defeat stress in the mouse hippocam-

pus, prefrontal cortex, or amygdala. Third, using imaging ge-

netics, we demonstrate that the cumulative MDD-related GR

tag eSNP genetic risk profile predicts overgeneralized reactivity

of the human amygdala. It has to be noted, however, that while

the GR-response eQTLs were identified using the selective GR

agonist dexamethasone, the GR shares response elements

with other steroid receptors, especially the mineralocorticoid re-

ceptor, so that we cannot exclude an important contribution of

these other receptors.

Furthermore, the MDD-related GR genes formed a strongly in-

terconnected gene network (over 85% of the genes are co-ex-

pressed; Figure 6A). Within this network, inflammation was the

pathway with the highest connectivity (see Figure S3), and a

number of studies indicate the pathophysiological relevance of

this system in the development of MDD and SCZ (Haroon

et al., 2012; Keller et al., 2013; Miller et al., 2009). The role of

the immune system was also supported by results of the latest

GWAS meta-analysis for SCZ (Schizophrenia Working Group
1198 Neuron 86, 1189–1202, June 3, 2015 ª2015 The Authors
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2014). The connectivity of this system

was followed in strength by the connec-

tivity of proteasome degradation. It has

been shown, for example, that activation

of GRs enhances ubiquitin/proteasome-
mediated degradation of glutamate receptor subunits and

thereby mediates cognitive impairment induced by repeated

stress exposure (Yuen et al., 2012). Geneticmodulation of GR ef-

fects on the immune system in addition to ubiquitin/proteasome-

mediated degradation thus provide a mechanistic link between

risk for psychiatric disorders and the genetic differences in

GR-induced gene expression.

Most importantly, our GR-response eQTL analysis revealed an

enrichment of these GR-response eSNPs among MDD-associ-

ated SNPs over baseline eSNP sets as well as random SNP

sets. This suggests that SNPs altering the initial transcriptional

response to stress also influence the risk for MDD. The associa-

tion was verified in an independent cohort. Furthermore, the

increased risk conferred by these functional variants may extend

to SCZ. This is consistent with evidence from recent studies of

psychiatric disorders, which suggest shared genetic risk loci,

with MDD having the highest co-heritability with BPD followed

by SCZ (Lee et al., 2013). The fact that we do not detect a signif-

icant enrichment of GR-response eSNPs with BPD, despite the

large SNP co-heritability of this disorder with both SCZ and

MDD, may in part be due to the smaller sample size in this

meta-analysis and thus insufficient power to detect true associ-

ations (n = 6,704 cases for BPD versus over 9,000 cases forMDD

and SCZ1). The fact that the fold enrichment of GR-response

eSNPs with SCZ increases with sample size (SCZ1: n = 9,087

cases versus SCZ2: n = 36,989 cases) and p value cut-off

(p < 0.05 and p < 5 3 10�8) suggests that the strategy of using

stimulated eQTL approaches may help in identifying true associ-

ations for disease. Interestingly, we find that four MDD-related

GR eQTL bins, which are not only associated with MDD but



also with SCZ, and the cross-disorder associations from the

PGC analyses (Table 1) reach genome-wide significance for

SCZ in the most recent meta-analysis (Schizophrenia Working

Group of the Psychiatric Genomics Consortium, 2014). Besides

the extended MHC region (chr6: 26–34 Mb, hg19), these

overlapping risk loci include a region on chr1: 149,998,890–

150,242,490 (hg19) that now ranks 48th for association with

SCZ and overlaps with the MDD-related GR eQTL bin, ANP32/

PLEKHO1, that regulates the probe gene HIST2H2AA3/4. This

GR-response eQTL drives the overlap with genome-wide

SCZ2 associations, and it has been validated using qPCR (Sup-

plemental Information). These findings suggest that GR-

response eSNPsmay contribute to the shared risk between psy-

chiatric disorders, especially MDD and SCZ, and that this

approach may delineate between shared and specific risk fac-

tors for these disorders.

Results from our imaging genetics study provide one potential

neural pathway by which MDD-related GR eSNPs may increase

the risk for the development of stress-related psychopathology,

including depression. Interestingly, MDD-related GR eSNPs pre-

dict heightened amygdala reactivity to stimuli that do not inher-

ently signal threat (i.e., neutral facial expressions). This suggests

that MDD-related GR eSNPs associated with the immediate

transcriptome response to stress may impair the neural circuitry

that supports the learning of threat-related cues and, possibly,

thereby contribute to the overgeneralization of threat-related

stress responses. Indeed, in healthy individuals, the genomic

effects of hydrocortisone result in more specific reactivity to

threatening stimuli (Henckens et al., 2010). As such, MDD-

related GR eSNPs may underpin a less adaptive and overgener-

alized amygdala response that leaves individuals more likely to

perceive threat in the absence of unambiguous cues; this in

turn may lead to the development of cognitive biases associated

with depression, or perhaps even paranoia, in the context of

schizophrenia.

The data presented in this study show that common genetic

variants that change the GR-mediated immediate transcriptome

response to stress are linked, in the long-term, to both changes

in neural processing of threat and increased risk for MDD and

SCZ. Our data lend further support to the notion of a possible

shared genetic liability of some psychiatric disorders and specif-

ically point to stress-responsive genes as common risk factors.

Studies dissecting how these genetic variants alter the molecu-

lar, cellular, and neural response to glucocorticoids in the short

and long term could inform the development of novel strategies

for the prevention and treatment of stress-related psychiatric

disorders.
EXPERIMENTAL PROCEDURES

Samples and Study Designs

MPIP Cohort

The subject pool for the eQTL analysis consisted of 164 male Caucasian indi-

viduals: 93 healthy probands and 71 in-patients with depressive disorders

treated at the Max Planck Institute of Psychiatry’s hospital in Munich,

Germany (MPIP cohort; see Supplemental Experimental Procedures;

Hennings et al., 2009; Menke et al., 2012 for details). Baseline whole-blood

samples (for plasma and RNA) were obtained at 6 p.m. after 2 hr of fasting

and abstention from coffee and physical activity. Immediately afterward the
participants were given 1.5 mg dexamethasone orally. A second blood draw

was performed 3 hr later at 9 p.m. (see Figure 2A). Cortisol and ACTH serum

levels were determined using previously described radioimmunoassays (Hen-

nings et al., 2009; Menke et al., 2012). Plasma dexamethasone concentrations

were assessed in serum samples drawn at 9 p.m. using liquid chromatog-

raphy-tandem mass spectrometry on API4000 (AB Sciex).

MARS Cohort

This sample included 1,483 participants with European ancestry (1,005 with

MDD) recruited for the MARS project at the MPIP in Munich. All individuals

used within the eQTL study (MPIP cohort) were not part of this sample (see

Supplemental Experimental Procedures and Hennings et al., 2009 for details).

DNS Cohort

The imaging genetics analysis was conducted on data from (1) a European-

American subsample of 306 participants (63 with DSM-IV Axis I disorder)

and (2) a full sample of 647 participants (117 with DSM-IV Axis I disorder) of

the ongoing Duke Neurogenetics Study (see Supplemental Experimental Pro-

cedures). All participants completed awidely utilized functionalmagnetic reso-

nance imaging (fMRI) paradigm assessing threat-related amygdala reactivity

(see Supplemental Experimental Procedures).

Mouse Models

Twenty-two male C57BL/6N mice were used for the dexamethasone-stimula-

tion test (DEX-mouse). The experiment was performed twice with two separate

batches of mice (n = 22 per batch). Animals were injected i.p. with either

vehicle (VEH, n = 11) or 10 mg/kg dexamethasone (DEX, n = 11) between

9 a.m. and 11 a.m. Animals were sacrificed 4 hr post-injection.

The acute social defeat sample included 17 male C57BL/6N mice (n = 8

control and n = 9 acute stress mice) taken from a larger study that were

used for this experiment. Mice underwent the acute social defeat stress

once exactly 4 hr preceding sacrifice and tissue collection. The acute social

defeat paradigm was performed as described previously (Wagner et al.,

2013) on a single day between 9 a.m. and 12 p.m. (see Supplemental Exper-

imental Procedures).

From both animal models described above, blood was collected and the

brain was carefully extracted and dissected (see Supplemental Experimental

Procedures). The following brain regions were collected: hippocampus (HC),

prefrontal cortex (PFC), and the amygdala (AM).

All human studies have been approved by the respective local ethics com-

mittees and all individuals gave written informed consent. Details about the

individual studies are listed below or in the Supplemental Experimental Proce-

dures. The mouse model protocols were approved by the Committee for the

Care and Use of Laboratory Animals of the Government of Upper Bavaria,

Germany.

Gene Expression Data

The human whole-blood RNA of the MPIP cohort samples was hybridized to

Illumina HumanHT-12 v3.0 array. All array probes have been subjected to an

extensive quality control (QC; see Supplemental Experimental Procedures).

For the GR-response eQTL analysis, only transcripts that showed a differ-

ence in gene expression between the samplings at 6 p.m. and 9 p.m. with

an absolute fold change R 1.3 in at least 20% of all samples were catego-

rized as robustly effected by dexamethasone stimulation (n = 4,630 tran-

scripts) and further used in the analysis. The position of the array probes

and possible SNPs within these sequences were annotated using ReMOAT

version August 2009 (Barbosa-Morais et al., 2010), leaving 4,447 autosomal

array probes for the GR-response eQTL analysis (see Supplemental Experi-

mental Procedures).

DEX-mouse RNA samples were hybridized on Illumina MouseRef-8 v2.0

chips, and the mouse RNA from the acute social defeat mouse model was hy-

bridized on Illumina MouseWG-8 v2.0 chips. QC was applied separately for

each tissue and experiment as described in Supplemental Experimental

Procedures.

Genotype Data

Human DNA from MPIP and MARS cohort subjects was extracted from EDTA

blood samples and genotyped on Illumina Human610-Quad/Human660W-

Quad arrays (MPIP cohort) and Illumina Sentix Human-1/HumanHap300/

Human610-Quad/HumanOmniExpress arrays (MARS cohort). From the SNP
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data surviving QC, imputation of additional variants was performed using

IMPUTE v2 (Howie et al., 2009; see Supplemental Experimental Procedures

for more detail on genotyping QC and imputation).

The MARS GRPSs included alleles from 20 of the 23 tag eSNPs (three SNPs

diverged from HWE in the MARS sample, see Table S3). See also Supple-

mental Experimental Procedures.

Human DNA from participants of the DNS cohort was isolated from saliva

and genotyped on the Illumina HumanOmniExpress array as well as a custom

array containing an additional �300,000 SNPs. The DNS GRPSs included

alleles from 19 of the 23 tag eSNPs (four SNPs not present on genotyping

array; see Table S4 and Supplemental Experimental Procedures).

Statistical Analysis

The eQTL analysis (MPIP cohort) was restricted to those SNP-probe pairs that

map within a region of 1 Mb upstream or downstream of the gene expression

probe, in order to detect cis-eQTLs. To measure the transcriptional response,

we used the log fold change in gene expression changes between 6 p.m.

(baseline) and 9 p.m. (GR-stimulation) standardized to baseline.

PLINK v1.07 (Purcell et al., 2007) was used to test for cis-association be-

tween all imputed SNPs and transcriptional response. As eQTL data were

composed of two kinds of data, genotyping and expression data, we used

two stages of multiple testing correction: (1) SNP level correction: for each

cis-region (array probe), we performed a permutation test. The sample identi-

fiers in the gene expression data were shuffled in order to preserve the struc-

ture in the genotype data (LD). A total of 500,000 permutations were carried out

per probe, and the empirical p values were adjusted using the Westfall-Young

correction for the number of SNPs per probe, i.e., maxT procedure of Westfall-

Young (Westfall and Young, 1993). (2) Probe level correction: cis-regions with

an extensive LD structure will increase the number of false positive eQTLs

(Westra et al., 2013). Therefore, we applied the Benjamini-Hochberg method

to correct the maxT-adjusted p value significance by using only the most sig-

nificant and independent SNPs per probe (tag SNPs). The number of tag

eSNPs per cis-region was identified by LD pruning and ‘‘clumping’’ the

SNPs using the ‘‘clump’’ command in PLINK (using distance < 1 Mb and

r2 % 0.2 as setting). Each tag SNP forms a SNP bin by aggregating SNPs at

r2 % 0.2 and distance < 1 Mb. SNPs within a given bin were correlated to

the tag SNP, but not to any other tag SNP of an other SNP bin. We limited

the false-positive SNP-probe pairs to less than 5% and therefore considered

the FDR analog of the p value (Q value) < 5% as statistically significant.

Validation of GR-response cis-eQTL results was carried out with a sample

size-weighted Z score meta-analysis (Evangelou and Ioannidis, 2013) in an

additional independent dataset using peripheral blood samples of 58 individ-

uals (see Supplemental Experimental Procedures). A GR-response cis-eQTL

was validated if the meta-analysis p value was less than the actual maxT-

adjusted p value in the discovery sample alone.

The genomic control inflation factor (lgc; Devlin and Roeder, 1999) was

calculated for every GR-response eQTL gene expression probe (n = 297)

based on the genome-wide genotype data (lgc). The inflation factor was

computed in PLINK as median c2 statistic. The median lgc over all probes

is 1, which implies no large inflation was present.

We used NR3C1 ChIP-seq data obtained from the ENCODE Project

(ENCODE Project Consortium, 2011) to determine actual GR binding at GR-

response eSNPs (see Supplemental Experimental Procedures).

To determine whether GR-response eSNPs were enriched for functional re-

gions, we annotated them using HaploReg (Ward and Kellis, 2012) and

compared the results to a realistic null distribution based on permuted baseline

eSNP sets (see Supplemental Experimental Procedures).

ChIA-PET data were obtained from the UCSC Genome Browser (http://

hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGisChiaPet;

see Supplemental Experimental Procedures).

To identify whether GR-response eSNPs were enriched for association with

MDD, SCZ, BPD, ADHD, ASD, Crohn’s disease, rheumatoid arthritis, and the

GWAS loci for height, we integrated our data with results from the previously

published GWAS analysis (see Supplemental Experimental Procedures). To

prove the significance of the MDD-related GR SNPs for MDD, we used a logis-

tic regression model to test the association of the MDD-related GR tag eSNP

GRPSs for disease status in the independent MARS cohort. Gender, BMI, and
1200 Neuron 86, 1189–1202, June 3, 2015 ª2015 The Authors
age were used as covariates. To establish the null distribution, we generated

1,000 random SNP profiles by swapping individual labels to provide new

SNP profiles under the null hypothesis. To further account for the genomic

LD structure, we limited the analyses to tag SNPs (tag SNP = SNP showing

the highest association per cis-eQTL bin) and generated 1,000 randomized

SNP sets; conditional on MAF and each of the same size as the GR-response

tag SNPs overlap with MDD associations (n = 285).

The gene network analysis was performed using the online tool GeneMANIA

(Montojo et al., 2014). To establish the null-distribution, we calculated the gene

network for ten sets of randomly chosen GR-response transcripts (n = 4,422).

Finally, we determined the average gene network results in order to establish

the relationship between MDD-relevant GR-response transcripts and non-

MDD-relevant but GR-response transcripts. Network categories showing a

fold enrichment > 1 are reported in Figure 6A.

For the co-expression analysis, we used the GR-response residuals from all

array probes (n = 4,422) to determine if the 25 MDD-related GR array probes

are more co-regulated than 1,000 sets of randomly chosen GR-stimulated

transcripts (see Supplemental Experimental Procedures).

A disease-related network was built bymanual curation and literaturemining

using the CIDeR database (Lechner et al., 2012) and the yED software (yWorks

GmbH, Tübingen).

To test the relationship of the GR-response eSNPs and threat-related amyg-

dala reactivity, we used an imaging genetics strategy as described in the Sup-

plemental Experimental Procedures.

Chromatin Conformation Capture Analysis

3C was carried out in five LCLs as described in Hagège et al., 2007 and

detailed in the Supplemental Experimental Procedures.

qPCR Validation

Quantitative real-time PCR (qPCR) was used to validate the association be-

tween eSNPs and GR-stimulated gene expression of ADORA3 (the probe

with the most significant GR-response eQTL) and HIST2H2AA3/HIST2H2AA4

(the probe with the most eSNPs overlapping with data from our meta-analysis

for MDD) in whole blood cells and for a long-range GR-response eQTL-NRTN

in five LCLs, which were also used with the 3C assay. More details are pro-

vided in Supplemental Experimental Procedures.

ACCESSION NUMBERS

Data from the human gene expression microarray experiment were deposited

at the GEO repository under GEO: GSE46743.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

four figures, six tables, and the list of collaborators of the Major Depressive

Disorder Working Group of the Psychiatric Genomics Consortium and can

be found with this article online at http://dx.doi.org/10.1016/j.neuron.2015.

05.034.
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Figure S1. Related to Figure 2.  
(A) Time course of gene expression changes after oral dexamethasone administration. The number of 
genes that are differently expressed at several time points after administration of 1.5 mg 
dexamethasone relative to baseline in 4 healthy male individuals are shown. The height of the bars 
indicates the total number of transcripts with nominally significant changes from baseline gene 
expression. Baseline blood samples were obtained at 6pm. This evening time point was chosen so 
that the stimulation experiments took place during the quiescent period of the stress hormone system. 
Baseline blood draws were immediately followed by oral administration of dexamethasone. Additional 
blood samples were drawn at 9pm and 11pm on the same day, at 8am and 6pm the next day and at 
6pm on day 3. A comparison of baseline gene expression vs. gene expression after 3, 5, 14, 24 and 
48 h shows an initial high number of gene expression changes, followed by a normalization within 24-
48 hours. The highest number of differently expressed genes (highest bar in chart) was observed at 3 
and 5 hours post dexamethasone ingestion. For practical reasons as well as to avoid secondary GR 
target effects, in the subsequent experiment we collected blood 3 hours after dexamethasone intake. 
(B), (C) Dexamethasone effect on cortisol and ACTH levels. Administration of dexamethasone 
resulted in a robust suppression of cortisol in all individuals.  Cortisol levels were significantly 
suppressed in healthy controls (B; F1,90 = 89.74, P = 3.57 x 10-15) as well as in depressed patients (C; 
F1,67 = 7.09,  P = 0.0097) 3h after dexamethasone challenge. Similar results were observed for ACTH, 
with a significant reduction in ACTH levels in healthy controls B; F1,91 = 43.96, P = 2.33 x 10-9) and in 
depressed patients (C; F1,65 = 9.75, P = 0.0027) after 3h. 
P values in (A,B) derived from a linear model; error bars: ± sem 
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Figure S2. Related to Figure 3.  
GR- eSNPs are enriched for enhancers in multiple tissues and cell lines from the Roadmap 
Epigenome Project. The x-axis shows the fold enrichment and the y-axis shows all enhancers that 
survived the Bonferroni multiple testing correction for the number of tested tissues or cells. GR-
response eSNPs are illustrated in red and baseline eSNPs in gray. Out of the 62 presented 
enhancers, 28 additionally showed a significant enrichment within baseline eSNPs (marked with *). 
P values derived from a binomial enrichment test; error bars: ± sd 
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Figure S3. Related to Figure 6.  
Disease-related network. For 22 of the 24 MDD-related GR genes a tightly interconnected disease-
related network was generated from manually curated experimental data derived from the literature.  
Elements of the figure: Proteins from MDD-related GR genes (orange boxes), additional proteins and protein 
complexes (white boxes), biological processes (beige boxes), psychiatric disorders (blue boxes), drugs 
(green boxes), activating processes (green arrow-headed lines), inhibitory processes (red bar-headed lines) 
and interactions such as physical interactions, associations with diseases and differential regulation of 
signaling pathways (black line). 
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Figure S4. Related to Figure 7.  
(A) Elevated genetic risk profile scores (GRPSs) correlate with dysfunctional amygdala reactivity in 
the entire DNS sample (n = 647). As previously found in the European-American subsample, elevated 
GRPSs predicted blunted amygdala reactivity to threat-related expressions in comparison to neutral 
expressions in the entire sample when controlling for patterns of population stratification. Post-hoc 
analyses revealed that GRPS was not predictive of reactivity to threat-related expressions, but that 
higher GRPSs predicted elevated amygdala reactivity to neutral expressions, in comparison to non-
face control stimuli. (B), (C) Show the main effects of the post hoc contrasts for left centromedial 
amygdala reactivity used in imaging genetics analyses of GRPS in the entire sample. (B) “Angry & 
Fearful > Shapes” (49 contiguous voxels; max voxel MNI coordinate, x = -24, y = -10, z = -14, t = 
22.59, P < 4.41 × 10−16), and (C) “Neutral > Shapes” (35 contiguous voxels; max voxel MNI 
coordinate, x = -24, y = -10, z = -14, t = 10.73, P < 4.41×10−16). (D) DNS fMRI Task: Participants 
completed four expression-specific (Neutral, Angry, Fear, Surprise) face-matching task blocks 
interleaved with five sensorimotor shape-matching control blocks. Order for task blocks was 
counterbalanced across participants. 
 
 
Table S1. Related to Figure 2. 
List of the 320 cis-eSNP-probe combinations (cis-eQTL bins). 
 
 (In separate Excel file.)
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Table S2. Related to Figure 5. Overlap of GR-response cis-eSNP bin-probe combinations with SNPs nominally associated with MDD in the 
meta-analysis for MDD (meta-analysis P ≤ 0.05; n = 17,846 samples).   
List of 26 eSNP bins (23 tagging SNPs), representing the overlap of the 282 GR-response cis-eSNPs and SNPs from the meta-analysis for MDD. 
 

  
 

tag SNP eQTL binGenes nearby tag SNP SNP LocationSNP Chra PGC A1b PGC A2c PGC ORd PGC RiskAePGC p-valuef P IDg P Geneh Q valuei Cross Disorder Associationj GR#binding#site
1 1-148440425 PLEKHO1, ANP32E intergenic 1 T G 1.09 T 0.013 ILMN_1695435 HIST2H2AA3/4 0.006 CDA, BPD, SCZ, ADHD yes
2 19-40883657 UPK1A, ZBTB32 intergenic 19 C G 0.91 G 0.001 ILMN_1720542 POLR2I 0.044 BPD yes
3 rs10002500 CNGA1 intronic 4 T C 1.07 T 0.043 ILMN_1700306 OCIAD2 0.024 no
4 rs10505733 CLEC4C intronic 12 A C 0.94 C 0.021 ILMN_1665457 CLEC4C 0.00021 SCZ no

rs10505733 CLEC4C intronic 12 A C 0.94 C 0.021 ILMN_1682259 CLEC4C 0.00021 SCZ no
5 rs12432242 SLC7A7 intronic 14 T C 0.94 C 0.008 ILMN_1810275 SLC7A7 0.041 CDA, BPD no
6 rs12611262 SEMA6B, TNFAIP8L1 intergenic 19 T C 1.06 T 0.022 ILMN_1658486 MRPL54 0.046 no
7 rs12620091 ALMS1P ncRNA_intronic2 T C 0.95 C 0.022 ILMN_1662954 CCT7 0.047 no
8 rs17239727 BLVRA intronic 7 A G 0.94 G 0.022 ILMN_2081335 COA1 0.024 CDA yes
9 rs1873625 BSN intronic 3 A C 0.94 C 0.018 ILMN_1705737 IMPDH2 0.048 no
10 rs1981294 LRIF1, DRAM2 intergenic 1 T C 1.07 T 0.021 ILMN_1721989 ATP5F1 0.037 CDA no
11 rs2072443 TMEM176B exonic 7 T C 1.05 T 0.034 ILMN_1791511 TMEM176A 0.036 no
12 rs2269799 SV2B intronic 15 T C 0.95 C 0.04 ILMN_1663699 SLCO3A1 0.047 no
13 rs2395891 BTBD2, MKNK2 intergenic 19 T G 1.07 T 0.031 ILMN_1721344 MOB3A 0.024 CDA, BPD yes

rs2395891 BTBD2, MKNK2 intergenic 19 T G 1.07 T 0.031 ILMN_2347068 MKNK2 0.028 CDA, BPD yes
14 rs2422008 WDPCP intronic 2 A C 1.05 A 0.036 ILMN_1679268 PELI1 0.042 CDA, ASD yes
15 rs2956993 GANAB intronic 11 T G 0.95 G 0.032 ILMN_1746525 FTH1 0.044 no
16 rs35288741 NFASC intronic 1 A G 1.05 A 0.042 ILMN_2094952 NUAK2 0.044 no
17 rs6493387 TRPM1 intronic 15 T C 0.93 C 0.001 ILMN_1778734 FAN1 0.045 CDA no
18 rs6545924 COMMD1, B3GNT2 intergenic 2 T G 1.06 T 0.018 ILMN_1761242 COMMD1 0.045 no
19 rs7194275 C16orf91, CCDC154 intergenic 16 T C 0.92 C 0.021 ILMN_1688749 RPS2 0.049 CDA, BPD, SCZ no
20 rs7252014 KCNN1 intronic 19 A G 1.06 A 0.016 ILMN_1766487 LRRC25 0.038 no
21 rs917585 SLC6A7 intronic 5 C G 1.05 C 0.029 ILMN_1694686 HMGXB3 0.045 CDA, SCZ no
22 rs9268671 HLA-DRA, HLA-DRB5 intergenic 6 A G 0.95 G 0.031 ILMN_1697499 HLA-DRB5 0.00021 CDA, SCZ, ASD no
23 rs9268926 HLA-DRA, HLA-DRB5 intergenic 6 A G 0.92 G 0.041 ILMN_1697499 HLA-DRB5 0.012 CDA, SCZ, ASD no

rs9268926 HLA-DRA, HLA-DRB5 intergenic 6 A G 0.92 G 0.041 ILMN_2159694 HLA-DRB4 0.00073 CDA, SCZ, ASD, ADHD no
a SNP Chromosome
b  code for allele 1 (reference allele, not necessary minor allele)
c code for allele 2
d odds ratio
f risk allele
f meta analysis p-value
g  Illumina probe identifier (Human HT-12 v3)
h probe gene
i lowest Q value for eSNP bin
j probes that also had an eSNP associated with bipolar disorder (BPD), schizophrenia (SCZ), attention deficit-hyperactivity disorder (ADHD), autism spectrum disorder (ASD) or the cross disorder analysis (CDA)
k eSNP bins including a GR binding site based on ChIP-seq data
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Table S3. Related to Figure 5. MDD-related GR tagging eSNPs and their proxy SNPs used to generate the cumulative risk allele profile in the 
MARS cohort. Three SNPs deviated from HWE (rs12620091, rs9268671 and rs9268926) and were excluded from the analysis. As result the remaining 
20 SNPs were used to generate a profile. 

tag SNP eQTL bin Proxy for SNPa Genes nearby tag SNP SNP Chr MARS A1b MARS A2c MARS MAFc MARS HWE P valuee Used for analysis
1 1-148440425 rs72694971 (renamed) PLEKHO1, ANP32E 1 G T 0.12 0.56 yes
2 19-40883657 rs73048504 (renamed) UPK1A, ZBTB32 19 C G 0.18 0.22 yes
3 rs10002500 CNGA1 4 T C 0.13 0.58 yes
4 rs10505733 CLEC4C 12 C A 0.29 0.42 yes
5 rs12432242 SLC7A7 14 C T 0.39 0.87 yes
6 rs12611262 SEMA6B, TNFAIP8L1 19 T C 0.39 0.59 yes
7 rs12620091 rs34874205 (r2=0.92) ALMS1P 2 C T 0.37 < 0.00001 no
8 rs17239727 BLVRA 7 T C 0.21 0.48 yes
9 rs1873625 BSN 3 A C 0.29 0.85 yes
10 rs1981294 LRIF1, DRAM2 1 C T 0.17 0.47 yes
11 rs2072443 TMEM176B 7 T C 0.41 0.75 yes
12 rs2269799 SV2B 15 C T 0.32 0.23 yes
13 rs2395891 BTBD2, MKNK2 19 T G 0.35 0.21 yes
14 rs2422008 WDPCP 2 A C 0.43 1 yes
15 rs2956993 GANAB 11 G T 0.38 0.30 yes
16 rs35288741 NFASC 1 G A 0.35 0.25 yes
17 rs6493387 TRPM1 15 T C 0.47 0.11 yes
18 rs6545924 COMMD1, B3GNT2 2 G T 0.50 0.30 yes
19 rs7194275 C16orf91, CCDC154 16 C T 0.12 0.0007 yes
20 rs7252014 KCNN1 19 A G 0.48 0.054 yes
21 rs917585 SLC6A7 5 G C 0.50 0.57 yes
22 rs9268671 rs116072659 (renamed) HLA-DRA, HLA-DRB5 6 A G 0.34 < 0.00001 no
23 rs9268926 rs114766558 (r2=0.81) HLA-DRA, HLA-DRB5 6 G A 0.31 < 0.00001 no
a  r2=LD from MPIP cohort
b code for allele 1 (reference allele, not necessary minor allele)
c code for allele 2
d minor allele frequency
e Hardy-Weinberg test statistics
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Table S4. Related to Figure 7 and S3. MDD-related GR tagging eSNPs and their proxy SNPs used to generate the cumulative risk allele profile 
in the DNS cohort. Four SNPs did not have a proxy available (rs12620091, rs917585, rs9268671 and rs9268926). No SNPs deviated from HWE.  

 

tag SNP eQTL bin Proxy for SNPa Genes nearby tag SNP SNP Chr DNS A1b DNS A2c EUR-AM ALL EUR-AM AFR-AM Latino/a Asian1 Asian 2 Used in the analysis
1 1-148440425 rs11588837 (r2=0.96) PLEKHO1, ANP32E 1 A G 0.15 0.34 0.48 0.95 0.34 0.99 0.72 yes
2 19-40883657 rs8106959 (r2=0.95) KMT2B 19 A G 0.22 0.18 0.53 0.89 0.87 0.28 0.5 yes
3 rs10002500 CNGA1 4 T C 0.1 0.19 0.28 0.74 0.65 0.48 0.5 yes
4 rs10505733 rs1894823  (r2=1) CLEC4C 12 T C 0.31 0.28 0.34 0.4 0.16 0.14 0.35 yes
5 rs12432242 rs2281677  (r2=0.93) SLC7A7 14 A G 0.38 0.39 0.96 0.29 0.04 0.16 0.31 yes
6 rs12611262 SEMA6B, TNFAIP8L1 19 T C 0.37 0.44 0.49 0.84 0.57 0.26 0.55 yes
7 rs12620091 no Proxy no
8 rs17239727 rs10229363 (r2=1) BLVRA 7 A G 0.2 0.13 0.23 0.62 0.47 0.86 0.35 yes
9 rs1873625 rs9858280 (r2=1) BSN 3 T C 0.37 0.28 0.39 0.6 0.71 0.52 0.24 yes
10 rs1981294 rs4838884 (r2=1) LRIF1, DRAM2 1 A G 0.2 0.19 0.63 0.66 0.48 0.932 0.67 yes
11 rs2072443 TMEM176B 7 T C 0.42 0.44 0.38 0.41 0.59 0.39 0.74 yes
12 rs2269799 SV2B 15 C T 0.33 0.35 0.1 0.6 0.32 0.5 0.35 yes
13 rs2395891 BTBD2, MKNK2 19 T G 0.34 0.38 0.49 0.18 0.26 0.3 0.03 yes
14 rs2422008 WDPCP 2 A C 0.47 0.41 0.85 0.25 0.9 0.13 0.82 yes
15 rs2956993 GANAB 11 G T 0.35 0.29 0.42 0.47 0.43 0.61 0.99 yes
16 rs35288741 rs7534993 (r2=1) NFASC 1 G A 0.34 0.27 0.24 0.21 0.56 0.53 0.35 yes
17 rs6493387 rs12901022 (r2=1) TRPM1 15 C T 0.48 0.46 0.79 0.44 0.41 0.94 0.82 yes
18 rs6545924 rs921320 (r2=1) COMMD1, B3GNT2 2 C A 0.5 0.5 0.17 0.53 0.4 0.65 0.94 yes
19 rs7194275 C16orf91, CCDC154 16 C T 0.19 0.19 0.5 0.92 0.73 0.051 1 yes
20 rs7252014 KCNN1 19 A G 0.48 0.47 0.55 0.37 0.31 0.07 0.45 yes
21 rs917585 no Proxy no
22 rs9268671 no Proxy no
23 rs9268926 no Proxy no
a  r2=LD for CEU population from 1KGP (>0.90 for all subpopulations)
b code for allele 1 (i.e., reference risk allele, not necessary minor allele)
c code for allele 2
d minor allele frequencies
e Hardy-Weinberg test statistics for European Americans (EUR-AM), African Americans (AFR-AM), Latino/as, Asian Cluster 1 (Asian1) and Asian Cluster 2 (Asian2)

DNS HWE P valueseDNS MAFd
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Table S5. Related to Figure 7 and S3. Psychiatric Diagnoses in the Duke Neurogenetics 
Study (DNS). Of note, this table represents the number of diagnoses across DNS participants. 
Some individuals presented with a comorbid status. 
 

 
 
 
Table S6. Related to Figure 2. Sequence of primers used in this study.  
 

 

European)American)(n=306) Full)Sample)(n=647)
Alcohol&Abuse 22 41
Alcohol&Dependence 19 31
Major&Depressive&Disorder 8 17
Marijuana&Abuse 7 15
Gernalized&Anxiety&Disorder 7 11
Social&Anxiety&Disorder 3 8
Agoraphobia&w/o&Panic&Disorder 6 8
Bipolar&Disorder&NOS 6 8
Marijuana&Dependence 5 7
Bipolar&II 3 6
OCD 4 6
Bulimia&Nervosa 2 5
Panic&Disorder 1 4
Dysthymia 0 1
PTSD 0 1
Anorexia&Nervosa 0 1
Bipolar&I 1 1
TOTAL 94 171

List of primers and universal probe library number used for the qPCR for ADORA3, HIST2H2AA3/4 and TBP in human whole blood.

Target Gene Primer Set (5'-3') UPL probe number
ADORA3 Forward: tcatttgcagccaggtagc 82

Reverse: tgcttgggtgtggtctatca
HIST2H2AA3, HIST2H2AA4 (short ísoform) Forward: cgacgaggaactgaacaagc 61

Reverse: gcctggatgttaggcaagac
HIST2H2AA3, HIST2H2AA4 (long isoform) Forward: aaggggcacctgtgaactc 21

Reverse: gactgagagtggccagcatt
TBP Forward: ctttgcagtgacccagcat 67

Reverse: cgctggaactcgtctcacta

List of primers used for the qPCR for LONP1 and GAPDH in LCLs. 

Target Gene Primer Set (5'-3')
LONP1 Forward: TTGGTGGCATCAAGGAGAAG

Reverse: CGGTAGTGTTCCACGAAGTG
GAPDH Forward: CCAAGGTCATCCATGACAAC

Reverse: GAGGCAGGGATGATGTTCTG

Oligonucleotides for Chromatin Conformation Capture (3C).

Primer Sequence
C1 GCCTTACCCAGCACATTTTG
P1 CTGGAAGAGCTTGACCAAGTG
P2 CTCACTCCCCTTGCAATCTC
P3 ACTCGCTTTTTGCAGTAGGG
P4 TACCGCAGCCTACTGCATC
P5 CTTCCACACTGAATCTCACCTG
P6 ATCAATGACCCTCACTCCTCTC
P6 ATCAATGACCCTCACTCCTCTC

Primer set for DNA quantification of 3C samples.

Primer Set (5'-3')
Forward: TGGTGAAACCCCGTCTCTAC 
Reverse: AATCTCAGCTCACTGCAACC 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 

Samples and study design.  

MPIP cohort.  

The subject pool for the eQTL analysis consisted of 164 male Caucasian individuals (90% of 

German origin) recruited for the MARS project (Ising et al., 2009): 93 healthy probands (age = 40.2 

± 12.4 years; body mass index (BMI) = 24.9 ± 3.1 kg/m2) and 71 in-patients with MDD (age = 48.5 ± 

13.5 years; HAM-D = 25.3 ± 8.0; BMI = 26.1 ± 3.6 kg/m2). All were treated at the hospital of the 

Max Planck Institute of Psychiatry in Munich, Germany (MPIP; MPIP cohort). Only individuals not 

reporting a history of current psychiatric, major neurological nor general medical disorders were 

included in the control sample. Recruitment strategies and further characterization of the MPIP 

cohort have been described previously (Hennings et al., 2009; Menke et al., 2012). Of these 

participants, 4 were excluded due genotyping problems.  

MARS cohort. This sample included 1,005 MDD patients (561 female, 444 males; age = 48.15 ± 

14.13 years; HAM-D = 25.68 ± 6.5), as well as 478 controls (298 females, 180 males; age = 47.83 

± 13.7 years), recruited for the MARS project at the MPIP in Munich, Germany. All included patients 

were of European descent. Recruitment strategies and further characterization including population 

stratification of the MARS cohort have been described previously (Hennings et al., 2009; Menke et 

al., 2012). All individuals used within the eQTL study (MPIP cohort) were not part of this sample.  

DNS cohort.  

All participants from the Duke Neurogenetics Study (DNS) provided informed written consent, prior 

to participation, in accord with the guidelines of the Duke University Medical Center Institutional 

Review Board. All participants were in good general health and free of the following DNS exclusion 

criteria: (1) medical diagnosis of cancer, stroke, diabetes requiring insulin treatment, chronic kidney 

or liver disease or lifetime psychotic symptoms; (2) use of psychotropic, glucocorticoid or 

hypolipidemic medication, and (3) conditions affecting cerebral blood flow and metabolism (e.g., 

hypertension). Current DSM-IV Axis I and select Axis II disorders (Antisocial Personality Disorder 
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and Borderline Personality Disorder) were assessed with the electronic Mini International 

Neuropsychiatric Interview (Sheehan et al., 1998) and Structured Clinical Interview for the DSM-IV 

Axis II (SCID-II) (First et al., 1997) respectively. These disorders are not exclusionary as the DNS 

seeks to establish broad variability in multiple behavioral phenotypes related to psychopathology.   

On January 6th, 2014, 726 participants had overlapping fMRI and genetic data that 

was fully processed and used for these analyses. Of these participants, 79 were excluded 

due to scanner-related artifacts in fMRI data (n = 6), incidental structural brain abnormalities 

(n = 2), a large number of movement outliers in fMRI data (n = 21; see ART description 

below), inadequate signal in our amygdala regions of interest (n = 14; see coverage 

description below), poor behavioral performance (n = 20; accuracy lower than 75%), outlier 

status according to ancestrally-informative principal components (n = 5), scanner 

malfunctions (n = 2), incomplete fMRI data collection (n = 1), and failed genotyping at one 

GRPS polymorphisms (without a proxy of r2 > 0.9; n = 8). Thus, all imaging genetics 

analyses were conducted in a final European-American subsample of 306 participants (age = 

19.72 ± 1.23 years; 148 males; 63 with DSM-IV Axis I disorder) and a full sample of 647 

participants (age = 19.65 ± 1.24 years; 285 males; 117 with DSM-IV Axis I disorder; 306 

European Americans, 72 African Americans, 170 Asians, 37 Latino/as, and 62 of 

Other/Multiple racial origins according to self-reported ethnicity; for a full description of 

diagnoses present in the sample see Table S5). 

Mouse models.  

The animal experiments were carried out in the animal facilities of the MPIP in Munich, 

Germany. Male C57BL/6N mice at an age of 12 weeks (mean bodyweight 26.8 ± 0.1 g) were 

used for the dexamethasone-stimulation test (DEX-mouse). The experiment was performed 

twice with two separate batches of mice (n = 22 per batch). Male 3-4 month old C57BL/6N 

mice (mean bodyweight 25.5  ± 2.12 g) were used for the acute social defeat mouse model 

(Stress-mouse). Two weeks before the experiment onset, mice were singly housed and 
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acclimated to the experimental room.  All mice (DEX and Stress-mice) were kept under a 12 

h light/dark cycle and standard conditions. Food and tap water were available ad libitum. All 

efforts were made to minimize animal suffering during the experiment. The committee for the 

Care and Use of Laboratory animals of the Government of Upper Bavaria, Germany 

approved the protocols.  

(i) DEX-mouse: Animals were injected i.p. with either vehicle (VEH, n = 11) or 10 

mg/kg dexamethasone (DEX, n = 11) between 9am and 11am. Animals were sacrificed 4 

hours post injection, blood was collected and the brains were carefully removed. The 

prefrontal cortex (PFC; batch 1), hippocampus (HC; batch 1) and amygdala (AM; batch 2) 

were dissected immediately according to standard protocols (Spijker, 2011). Amygdala 

preparation was as follows: brains were cut into ca. 1 mm thick slices using a custom-

mounting device. The amygdala (all subnuclei) (Paxinos and Franklin, 2003) was manually 

dissected with a scalpel under visual control using a binocular microscope. HC and PFC 

preparation: brain regions were manually dissected from the whole brain by trained 

personnel. Dissected tissues were directly transferred into RNA lysis solution (Applied 

Biosystems, USA) and frozen at -80°C. In addition, 300 µl of trunk blood (batch 1) was 

collected into microcentrifuge tubes containing PaxGene RNA stabilizer solution and frozen 

at -20°C. 

(ii) Stress-mouse: The acute social defeat stress paradigm lasted 5 min and was 

conducted as previously described (Wagner et al., 2013). Briefly, experimental mice were 

placed in the home cage of a dominant aggressive CD1 resident mouse. Interaction between 

the mice was permitted for 5 min without any interference unless an animal was severely 

injured.  When this was the case, the experimental animal was returned to his home cage 

and excluded from analysis. Prior to the experimental day, all CD1 resident mice received 

aggression tests to ensure dominance and were trained for aggressive behavior. The control 

mice were allowed to explore an empty cage (control condition) for 5 min. Exactly 4 h after 
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the onset of the stress paradigm, the mice were sacrificed and the tissue harvested for 

subsequent analyses. Briefly, mice were anesthetized with Isofluorane and then immediately 

killed by decapitation. In the same manner as for the DEX-mouse, 250µl of trunk blood was 

collected and the brains were carefully removed. The same brain regions i.e. the HC, AM 

and PFC were dissected out, snap-frozen, and stored in RNA lysis solution at -80°C until 

needed. 

 

Gene expression data. 

 Human whole blood of the MPIP cohort was collected using PAXgene Blood RNA Tubes 

(PreAnalytiX), processed as described previously (Menke et al., 2012) and hybridized to 

Illumina HumanHT-12 v3.0 Expression Bead Chips. Samples had a mean RNA integrity 

number (RIN) of 7.97 ± 0.42 SD. The Illumina Bead Array Reader was used to scan the 

microarrays and summarized raw probe intensities were exported using Illumina’s 

GenomeStudio v2011.1 Gene Expression module. Further processing was carried out using 

R version 2.14.0 (http://www.r-project.org/). All 48,750 probes present on the microarray 

were first filtered by an Illumina detection P value of 0.01 in at least 10% of the samples, 

leaving 14,168 expressed probes for further analysis. Each transcript was then transformed 

and normalized through variance stabilization and normalization (VSN) (Lin et al., 2008). 

Technical batches were adjusted using ComBat with fixed effects of amplification round 

(Johnson and Cheng, 2007). To test for hidden confounding effects within the ComBat 

corrected data, we applied a surrogate variable analysis (Leek and Storey, 2007). No 

significant surrogate variable could be identified suggesting that most of the confounding 

effects were captured by correcting for known batch effects. To further reduce batch effects 

baseline and dexamethasone stimulated RNA samples for each individual were processed 

within a single run. Finally for each probe, we constructed a linear model of the log fold 

change in gene expression between 6pm (baseline) and 9pm (GR-stimulation) standardized 
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to 6pm (baseline) controlling for age, disease status and BMI. Models were implemented in 

“R” using the “lm” function. The residuals (GR-response residuals) from this regression were 

used as phenotype values in the following analyses. The results did not change when the 

RIN factor, the dexamethasone serum levels (3 hours following administration) and the 

differential blood cell count (levels of monocytes, granulocytes and lymphocytes) were 

included as additional independent covariates.  

To control if significant eQTLs might be biased due to SNPs within the probes, the Illumina 

re-annotation pipeline (ReMOAT version August 2009) (Barbosa-Morais et al., 2010) was 

used to annotate SNPs (relying on UCSC dbSNP 126 table) that were located within the 

gene expression probe sequence. No bias of eQTL misclassifications due to such sequence 

polymorphisms in the probe region could be identified. The probe gene names were updated 

using the NCBI build 36 (hg18) Reference Sequence (RefSeq) (Pruitt et al., 2012) gene 

annotation table obtained from the UCSC Table Browser 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg18/database/refGene.txt.gz). The positions of 

the probes were annotated using ReMOAT and only autosomal probes were used for the 

GR-response eQTL analysis (n = 4,447 autosomal probes). 

DEX-mouse und Stress-mouse RNA was extracted from whole blood using the 

PAXgene blood miRNA kit (PreAnalytiX) according to (Krawiec et al., 2009). RNA was 

extracted from the mouse brain regions using RNeasy Plus Universal Mini Kit (Qiagen) in the 

DEX-mouse experiment and using TRIzol  (Life Technologies) in the Stress-mouse 

experiment, both according to manufacturer’s protocol. RNA was quality checked using the 

Agilent 2100 Bioanalyser, amplified using the Illumina Total Prep 96-Amplification kit (Life 

Technology) and then hybridized on Illumina MouseRef-8 v2.0 (for DEX-mouse) and Illumina 

MouseWG-6 v2.0 BeadChips (for Stress-mouse). For each tissue and experiment the 

samples were processed together (RNA amplification, hybridization and scanning). All 

samples had a mean RIN of 7.5 ± 0.2 SD for DEX-mouse and 6.6 ± 0.5 SD for Stress-mouse 
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blood cells and a mean RIN of 9.2 ± 0.4 SD for DEX-mouse and 9.2 ± 0.3 SD Stress-mouse 

brain tissues. All probes present on the microarrays (MouseRef-8 = 25,700; MouseWG-6 = 

45,200 probes) were first filtered using an Illumina detection P value of 0.05 in at least 15% 

of the samples. Secondly, each transcript was transformed, normalized and batch corrected, 

in the same fashion as for the human gene expression data. For differential gene expression 

analysis between the VEH and DEX animals, as well as between control and stress animals 

linear regression models implemented in R were used on the normalized, transformed and 

batch corrected expression values for each tissue. Multiple testing corrections were 

performed by controlling the false discovery rate (FDR) according to Benjamini and 

Hochberg. A FDR ≤ 10% was considered as significant. Results were illustrated as a 

heatmap in Figure 6B. If multiple array probes per gene existed, only the most significant one 

is shown in Figure 6B. 

 

Genotype data. 

Human DNA of the MPIP cohort samples was isolated from EDTA blood samples using the 

Gentra Puregene Blood Kit (Qiagen) with standardized protocols. Genome-wide SNP 

genotyping was performed using Illumina Human610-Quad and Illumina Human660W-Quad 

Genotyping BeadChips according to the manufacturer’s standard protocols. In total, 582,539 

genetic markers in 163 individuals of the MPIP cohort could be successfully genotyped. 

Individuals with low genotyping rate (<98%) and SNPs showing significant deviation from the 

Hardy-Weinberg equilibrium (HWE, P value < 1 × 10-5) were excluded. Similarly, a low minor 

allele frequency (MAF;<10%) and SNPs with high rates of missing data (>2%) were 

excluded. This resulted in 436,643 SNPs and 160 individuals for further analysis. In the 160 

samples that passed the quality control, imputation of additional variants was performed 

using IMPUTE v2 (Howie et al., 2009) on the basis of HapMap CEU Phase 3 (International 

HapMap Consortium, 2003) and 1,000 Genomes Project version June 2010 (hg18) CEU 
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data for ~8 million SNPs (Durbin et al., 2010). Imputed SNPs were excluded if their posterior 

probability averages were less than 90% for the most likely imputed genotype (INFO ≥ 0.9). 

SNPs were also excluded if their call rate was less than 98%, HWE P value was less than 

1×10-5 and MAF < 10%. This yielded a total of 2,011,895 SNPs. To annotate SNPs for the 

closest gene, we used Annovar version November 2011 (Wang et al., 2010) with the RefSeq 

gene annotation SNP coordinates are given according to hg18. 

Human DNA of the MARS cohort samples was extracted from EDTA blood samples 

using the Gentra Puregene Blood Kit (Qiagen) with standardized protocols. Whole-genome 

SNP genotyping was performed on Illumina Sentix Human-1, HumanHap300, Human610-

Quad and HumanOmniExpress Genotyping BeadChips according to the manufacturer’s 

standard protocols. Individuals as well as the genotype data have been subjected to the 

same quality control steps as the MPIP cohort (genotyping rate < 98%, MAF < 10%, HWE P 

value < 1 × 10-5, SNP missingness < 98%). Missing genotype data were imputed via 

IMPUTE v2 based on the 1,000 Genomes Project version Nov. 2010 ALL reference panel. 

The MDD-related GR eSNP profile was derived from loci associated with both 

dexamethasone-induced differences in gene expression and MDD. It included alleles from 20 

of the 23 tag eSNPs (3 SNPs diverged from HWE in the MARS sample, Table S3. Non-risk 

and risk alleles (according to association with depression in the PGC dataset) were coded 0 

and 1, respectively, and summed in an additive fashion to create cumulative genetic risk 

profile scores (GRPS; 0 ,1 ,2). The MARS GRPSs ranged from 12-30. 

Human DNA from participants of the DNS cohort was isolated from saliva derived 

from Oragene DNA self-collection kits (DNA Genotek) customized for 23andMe. DNA 

extraction and genotyping were performed by the National Genetics Institute (NGI), a CLIA-

certified clinical laboratory and subsidiary of Laboratory Corporation of America. The Illumina 

HumanOmniExpress BeadChips and a custom array containing an additional ~300,000 

SNPs were used to provide genome-wide data. Due to differences in genotyping array 
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content the DNS GRPSs included alleles from 19 of the 23 eSNPs (Table S4) and were 

coded in the same way as the MARS GRPSs. All SNPs used for the GRPSs had genotyping 

rates < 97%, MAF < 10%, HWE P value < 1 × 10-5 (Table S4). DNS GRPSs ranged from 10-

28 and were normally distributed (Figure 7). To account for differences in ancestral 

background in the full sample, we used EIGENSTRAT (v, 5.0.1) (Price et al., 2006) to 

generate principal components and included the first 5 components as covariates in the 

analysis. Five participants were outliers for these components (± 6 SD from the mean on one 

of the top ten components) and hence were excluded from analyses.  

DNS neuroimaging protocol.  

BOLD fMRI paradigm.  

A widely used and reliable challenge paradigm was employed to elicit amygdala reactivity. 

The paradigm consists of 4 task blocks requiring face-matching interleaved with 5 control 

blocks requiring shape-matching (see Figure S4D). In each face-matching trial within a block, 

participants view a trio of faces derived from a standard set of facial affect pictures 

(expressing angry, fearful, surprised, or neutral emotions), and select which of the 2 faces 

presented on the bottom row of the display matches the target stimulus presented on the top 

row. Each emotion-specific block (e.g., fearful facial expressions only) consists of 6 individual 

trials, balanced for gender of the face. Block order is pseudo-randomized across participants. 

Each of the 6 face trios is presented for 4 seconds with a variable inter-stimulus interval of 2-

6 seconds; total block length is 48 seconds. In the shape-matching control blocks, 

participants view a trio of geometric shapes (i.e., circles, horizontal and vertical ellipses) and 

select which of 2 shapes displayed on the bottom matches the target shape presented on 

top. Each control block consists of 6 different shape trios presented for 4 seconds with a 

fixed inter-stimulus interval of 2 seconds, comprising a total block length of 36 seconds. The 

total paradigm was 390 seconds in duration. Reaction times and accuracy are recorded 

through an MR-compatible button box. 
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BOLD fMRI acquisition.  

Participants were scanned using a research-dedicated GE MR750 3T scanner equipped with 

high-power high-duty-cycle 50-mT/m gradients at 200 T/m/s slew rate, and an eight-channel 

head coil for parallel imaging at high bandwidth up to 1MHz at the Duke-UNC Brain Imaging 

and Analysis Center. A semi-automated high-order shimming program was used to ensure 

global field homogeneity. A series of 34 interleaved axial functional slices aligned with the 

anterior commissure-posterior commissure (AC-PC) plane were acquired for full-brain 

coverage using an inverse-spiral pulse sequence to reduce susceptibility artifact (TR/TE/flip 

angle = 2000 ms / 30 ms / 60; FOV = 240 mm; 3.75 × 3.75 × 4 mm voxels (selected to 

provide whole brain coverage while maintaining adequate signal-to-noise and optimizing 

acquisition times); interslice skip = 0). Four initial RF excitations were performed (and 

discarded) to achieve steady-state equilibrium. To allow for spatial registration of each 

participant’s data to a standard coordinate system, high-resolution three-dimensional 

structural images were acquired in 34 axial slices co-planar with the functional scans 

(TR/TE/flip angle = 7.7s / 3.0 ms / 12; voxel size = 0.9 × 0.9 × 4 mm; FOV = 240 mm; 

interslice skip = 0). 

BOLD fMRI data analysis.  

The general linear model of Statistical Parametric Mapping 8 (SPM8) 

(http://www.fil.ion.ucl.ac.uk/spm) was used for whole-brain image analysis. Individual subject 

data were first realigned to the first volume in the time series to correct for head motion 

before being spatially normalized into the standard stereotactic space of the Montreal 

Neurological Institute (MNI) template using a 12-parameter affine model. Next, data were 

smoothed to minimize noise and residual differences in individual anatomy with a 6mm 

FWHM Gaussian filter. Voxel-wise signal intensities were ratio normalized to the whole-brain 

global mean. Then the ARTifact Detection Tool (ART; 

https://www.nitrc.org/docman/view.php/104/390/Artifact%20Detection%20Toolbox%20Manu
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al) was used to generate regressors accounting for images due to large motion (i.e., > 0.6 

mm relative to the previous time frame) or spikes (i.e., global mean intensity 2.5 standard 

deviations from the entire time series). Participants for whom more than 5% of acquisition 

volumes were flagged by ART (n = 21) were removed from analyses. An region of interest  

(ROI) mask (Automated Anatomical Labeling (AAL) atlas) from WFU pickatlas (Maldjian et 

al., 2003) was used to ensure adequate amygdala coverage for the face-matching and 

number-guessing tasks, respectively. Participants who had less than 90% coverage of the 

amygdala (n = 14) were excluded from analyses.  

 Following preprocessing steps outlined above, linear contrasts employing canonical 

hemodynamic response functions were used to estimate task-specific (i.e., “Angry & Fearful 

Faces > Neutral Faces”, “Angry & Fearful > Shapes”, “Neutral > Shapes”) BOLD responses 

for each individual. The primary contrast of “Angry & Fearful > Neutral” was used to assay 

centromedial reactivity to cues that are conditioned social signals to threat in the environment 

(i.e., angry and fearful expressions) relative to signals that do not convey threat information 

about the environment (i.e., neutral expressions). Post-hoc analyses using the “Angry & 

Fearful > Shapes” and “Neutral > Shapes” contrasts were used to discern if the association 

with GRPS reflected relatively decreased reactivity to angry and fearful expressions or 

increased reactivity to neutral expressions. Individual contrast images (i.e., weighted sum of 

the beta images) were used in second-level random effects models accounting for scan-to-

scan and participant-to-participant variability to determine mean contrast-specific responses 

using one-sample t-tests.  A voxel-level statistical threshold of P value < 0.05, family wise 

error corrected for multiple comparisons across the bilateral centromedial amygdala ROIs, 

and a cluster-level extent threshold of 10 contiguous voxels was applied to these analyses. 

The bilateral centromedial amygdala ROIs were defined using anatomical probability maps 

(Amunts et al., 2005). The centromedial ROI was chosen because it includes the central 

nucleus of the amygdala (CeA). This specifically functions to drive physiologic, attentive, and 
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neuromodulatory responses to threat, as opposed to the basolateral complex of the 

amygdala (BLA), which primarily functions to relay information to the CeA. Thus, the 

expression of stress responsive behavior is more closely linked with the activity of the CeA 

and not the BLA (Davis and Whalen, 2001; LeDoux, 2007). Human research using such 

distinctions has shown that ROIs encompassing the CeA or BLA differentially respond to 

stimuli and share different patterns of functional as well as structural connectivity (Brown et 

al., 2014; Etkin et al., 2004; Lerner et al., 2012). 

BOLD parameter estimates from a cluster within the left centromedial amygdala ROI 

exhibiting a main effect for the “Angry & Fearful > Neutral” contrast were extracted using the 

VOI tool in SPM8 and exported for regression analyses in SPSS (v.18). No significant cluster 

emerged in the right centromedial amygdala. Extracting parameter estimates from clusters 

activated by our fMRI paradigm, rather than those specifically correlated with our 

independent variables of interest, precludes the possibility of any correlation coefficient 

inflation that may result when an explanatory covariate is used to select a region of interest. 

We have successfully used this strategy in prior studies (Bogdan et al., 2012). 

 

Statistical Analysis. 

Cis-associations of baseline gene expression.         

Using baseline gene expression of the 4,447 differently regulated autosomal array probes 

(absolute fold change ≥ 1.3 in at least 20% of all samples), 26,205 unique cis-SNPs and 764 

gene expression probes corresponding to 31,541 cis-eQTLs were found to be significant 

after multiple testing correction with the same strategy as described for the GR-stimulated 

gene expression changes. The 26,205 unique eSNPs represented 1,010 uncorrelated eSNP 

bins (1,148 eSNP bin-probe combinations). The 775 eQTL bins (68%) were located within 

100 kb upstream or downstream from the array probe ends, 911 eQTL bins (79%) within 200 

kb and only 237 eQTLs bins > 200 kb (21%).  
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Validation GR-response cis-eQTL results 

Validation of GR-response cis-eQTL results was carried out with a sample size-weighted Z-score 

meta-analysis (Evangelou and Ioannidis, 2013) in an additional independent data set using 

peripheral blood samples (baseline and after GR-stimulation with 1.5 mg dexamethasone) of 58 

individuals (21 male controls, 14 male cases and 23 female cases). We applied the same strategy 

as used in the discovery sample (MPIP cohort) to filter, normalize and batch correct the gene 

expression data. We adjusted the analysis for the same covariates plus gender; applied the same 

SNP quality control checks and performed the cis-eQTL mapping in PLINK.  

 

Enrichment of GR binding regions              

To identify whether GR-response eSNPs were enriched for GR binding sites, we used the 

ENCODE (ENCODE Project Consortium, 2011) NR3C1 ChIP-seq data from GM12878 LCLs 

(accession: ENCSR904YPP) from which no aligned tracks are currently available. Raw data 

were download at https://www.encodeproject.org/experiments and initial filtering was 

performed using FASTX Toolkit (v. 0.0.14, http://hannonlab.cshl.edu/fastx_toolkit/index.html) 

and Prinseq (v. 0.20.3) (Schmieder and Edwards, 2011) to eliminate artifacts and low quality 

reads. Alignment on hg19 was performed using BWA (v. 0.7.10) (Li and Durbin, 2009) 

allowing only uniquely mappable alignments with alignment quality of above 20. Reads from 

both ChIP and both control libraries were pooled leading to 46,453,650 and 68,227,580 used 

reads, respectively. Peak-calling was carried out by MACS14 (v. 1.4.2) (Zhang et al., 2008) 

using default settings, resulting in around 23,000 annotated signals. The average length of a 

ChIP signal as defined by the peak calling was 746.3 bps ± 370.6 bsp.    

 We mapped the GR-response eSNPs to these GR ChIP-seq peaks and compared 

the overlap observed with 1,000 equal sized sets of randomly drawn SNPs (n=3,662 SNPs) 

from of all analyzed SNPs (without replacement) matched in MAF (=null distribution). To 

match the MAF distributions of the random SNP sets with our GR-response eQTL data we 
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divided the SNPs into non-overlapping MAF bins, each of the width 0.05 as described 

previously (Nicolae et al., 2010). For every set we counted the percentage of SNPs within a 

GR ChIP-seq peak. Enrichment calculations with a permutation-based FDR < 10% were 

considered as statistically significant within the entire manuscript. 

Enhancer enrichment analysis 

We investigated whether GR-response eSNP binds are enriched for functional enhancer 

annotations using the online tool HaploReg version 2 (Ward and Kellis, 2012) based on the 

Roadmap Epigenome data (Roadmap Epigenomics Consortium et al., 2015) and using the 

1,000 Genomes Project CEU data as a background data set. Additionally we performed the 

enrichment analysis on ten permuted baseline eSNP bin sets (size matched) to generate a 

realistic null distribution. The average enhancer enrichment over the ten permutations is 

present in Figure 3 and S2.  

Chromatin interaction analysis with paired-end tag (ChIA-PET) mapping.                  

The combined set of the first two replicates of the RNA Polymerase II ChIA-PET data (Li et 

al., 2010; 2012) generated from K562 chronic myeloid leukemia cell lines (n > 400,000 

interaction regions) was obtained from the UCSC Genome Browser 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeGisChiaPet/). 

Genomic coordinates of our GR-response eSNP bins were converted from hg18 to GRCh 

build 37 (hg19) using the UCSC Genome Browser liftOver tool (http://genome.ucsc.edu/cgi-

bin/hgLiftOver) and the probe gene coordinates were updated with the hg19 RefSeq (Pruitt et 

al., 2012) gene table obtained from the UCSC Table Browser 

(http://hgdownload.soe.ucsc.edu/goldenPath/hg19/database/refGene.txt.gz; excluding 15 

probe genes on hg19). To estimate the overlap of the direct chromatin interactions and GR-

response eQTL bins (eSNP bin-probe gene combination) we tested if one ChIA-PET tag 

overlapped with the region of the eSNP bin ± 10kb as well as the relevant array probe gene 
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(10kb ± transcription start or end). To establish the null distribution, we permuted the 

distances between the GR-response eSNP bins and the transcription sites of the 

corresponding probe gene (n = 270 updated to hg19) and estimated the overlap with ChIA-

PET interaction signals. We repeated the analysis 1,000 times and for each set we counted 

the number of genes with overlapping ChIA-PET data.  

Enrichment of GWAS susceptibility markers.                

To identify whether GR-response eSNPs were specifically enriched for association with 

psychiatric disorders and not with other diseases or traits, we generated 1,000 sets of 

permuted baseline eSNPs (conditional on MAF and number of GR-response eSNPs 

overlapping with the respective GWAS). For every set we counted the percentage of unique 

SNPs with a GWAS results at P value ≤ 0.05. On this basis we constructed the null 

distribution. A second null distribution was created based on all imputed SNPs of high 

quality. 

1.) PGC MDD data:  The MDD GWAS data was generated by conducting a meta-

analysis based on the Psychiatric Genomics Consortium (PGC) GWAS mega-analysis for 

MDD (Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium, 

2012) data . We used the “meta-analysis” function in PLINK assuming a fixed effect model in 

17,846 individuals of European ancestry (8,864 cases with MDD and 8,982 controls) from 8 

of the 9 studies included in the PGC MDD data. All samples from the initial PGC MDD data 

(n = 18,759) that overlapped with our MARS cohort (n = 376 cases and 537 controls) were 

excluded, which was then used as validation sample. The PGC MDD analysis used SNP 

data imputed to the 1,000 Genomes Project (hg19).  

2.) PGC cross-disorder data: The results of the PGC cross-disorder (CD) analysis 

(33,332 patients and 27,888 controls of European ancestry distributed among five disorders: 

SCZ, BPD, ADHD, ASD and MDD) (Cross-Disorder Group of the Psychiatric Genomics 
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Consortium, 2013; Cross-Disorder Group of the Psychiatric Genomics Consortium et al., 

2013) were obtained from the PGC website (http://pgc.unc.edu). The PGC CD analysis 

applied a multinomial regression procedure and used SNP data imputed to the HapMap 

Phase 3 data (hg18).  

3.) PGC SCZ2 data: The results of the multistage GWAS for SCZ (Schizophrenia 

Working Group of the Psychiatric Genomics, 2014) obtained from the PGC website 

(http://pgc.unc.edu). The PGC SCZ2 analysis used SNP data imputed to the 1,000 Genomes 

Project (hg19). 

4.) Non psychiatric trait data: The GWAS data for height (Heid et al., 2010) and 

rheumatoid arthritis (RA) (Stahl et al., 2010) were obtained from the PGC website 

(http://pgc.unc.edu). Results of the Crohn’s disease (CD) analysis were obtained from 

International Inflammatory Bowel Disease Genetics Consortium website 

(http://www.ibdgenetics.org). The RA analysis used SNP data imputed to the HapMap Phase 

2 data (hg17) and the CD as well as height data was imputed based on HapMap Phase 3. 

For comparability we converted all our SNP coordinates to the relevant genome assembly of 

analyzed GWAS data using the UCSC Genome Browser liftOver tool. 

Co-expression analysis 

For the co-expression analysis we used the GR-response residuals from all array probes (n 

= 4,447) to determine if the 25 MDD-related GR array probes are more co-regulated than 

1,000 sets of randomly chosen GR-stimulated transcripts. To realize this, we carried out a 

co-expression analysis in R using the function “dist” specifying the Euclidian distance as 

distance measure and calculated the mean distance of all pair-wise distances. We 

established the significance of co-expression network of the 25 MDD-related GR array 

probes by testing the observed mean distance versus the null distributions created by 
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calculating the mean distance of all pair-wise distances for 1,000 sets of 25 randomly chosen 

GR-stimulated transcripts. Next, we determined the number of sets, having lower mean 

distances than the actual MDD-related GR transcripts to measure the enrichment statistic. 

DNS neuroimaging analysis.  

Statistical analyses of the imaging data were completed using linear regression in SPSS to 

test the association of the MDD-related GR tag eSNP GRPSs to amygdala reactivity in the 

independent DNS cohort. To maintain variability but constrain the influence of extreme 

outliers, prior to any analyses, all imaging variables were winsorized (i.e., following data 

quality control procedures, outliers more than ± 3 SD were set at ± 3 SD from the mean; for 

the “Angry and Fearful > Neutral faces” contrast, 13 outliers (2.01%) of the entire sample 

were moved to ± 3 SD from the mean). Gender, psychiatric diagnosis (0,1) and age were 

entered as covariates for both EUR-AM and entire sample analyses. Five ancestrally-

informative principal components that distinguish the sample were added as additional 

covariates in the analyses of the entire sample. We computed permutations (n = 1,000) in 

which we constructed randomly generated SNP profiles that were matched for MAF, amount 

of SNPs (n = 19) and constrained by the max LD observed within the sample.  

 Graphs were generated with Haploview (Barrett et al., 2005), ggplot2 ((Wickham, 

2009) and Circos (Krzywinski et al., 2009). 

Chromatin conformation capture 

Five human lymphoblastoid cell lines were cultured in RMPI media with stable l-glutamine 

(Biochrom) supplemented with 10% fetal bovine serum and 1% antibiotic-antimycotic (Life 

Technologies). Crosslinking and cell lysis were performed as described (Hagège et al., 

2007). Nuclei were digested using 1,000 U of NcoI. Subsequent re-ligation, de-crosslinking 

and purification were conducted according to the manufacturer’s protocol. Following 

assessment of digestion efficiency and sample purity, DNA concentration of the 3C samples 
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were determined by SybrGreen quantitative PCR using an “internal” primer set (see Table 

S6; primers that do not amplify across sites recognized by the restriction enzyme used) as 

described in (Hagège et al., 2007). Primers were designed with an anchor primer in the 

fragment containing the TSS of LONP1 and in potential interacting fragments in and around 

eSNP bin of NRTN using Primer3Plus (http://www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi). Quantitative PCR was carried out using ABsolute Blue 

qPCR SYBR Green Master Mix (Thermo Fisher Scientific) and the Mini Opticon Real-Time 

PCR System (Bio-Rad) according to the manufacturer’s instructions. A 179-kb BAC clone 

(CTD-2522A4) containing the entire LONP1-NRTN genomic sequence was purchased from 

Life Technologies and served as PCR control template. The BAC clone was cut with NcoI 

and re-ligated by T4 DNA ligase. All primer pairs were tested on a standard curve of the BAC 

control library and yielded PCR efficiencies > 1.7. The presence of a single PCR product was 

confirmed by agarose gel electrophoresis and melting curve analysis. Cycling conditions 

were: 95 °C for 15min, 45 cycles of 95°C for 15s, 60°C for 15s, 72°C for 15s. Quantitative 

PCR data were normalized to GAPDH as a loading control. GAPDH cycling conditions were 

95 °C for 15min, 45 cycles of 95°C for 15s, 60°C for 15s, 72°C for 15s. Data analysis was 

carried out according to (Hagège et al., 2007) and is presented as relative crosslinking 

frequency. Primers used for the chromatin conformation capture interaction studies are listed 

in Table S6. Linear mixed models were used for statistical analysis. 

Quantitative real-time PCR (qPCR) validation. 

Total RNA was reverse-transcribed to cDNA using random primers and the Superscript II 

reverse transcriptase (Invitrogen) for qPCR to validate microarray results. qPCR was carried 

out according to manufactures instructions using Roche-LightCycler 480 System (Roche 

Applied Science) and assays were designed using the Roche Universal Probe Library 

(http://qpcr.probefinder.com) for ADORA3 (the probe with a significant GR-response eQTLs), 

HIST2H2AA3/4 (the probe with the most eSNPs overlapping with the meta-analysis results 
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for MDD) and TBP as the endogenous control gene. Assays for LONP1 and GADPH were 

designed using Primer3Plus (http://www.bioinformatics.nl/cgi-

bin/primer3plus/primer3plus.cgi). The association between eSNPs and GR-stimulated gene 

expression of the target genes could be validated using qPCR (see Figure 2C,D and 4A,B). 

Sequences of primers used are summarized in Table S6. All samples were run in duplicates 

and duplicates discordant in CT values by more than 0.2 cycles, were excluded from the 

analysis. Relative gene transcript levels were determined by Pfaffl’s equation (Pfaffl, 2001) 

with: ratio = ! (!!"#")∆!"!"#"(!"#$%&'$!!"#$%&!!!!"!!"#$%&'"()!!"#$%&)

(!!"#$%&%%'%()∆!"!"#$%&%%'%((!"#$%&'$!!"#$%&!!!!"!!"#!"#$%&'!!"#$%&).  qPCR ratios shown in 

Figure 2D and were calculated using the following equations: 

!"# = (!!!"#$%$$&$')!"!!"#$%$$&$'(!"#$%&'$!!"#$%&)

(!!"#")!"!"#"(!"#$%&'$!!"#$%&)   

and post = 
 

(!!!"#$%$$&$')!"!!"#$%$$&$'(!"!!"#$%&'"()!!"#$%&)

(!!"#!)!"!"#"(!"!!"#$%&'"()!!"#$%&)
.
 

qPCR validation results.  

Two transcript variants encoding isoforms with a different 3’UTR length have been identified 

for HIST2H2AA3/4. The shorter gene product (isoform 1) is annotated by RefSeq while the 

alternatively spliced longer gene product (isoform 2) is annotated by Ensembl release 54 

(HIST2H2AA3-001; ENST00000369161) and further predicted by AceView 

(HIST2H2AA3.aApr07-unspliced, HIST2H2AA4.aApr07-unspliced). This longer isoform is 

tagged by the significant Illumina probe (ILMN_1695435). Hence we designed two different 

assays- one covering the common part of both isoforms (assay 1) and the other tagging 

isoform 2 (assay 2). The expression levels measured with both assays were highly correlated 

(Spearman’s test P value < 1.5 × 10-20, R = 74%). We could replicate a significant SNP effect 

in 137 samples with a P value of 0.012 using assay 1 with a genotypic model and P = 0.017 

using a carrier model, with the same direction of change as in the expression array. 
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