Supporting Information for:

Chemoselective Allene Aziridination via Ag(I) Catalysis

Jared W. Rigoli, Cale D. Weatherly, Brian T. Vo, Samuel Neale, Alan R. Meis, and Jennifer M. Schomaker^{*}

Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue Madison, Wisconsin, 53706-1396

Table of Contents	S1
I. General Information	
II. Preparation of Allene Substrates	S3
III. Attempts to form an iodinane from homoallenic carbamate 4a	S7
IV. Allene aziridination promoted by Ag(I) catalysts	S8
V. Synthesis of C-H insertion products	S16
VI. References	S18

I. General Information

All glassware was either oven-dried overnight at 130 °C or flame-dried under a stream of dry nitrogen prior to use. Unless otherwise specified, reagents were used as obtained from the vendor without further purification. Tetrahydrofuran and diethyl ether were freshly distilled from purple Na/benzophenone ketyl. Dichloromethane, acetonitrile and toluene were dried over CaH₂ and freshly distilled prior to use. All other solvents were purified in accordance with "Purification of Laboratory Chemicals".¹ Air- and moisture- sensitive reactions were performed using standard Schlenk techniques under an atmosphere of nitrogen. Analytical thin layer chromatography (TLC) was performed utilizing pre-coated silica gel 60 F₂₅₄ plates containing a fluorescent indicator, while preparative chromatography was performed using SilicaFlash P60 silica gel (230-400 mesh) via Still's method.² Unless otherwise stated, the mobile phases for column chromatography were mixtures of hexanes/ethyl acetate. Columns were typically run using a gradient method, beginning with 100% hexanes and gradually increasing the polarity using ethyl acetate. Various stains were used to visualize reaction products, including *p*-anisaldehyde, KMnO₄, ceric ammonium molybdate (CAM stain) and iodine powder.

¹H NMR and ¹³C NMR spectra were obtained using Bruker-300, Varian-300, Varian Inova-500, or Varian Unity-500 spectrometers. For ¹H NMR, chemical shifts are reported relative to residual protiated solvent peaks (δ 7.26, 2.49, 7.15 and 7.09 ppm for CDCl₃, (CD₃)₂SO, C₆D₆ and CD₃C₆D₅ respectively). ¹³C NMR spectra were measured at either 125 MHz or 75 MHz on the same instruments noted above for recording ¹H NMR spectra. Chemical shifts were again reported in accordance to residual protiated solvent peaks (δ 77.2, 39.5, 128.0 and 137.9 ppm for CDCl₃, (CD₃)₂SO, C₆D₆, and CD₃C₆D₅, respectively). High-pressure liquid chromatography (HPLC) analyses were performed at 215 and 225 nm using a Shimadzu HPLC, Model LC-20AB. Further details are given in Section VII. Accurate mass measurements were acquired at the University of Wisconsin, Madison using a Micromass LCT (electrospray ionization, time-offlight analyzer or electron impact methods). The NMR and Mass Spectrometry facilities are funded by the NSF (CHE-9974839, CHE-9304546, CHE-9208463, CHE-9629688) and the University of Wisconsin, as well as the NIH (RR08389-01).

II. Preparation of Allene Substrates.

General procedure for the synthesis of allene carbamates. The allene alcohol (between 0.5 g and 3.0 g, 1 equiv) was dissolved in dichloromethane (0.3 M) and placed in an ice bath. Trichloroacetylisocyanate (1.2 equiv) was slowly added dropwise. The reaction was stirred with cooling in the ice bath until TLC indicated complete consumption of the starting material. The solvent was then removed and the crude reaction was dissolved in methanol (0.4 M). Potassium carbonate (0.5 equiv) was then added to the reaction and the mixture stirred at room temperature until TLC indicated complete consumption of the starting material. Water was added to the reaction and the mixture stirred at room temperature until TLC indicated complete consumption of the starting material. Water was added to the reaction and the mixture was extracted with three portions of dichloromethane. The organic phase was dried with sodium sulfate and concentrated under reduced pressure. The crude products were purified by silica gel column chromatography (0 \rightarrow 30% EtOAc in hexanes, 6% increments). All allenes were stored in a freezer at -78 °C.

Compounds 4a, 4b, 7a, and 7h-7k. These desired allenic carbamates were prepared from their corresponding alcohols according to literature procedures.³

Compound 7b. Obtained in 76% yield as an oil. ¹H NMR (400 MHz, CDCl₃) δ 4.97 (m, 1H), 4.72 (s, 2H), 3.84 (s, 2H) 1.92 (ddd, J = 8.9, 6.2, 2.7 Hz, 2H), 1.68 (d, J = 2.9 Hz, 3H), 1.47-1.22 (m, 6H), 1.02 (s, 6H), 0.89 (t, J = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 199.61, 101.99, 97.52, 73.33, 35.74, 33.98, 31.62, 27.30, 25.02, 25.00, 22.57, 19.38, 14.10. HRMS (ESI) m/z calculated for C₁₄H₂₅NO₂ [M+NH₄⁺] 257.2224, found 257.2217. IR (cm⁻¹, CH₂Cl₂) 3530, 3420, 2931, 1731, 1584, 1468, 1397, 1377, 1331, 1271, 1068.

Compound 7c. Obtained as a clear oil from the corresponding homoallenic alcohol in 49% yield. ¹H-NMR (300.1 MHz, CDCl₃) δ 5.24 (q, *J* = 6.4 Hz, 1H), 5.07 (dt, *J* = 6.4, 3.1 Hz, 1H), 4.68-4.50 (br s, 2H), 3.86 (s, 2H), 3.74 (t, *J* = 7.0 Hz, 2H), 2.26 (qd, *J* = 7.0,3.1 Hz, 2H), 1.14-0.99 (m, 27H); ¹³C-NMR (75.4 MHz, CDCl₃) δ 203.21, 157.20, 98.37, 90.13, 73.39, 63.47, 35.55, 33.11, 25.04, 18.24, 12.23; HRMS (ESI) *m/z* calculated for C₁₉H₃₇NO₃Si [M+H⁺] 356.2616, found 356.2622. IR (cm⁻¹, CH₂Cl₂) 3535, 3424, 2968, 1728, 1585, 1454, 1399, 1378, 1331, 1271, 1068.

Compound 7d. Obtained from the corresponding homoallenic alcohol as a clear, colorless oil in 75% yield. ¹H-NMR (300 MHz, CDCl₃) δ 7.32-7.23 (m, 2H), 7.22-7.14 (m, 3H), 5.25 (q, *J* = 6.1 Hz, 1H), 5.09 (dt, *J* = 6.1, 3.1 Hz, 1H), 4.83-4.64 (br s, 2H), 3.84 (s, 2H), 2.72 (t, *J* = 7.4 Hz, 2H), 2.40-2.25 (m, 2H), 1.01 (s, 6H); ¹³C-NMR (75.4 MHz, CDCl₃) δ 157.29, 141.96, 128.65, 128.52, 126.07, 99.07, 92.92, 73.31, 35.60, 30.87, 25.04; HRMS (ESI) *m/z* calculated for C₁₆H₂₁NO₂ [M+H⁺] 260.1646, found 260.1656. IR (cm⁻¹, CH₂Cl₂) 3537, 3426, 2949, 1732, 1602, 1589, 1464, 1404, 1382, 1332, 1101.

Compound 7e. Obtained in 72% yield as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 4.90 (m, 1H), 4.65 (br s, 2h), 3.84 (s, 2H), 1.69 (d, J = 2.9 Hz, 6H), 1.02 (s, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 200.46, 157.30, 97.57, 96.44, 73.45, 35.95, 25.19, 20.90. HRMS (ESI) *m/z* calculated for C₁₀H₁₇NO₂ [M-H⁺] 182.1176, found 182.1169. IR (cm⁻¹, CH₂Cl₂) 3535, 3422, 2969, 1731, 1584, 1377, 1331, 1270, 1261, 1068.

Compound 7f. Obtained in 68% yield as a white solid. ¹H NMR (300 MHz, CDCl₃) δ 4.98 (m, 1H), 4.52 (s, 2H), 3.81 (s, 2H), 1.90 (qd, *J* = 7.4, 3.3 Hz, 2H), 1.65 (d, *J* = 2.9 Hz, 3H), 0.98 (s, 6H), 0.95 (t, *J* = 7.5, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 199.46, 157.56, 103.85, 98.48, 73.48,

35.90, 27.06, 25.20, 19.53, 12.44. HRMS (ESI) *m/z* calculated for C₁₁H₁₉NO₂ [M⁺] 197.1411, found 197.1412. IR (cm⁻¹, CH₂Cl₂) 3533, 3425, 2968, 1733, 1583, 1459, 1399, 1378, 1328, 1065.

Compound 7g. Obtained in 67% yield as a thick oil. ¹H NMR (400 MHz, CDCl₃) δ 5.23-4.57 (m, 3H), 3.84 (s, 2H), 1.93-1.68 (m, 3H), 1.65 (d, J = 2.9 Hz, 3H), 1.02 (s, 1H), 0.90 (dd, J = 6.4, 1.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 200.39, 157.39, 100.61, 96.77, 73.31, 43.86, 35.80, 26.36, 25.05, 24.99, 22.72, 22.57, 19.28. HRMS (ESI) *m*/*z* calculated for C₁₃H₂₃NO₂ [M+H⁺] 226.1802, found 226.1804. IR (cm⁻¹, CH₂Cl₂) 3536, 3425, 2963, 2879, 1728, 1584, 1465, 1397, 1378, 1323, 1071.

Compound 4a. Obtained in 53% yield as a thick oil. ¹H NMR (300 MHz, CDCl₃) δ 4.94 (m, 1H), 4.58 (br s, 2H), 4.11 (t, *J* = 6.8 Hz, 2H), 2.27 (q, *J* = 6.6 Hz, 2H), 1.68 (d, *J* = 2.9 Hz, 6H); ¹³C NMR (75 MHz, CDCl₃) δ 202.66, 157.48, 96.06, 84.56, 64.65, 28.98, 20.72. HRMS (ESI) *m/z* calculated for C₈H₁₃NO₂ [M+Na⁺] 178.0839, found 178.0842. IR (cm⁻¹, CH₂Cl₂) 3537, 3424, 2987, 1730, 1585, 1422, 1337, 1265 1159, 1093.

Compound 71. Obtained in 78% yield as an oil. ¹H NMR (400 MHz, CDCl₃) δ 5.03-4.94 (m, 1H), 4.81 (br s, 2H), 4.10 (t, *J* = 6.8 Hz, 2H), 2.28 (q, *J* = 6.8 Hz, 2H), 1.91 (td, *J* = 7.5, 3.0 Hz, 2H), 1.66 (d, *J* = 2.9 Hz, 3H), 1.47-1.20 (m, 6H), 0.89 (t, *J* = 6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 202.00, 157.11, 100.38, 85.63, 64.63, 33.87, 31.52, 29.01, 27.17, 22.56, 19.17, 14.11. HRMS (ESI) *m/z* calculated for C₁₂H₂₁NO₂ [M+Na⁺] 234.1465, found 234.1473. IR (cm⁻¹, CH₂Cl₂) 3538, 3424, 2987, 1730, 1585, 1422, 1337, 1265, 1115, 1093.

Compound 7m. Obtained in 69% yield as a thick oil. ¹H NMR (300 MHz, CDCl₃) δ 5.03 (m, 1H), 4.96 (br s, 2H), 4.10 (t, J = 6.9 Hz, 2H), 2.28 (q, J = 6.9 Hz, 2H), 1.93 (qd, J = 7.3, 3.0 Hz, 2H), 1.68 (d, J = 2.8 Hz, 3H), 0.99 (t, J = 7.3 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 201.73, 157.46, 102.35, 86.58, 64.73, 29.16, 27.01, 19.28, 12.36. HRMS (ESI) *m/z* calculated for C₉H₁₅NO₂ [M+Na⁺] 192.0995, found 192.0999. IR (cm⁻¹, CH₂Cl₂) 3537, 3424, 2987, 1730, 1585, 1422, 1398, 1337, 1265, 1160, 1093.

III. Attempts to form an iodinane from homoallenic carbamate 4a. Our poor results using Cu catalysts prompted us to try to pre-form the iodinane and then subject it to Cu catalysis.

No literature precedent exists for the formation of such a species, in contrast to the use of sulfonamides as nitrogen sources.⁴ Treatment of homoallenic carbamate **4a** with PhIO in the absence of a catalyst in both CH_2Cl_2 and acetonitrile as the solvent resulted in only recovered starting material. A procedure reported by Dodd and Dauben for the conversion of sulfonamides to iminoiodinanes was also attempted. This involved stirring the carbamate with $PhI(OAc)_2$ and KOMe, but only starting material was recovered. The same procedure, followed by the addition of a CuOTf catalyst, still resulted in only the recovery of the starting material.

Slightly better results were obtained when a homoallenic carbamate was stirred for 1 h with PhIO, followed by addition of 20 mol % Cu(MeCN)₄PF₆, a catalyst known to promote C-N bond formation using sulfamates or carbamates containing an activated benzylic C-H bond.⁵ Under these conditions, a 13% yield of the bicyclic methylene aziridine **5a** and 4% of the C-H insertion product **6a**, along with 28% of the starting material **4a**. Traces of unidentified products were also formed, with only 45% of the total mass corresponding to identifiable products. However, both the poor mass balance and the lowered chemoselectivity compared to the use of the Ag-based system were discouraging.

It is not clear why the presumed iodinane could not be isolated. It may be a result of the instability of the proposed intermediate, or the catalyst might be necessary in order to access the iodinane itself. Further efforts to employ Cu catalysts for allene amination are on-going, but are focusing on nitrene precursors other than carbamates.

IV. Allene aziridination promoted by Ag(I) catalysts.

General procedure for Ag-catalyzed allene aziridination. Silver triflate (26 mg, 0.1 mmol, 0.2 equiv) and phenanthroline (23 mg, 0.125 mmol, 0.25 equiv) were charged into a pre-dried

reaction flask. Dichloromethane (1 mL) was added to the flask. The mixture was stirred vigorously for 30 min, then a solution of the homoallenic carbamate (0.5 mmol, 1 equiv) in dichloromethane (1 mL) was added to the reaction flask, followed by 3Å or 4Å molecular sieves (1 mmol substrate/g of sieves or 0.25 mmol substrate/g of sieves). Iodosobenzene (220 mg, 1 mmol, 2 equiv) was then added in one portion and the reaction mixture was allowed to stir at room temperature until TLC indicated complete consumption of the starting material (~14 h). The reaction mixture was then filtered through a glass frit and the filtrate was concentrated under reduced pressure. The crude products were then purified by silica gel column chromatography (0 \rightarrow 30% EtOAc in hexanes, 6% increments).

Compound 6a. Obtained in a 79% yield as an oil. ¹H NMR (300 MHz, CDCl₃) δ 4.50 (m, 1H), 4.33 (m, 1H), 3.38 (t, *J* = 7.4 Hz, 1H), 2.35 (m, 1H), 1.98 (s, 3H), 1.80 (s, 3H), 1.60 (m, 1H); ¹³C NMR (75 MHz, CDCl₃) δ 156.84, 120.37, 108.25, 68.52, 40.05, 24.36, 19.76, 18.53. HRMS (ESI) *m/z* calculated for C₈H₁₁NO₂ [M+H⁺] 154.0863, found 154.0858. IR (cm⁻¹, CH₂Cl₂) 2983, 2904, 1793, 1718, 1471, 1384, 1094.

Compound 6b. Obtained in 80% yield as an oil. The identity of this product was verified by comparison of NMR spectra with reported literature.³

Compound 8a. Obtained in 88% yield as an oil. The identity of this product was verified by comparison of NMR spectra with reported literature.³ ¹H NMR (500 MHz, CDCl₃) δ 5.61 (t of d, 1H, J = 7.3, 0.9 Hz), 4.23 (d, 1H, J = 10.5 Hz), 3.81 (d, 1H, J = 9.8 Hz), 3.72 (s, 1H), 2.11 (dd, 2H, J = 14.1, 7.1 Hz), 1.54 (m, 2H), 1.42-1.29 (br m, 7H total), 0.87 (2 overlapping signals, 6H total).

Compound 8b. Obtained in a 81% yield as a mixture of *E* and *Z* isomers *E* isomer: ¹H NMR (300 MHz, C₆D₆) δ 3.56 (d, *J* = 9.8 Hz, 1H), 3.19 (d, *J* = 9.8 Hz, 1H), 2.61 (s, 1H), 2.08 (s, 3H), 1.88 (m, 2H), 1.24 (m, 6H), 0.86 (t, *J* = 6.8 Hz, 3H), 0.54 (s, 3H), 0.51 (s, 3H). ¹³C NMR (125 MHz, C₆D₆) δ 155.93, 119.55, 112.54, 77.46, 49.35, 34.82, 32.26, 29.71, 27.58, 23.75, 23.19, 20.58, 17.10, 14.55. HRMS (ESI) *m/z* calculated for C₁₄H₂₃NO₂ [M+H⁺] 238.1802, found 238.1805. *Z* isomer: ¹H NMR (300 MHz, C₆D₆) δ 3.52 (d, *J* = 10.4 Hz, 1H), 3.17 (d, *J* = 10.4 Hz, 1H), 2.59 (m, 1H), 2.53 (s, 1H), 1.88 (m, 1H), 1.53 (s, 3H), 1.23 (m, 6H), 0.91 (t, *J* = 6.8 Hz, 3H), 0.51 (s, 3H), 0.49 (s, 3H). ¹³C NMR (125 MHz, C₆D₆) δ 155.80, 119.79, 112.04, 77.32, 48.73, 33.02, 32.19, 29.57, 28.23, 23.81, 23.31, 20.46, 17.85, 14.67. HRMS (ESI) *m/z* calculated for C₁₄H₂₃NO₂ [M+H⁺] 238.1802, found 238.1805. IR (cm⁻¹, CH₂Cl₂) 2987, 1730, 1422, 1378, 1334, 1265, 1155, 1110.

Compound 8c. Obtained from carbamate **7c** in 87% yield and 3:1 *E:Z* mixture of isomers as a clear oil. *E* isomer: ¹H-NMR (300 MHz, C₆D₆) δ 5.58 (t, *J* = 7.5 Hz, 1H), 3.61-3.49 (m, 3H), 3.15 (d, *J* = 10.9 Hz, 1H), 2.56 (s, 1H), 2.33-2.10 (m, 2H), 1.14-0.98 (m, 21H), 0.53 (s, 3H), 0.46 (s, 3H); ¹³C NMR (75.4 MHz, C₆D₆) δ 155.19, 126.06, 100.16, 77.71, 63.53, 48.48, 33.42, 29.32, 23.76, 20.79, 18.61, 12.66; HRMS (ESI) *m/z* calculated for C₁₉H₃₅NO₃Si [M+H⁺] 354.2459, found 354.2457. IR (cm⁻¹, CH₂Cl₂) 2971, 1727, 1586, 1406, 1377, 1332, 1270, 1070 cm⁻¹ *Z* isomer: ¹H NMR (300 MHz, C₆D₆) δ 5.49 (t, *J* = 7.6 Hz, 1H), 3.79 (dt, *J* = 9.8, 6.0 Hz, 1H), 3.73 (ddd, *J* = 9.8, 6.7, 5.5 Hz, 1H), 3.48 (d, *J* = 10.6 Hz, 1H), 3.14 (d, *J* = 10.6 Hz, 1H), 2.98-2.79 (m, 2H), 2.54 (s, 1H), 1.15-1.06 (m, 21H), 0.52 (s, 3H), 0.41 (s, 3H); 13C NMR (75.4 MHz, C₆D₆) δ 155.09, 125.17, 101.98, 77.31, 64.20, 48.73, 31.97, 28.99, 23.62, 20.66, 18.64, 12.68; HRMS (ESI) *m/z* calculated for C₁₉H₃₅NO₃Si [M+H⁺] 354.2457. IR (cm⁻¹, CH₂Cl₂) 2971, 1731, 1592, 1502, 1382, 1331, 1070.

Compound 8d. Obtained from carbamate **7d** to give the methylene aziridine **8d** in 83% yield as a 2.8:1 *E:Z* mixture of diastereomers. *E* isomer: ¹H NMR (300 MHz, C₆D₆) δ 7.12 (d, *J* = 7.8 Hz, 2H), 7.08-7.01 (m, 1H), 6.95 (d, *J* = 7.4 Hz, 1H), 5.52 (t, *J* = 7.0 Hz, 1H), 3.45 (d, *J* = 10.5 Hz, 1H), 3.07 (d, *J* = 10.5 Hz, 1H), 2.42 (t, *J* = 7.3 Hz, 2H), 2.37 (s, 1H), 2.10 (non, *J* = 7.3 Hz, 2H), 0.41 (s, 3H), 0.39 (s, 3H); ¹³C NMR (125 MHz, CDCl₃) δ 154.24, 140.86, 133.24, 129.61,

126.36, 75.01, 72.99, 59.40, 54.91, 34.04, 32.39, 31.21, 25.18, 20.44; HRMS (ESI) m/z calculated for C₁₆H₁₉NO₂ [M+H⁺] 258.1489, found 258.1494. IR (cm⁻¹, CH₂Cl₂) 2971, 1728, 1589, 1402, 1380, 1344, 1070. *Z* isomer: ¹H NMR (300 MHz, C₆D₆) δ 7.15-7.10 (m, 4H), 7.09-7.00 (m, 1H), 4.99 (t, *J* = 7.2 Hz, 1H), 3.42 (d, *J* = 10.4 Hz, 1H), 3.05 (d, *J* = 10.4 Hz, 1H), 2.93 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.77 (dq, *J* = 14.4, 7.2 Hz, 1H), 2.67 (t, *J* = 7.2 Hz, 1H), 2.43 (s, 1H), 0.39 (s, 3H), 0.38 (s, 3H); ¹³C NMR (75.4 MHz, C₆D₆) δ 155.06, 142.06, 129.40, 129.05, 126.59, 124.72, 103.69, 77.18, 48.62, 36.87, 29.78, 28.90, 23.64, 20.56; HRMS (ESI) *m/z* calculated for C₁₆H₁₉NO₂ [M+NH₄⁺] 275.1755, found 275.1747. IR (cm⁻¹, CH₂Cl₂) 2971, 1731, 1592, 1502, 1382, 1331, 1070 cm⁻¹.

Compound 8e. Obtained in a 98% yield as an oil. ¹H NMR (300 MHz, CDCl₃) δ 4.20 (d, J = 10.6 Hz, 1H), 3.81 (d, J = 10.6 Hz, 1H), 3.11 (s, 1H), 1.99 (s, 3H), 1.79 (s, 3H), 1.25 (s, 3H), 0.88 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.58, 118.66, 108.95, 77.42, 49.40, 29.76, 24.11, 20.54, 20.08, 18.47. HRMS (ESI) *m*/*z* calculated for C₁₀H₁₅NO₂ [M+H⁺] 182.1176, found 182.1173. IR (cm⁻¹, CH₂Cl₂) 2975, 1730, 1472, 1404, 1375, 1345, 1298, 1265, 1216, 1185, 1093, 1018.

Compound 8f. The product was obtained in a 90% yield as a mixture of *E* and *Z* isomers. *E* isomer: ¹H NMR (300 MHz, CDCl₃) δ 4.22 (d, *J* = 10.7 Hz, 1H), 3.81 (d, *J* = 10.7 Hz, 1H), 3.13 (s, 1H), 2.14 (m, 2H), 1.99 (s, 3H), 1.24 (s, 3H), 1.07 (t, *J* = 7.5 Hz, 3H), 0.87 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.17, 117.53, 114.18, 77.22, 49.12, 29.41, 27.10, 23.55, 20.11, 16.09, 11.69. HRMS (ESI) *m/z* calculated for C₁₁H₁₇NO₂ [M+H⁺] 196.1333, found 196.1330. *Z* isomer: ¹H NMR (300 MHz, CDCl₃) δ 4.20 (d, *J* = 10.7 Hz, 1H), 3.81 (d, *J* = 10.7 Hz, 1H), 3.09 (s, 1H), 2.43 (m, 2H), 1.78 (s, 3H), 1.25 (s, 3H), 1.09(t, *J* = 7.6 Hz, 3H), 0.88 (s, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.17, 117.59, 113.86, 77.00, 48.55, 29.35, 25.51, 23.70, 20.05, 16.89, 12.36. HRMS (ESI) *m/z* calculated for C₁₁H₁₇NO₂ [M+H⁺] 196.1333, found 196.1330. IR (cm⁻¹, CH₂Cl₂) 2972, 1728, 1472, 1404, 1376, 1297, 1245, 1215, 1157, 1096 cm⁻¹.

Compound 8g. Obtained in a 97% yield as a mixture of *E* and *Z* isomers. *E* isomer: ¹H NMR (300 MHz, CDCl₃) δ 4.20 (d, *J* = 10.6 Hz, 1H), 3.82 (d, *J* = 10.6 Hz, 1H), 3.10 (s, 1H), 1.98 (m, 2H), 1.96 (s, 3H), 1.88 (m, 1H), 1.25 (m, 3H), 0.89 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 156.55, 119.34, 112.48, 77.40, 49.64, 43.57, 29.82, 26.00, 24.11, 22.93, 22.22, 20.70, 16.49. HRMS (ESI) *m/z* calculated for C₁₃H₂₁NO₂ [M+H⁺] 224.1646, found 224.1649. *Z* isomer: ¹H NMR (300 MHz, CDCl₃) δ 4.19 (d, *J* = 10.6 Hz, 1H), 3.82 (d, *J* = 10.6 Hz, 1H), 3.10 (s, 1H), 2.29 (d, *J* = 7.5 Hz, 2H), 1.88 (m, 1H), 1.75 (s, 3H), 1.26 (s, 3H), 0.89 (m, 9H); ¹³C NMR (75 MHz, CDCl₃) δ 156.32, 119.26, 112.04, 77.34, 49.05, 41.35, 29.67, 26.07, 24.11, 22.54, 22.22, 20.66, 17.82. HRMS (ESI) *m/z* calculated for C₁₃H₂₁NO₂ [M+H⁺] 224.1646, found 224.1649. IR (cm⁻¹, CH₂Cl₂) 2962, 1730, 1472, 1404, 1377, 1341, 1299, 1265, 1214, 1159 cm⁻¹.

Compound 8h. Obtained 86% yield as a 2.2:1 *E*:*Z* mixture of diastereomers. The *Z* isomer was previously characterized.³ *E* isomer: ¹H NMR (300 MHz) δ 5.67 (t, *J* = 6.7 Hz, 1H), 3.87 (q, *J* = 7.4 Hz, 2H), 3.49 (d, *J* = 10.0 Hz, 1H), 3.16 (d, *J* = 10.0 Hz, 1H), 2.72 (qd, *J* = 16.9, 7.8 Hz, 2H), 2.50 (s, 1H), 0.90 (t, *J* = 7.4 Hz, 3H), 0.50 (s, 3H), 0.46 (s, 3H); ¹³C NMR (75.4 MHz, C₆D₆) δ 170.42, 154.83, 127.46, 96.27, 61.00, 48.55, 34.62, 29.26, 23.56, 20.52, 14.47. HRMS (ESI) *m/z* calculated for C₁₂H₁₇NO₄ [M+H⁺] 240.1231, found 240.1223. IR (cm⁻¹, CH₂Cl₂) 2968, 1728, 1580, 1402, 1380, 1332, 1071.

Compound 8i. Bipyridine was used as the ligand instead of phenanthroline. Obtained in 72% yield as an oil. The identity of this product was verified by comparison of NMR spectra with reported literature.³ ¹H NMR (300 MHz, CDCl₃) δ 5.55 (dd, 1H, *J* = 7.3, 6.8 Hz), 4.50 (dd, 1H, *J* = 11.3, 2.1 Hz), 4.33 (ddd, 1H, *J* = 11.0, 4.0, 2.6 Hz), 3.40 (dd, 1H, *J* = 8.0, 6.5 Hz), 2.34 (m, 2H), 2.13 (ddd, 2H, *J* = 8.5, 7.2, 1.6 Hz), 1.59-1.2 (m, 6H), 0.85 (t, 3H, *J* = 8.0 Hz).

Compound 8j. Bipyridine was used as the ligand instead of phenanthroline. Obtained in 67% yield as a white solid. The identity of this product was verified by comparison of NMR spectra with reported literature.³ ¹H NMR (500 MHz, C₆D₆) δ 5.56 (br s, NH), 3.61 (ddd, *J* = 14.1, 11.7, 2.5 Hz, 1H), 3.45 (ddd, *J* = 10.5, 4.0, 2.4 Hz, 1H), 2.65 (dd, *J* = 8.4, 6.3 Hz, 1H), 1.09 (ddt, *J* = 14.5, 6.3, 2.1 Hz, 1H), 0.89 (s, 9H), 0.83-0.76 (m, 1H).

Compound 8k. Obtained in 80% yield as an oil. The identity of this product was verified by comparison of NMR spectra with reported literature.⁶ ¹H NMR (500 MHz, C_6D_6) δ 5.57 (t, J = 7.0 Hz, 0.83H), 5.18 (t, J = 7.5 Hz, 0.34H), 3.84 (m, 1.32H), 2.66 (m, 1.98H), 1.94 (q, J = 7.3 Hz, 2.00H), 1.47 (m, 0.83H), 1.02-1.37 (m, 13.64H), 0.91 (m, 5.71H), 0.72 (m, 5.57H).

Compound 81. Obtained in a 87% yield as a mixture of *E* and *Z* isomers. *E* isomer: ¹H NMR (300 MHz, CDCl₃) δ 4.50 (ddd, *J* = 11.6, 10.7, 2.2 Hz, 1H), 4.33 (ddd, *J* = 10.8, 3.9, 2.7 Hz, 1H), 3.38 (dd, *J* = 8.3, 6.1 Hz, 1H), 2.35 (dddd, *J* = 14.4, 6.1, 2.8, 2.2 Hz, 1H), 2.16-2.06 (m, 2H), 1.97 (s, 3H), 1.68-1.39 (m, 4H), 1.29 (m, 4H), 0.90 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.86, 120.29, 112.48, 68.44, 40.30, 34.29, 31.81, 26.99, 24.71, 22.64, 16.86, 14.18. HRMS (ESI) *m/z* calculated for C₁₂H₁₉NO₂ [M+H⁺] 210.1489, found 210.1479.

Compound 8m. Obtained in a 70% yield as a mixture of *E* and *Z* isomers. *E* isomer: ¹H NMR (300 MHz, CDCl₃) δ 4.51 (m, 1H), 4.34 (m, 1H), 3.38 (m, 1H), 2.38 (m, 1H), 2.15 (m, 2H), 1.98 (s, 3H), 1.62 (m, 1H), 1.07 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.79, 119.94, 113.86, 68.45, 40.42, 27.42, 24.79, 16.98, 12.14. HRMS (ESI) *m/z* calculated for C₁₁H₁₇NO₂ [M+H⁺] 196.1333, found 196.1330. *Z* isomer: ¹H NMR (300 MHz, CDCl₃) δ 4.51 (m, 1H), 4.34 (m, 1H), 3.38 (m, 1H), 2.38 (m, 3H), 1.98 (s, 3H), 1.62 (m, 1H), 1.07 (t, *J* = 7.4 Hz, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 156.74, 130.29, 113.44, 68.49, 39.68, 25.81, 24.39, 16.87, 12.63. HRMS (ESI) *m/z* calculated for C₁₁H₁₇NO₂ [M+H⁺] 196.1333, found 196.1330. IR (cm⁻¹, CH₂Cl₂) 2971, 1728, 1475, 1390, 1265, 1164, 1092, 1002 cm⁻¹.

V. Synthesis of C-H insertion products.

Compounds 6b, and 9i-9k. These compounds were synthesized by established methods^{3,6} and the characterization data from these methods^{3,6} were used to evaluate and determine the ratio of methylene azridine to C-H insertion products from crude reaction mixtures using the Ag system.

Compound 6a. Allene carbamate **4a** (0.05 g, 0.322 mmol, 1 equiv) was dissolved in dichloromethane (3 mL). 4A molecular sieves (0.2g) was added to the reaction mixture followed by $Rh_2(esp)_2$ (7.3 mg, 0.0096 mmol), 0.03 equiv) and was allowed to stir for 10 min. Iodosobenzene (0.142 g, 0.644 mmol, 2 equiv) was added in one portion and the reaction was

stirred at room temperature until complete by TLC. The reaction mixture filtered and the filtrate was concentrated by vacuum. The crude was subjected to silica gel column chromatography (0 \rightarrow 30% EtOAc in hexanes, 6% increments). Methylene aziridine **5a** eluted first (35% yield) followed by **6a** in 21% yield as an oil. ¹H NMR (300 MHz, CDCl₃) δ 5.34 (br s, 1H), 5.02 (m, 1H), 4.53 (t, *J* = 8.6 Hz, 1H), 4.32 (m, 1H), 4.15 (dd, *J* = 8.6, 5.7 Hz, 1H), 1.72 (m, 6H); ¹³C NMR (125 MHz, CDCl₃) δ 201.94, 159.46, 100.27, 89.32, 70.64, 52.46, 20.61, 20.53. HRMS (ESI) *m/z* calculated for C₈H₁₁NO₂ [M+NH₄⁺] 171.1129, found 171.1124. IR (cm⁻¹, CH₂Cl₂) 3460, 2986, 1757, 1477, 1387, 1265, 1094.

Compound 91. Allene carbamate **71** (0.05 g, 0.237 mmol, 1 equiv) was dissolved in dichloromethane (2 mL). 4A molecular sieves (0.2 g) was added to the reaction mixture followed by Rh₂(esp)₂ (5.1 mg, 0.0071 mmol), 0.03 equiv) and was allowed to stir for 10 min. Iodosobenzene (0.104 g, 0.473 mmol, 2 equiv) was added in one portion and the reaction was stirred at room temperature until complete by TLC. The reaction mixture filtered and the filtrate was concentrated by vacuum. The crude was subjected to silica gel column chromatography (0 \rightarrow 30% EtOAc in hexanes, 6% increments). Methylene aziridine **81** eluted first (34% yield) followed by **91** in 44% yield as an oil. Both diastereomers: ¹H NMR (300 MHz, CDCl₃) δ 5.35 (br s, 1H), 5.08 (m, 1H), 4.53 (m, 1H), 4.32 (m, 1H), 4.15 (m, 1H), 1.96 (m, 2H), 1.71 (m, 3H), 0.89 (t, *J* = 6.4 Hz, 3H). Diastereomer 1: ¹³C NMR (125 MHz, CDCl₃) δ 201.41, 159.40, 104.71, 90.52, 70.70, 52.53, 33.82, 31.60, 27.23, 22.67, 19.07, 14.26. Diastereomer 2: ¹³C NMR (125 MHz, CDCl₃) δ 201.53, 159.40, 104.88, 90.57, 70.76, 52.68, 33.85, 31.60, 27.26. HRMS (ESI)

m/z calculated for C₁₂H₁₉NO₂ [M+NH₄⁺] 227.1755, found 227.1754. IR (cm⁻¹, CH₂Cl₂) 3460, 2930, 1757, 1468, 1386, 1265, 1229, 1094.

Compound 9m. Allene carbamate **7m** (0.05 g, 0.295 mmol, 1 equiv) was dissolved in dichloromethane (3 mL). To this solution was added 4Å molecular sieves (0.2 g), followed by Rh₂(esp)₂ (6.7 mg, 0.009 mmol), 0.03 equiv) and the reaction mixture was allowed to stir for 10 min. Iodosobenzene (0.129 g, 0.6 mmol, 2 equiv) was added in one portion and the reaction was stirred at room temperature until complete by TLC. The reaction mixture filtered and the filtrate was concentrated by vacuum. The crude was subjected to silica gel column chromatography (0 \rightarrow 30% EtOAc in hexanes, 6% increments). Methylene aziridine **8m** eluted first (32% yield) followed by **9m** in 33% yield as an oil. Both diastereomers: ¹H NMR (300 MHz, CDCl₃) δ 5.50 (br s, 1H), 5.13 (m, 1H), 4.53 (m, 1H), 4.33 (m, 1H), 4.16 (m, 1H), 1.98 (m, 2H), 1.72 (m, 3H), 0.98 (m, 3H). Diastereomer 1: ¹³C NMR (125 MHz, CDCl₃) δ 200.99, 159.56, 106.51, 91.31, 70.68, 52.42, 26.85, 19.05, 12.28. Diastereomer 2: ¹³C NMR (125 MHz, CDCl₃) δ 201.15, 194,94, 159.56, 106.81, 91.42, 70.78, 52.60, 26.92, 19.15, 12.30. HRMS (ESI) *m/z* calculated for C₉H₁₃NO₂ [M+NH₄⁺] 185.1285, found 185.1280. IR (cm⁻¹, CH₂Cl₂) 3459, 2985, 1757, 1472, 1387, 1265, 1094.

VI. References

1) Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals 6th ed.; Elsevier: Burlington, MA, 2009.

- 2) Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923.
- 3) Boralsky, L.A.; Marston, D; Grigg, R.D.; Hershberger, J.C.; Schomaker, J.M. Org Lett. 2011, 13, 1924.
- 4) Dauban, P.; Dodd, R.H. Org. Lett. 2000, 2, 2327.
- 5) Barman, D.N.; Nicholas, K.M. Eur. J. Org. Chem. 2011, 908.
- 6) Grigg, R.D.; Schomaker, J.M.; Timokhin, V. Tetrahedron 2011, 67, 4318.