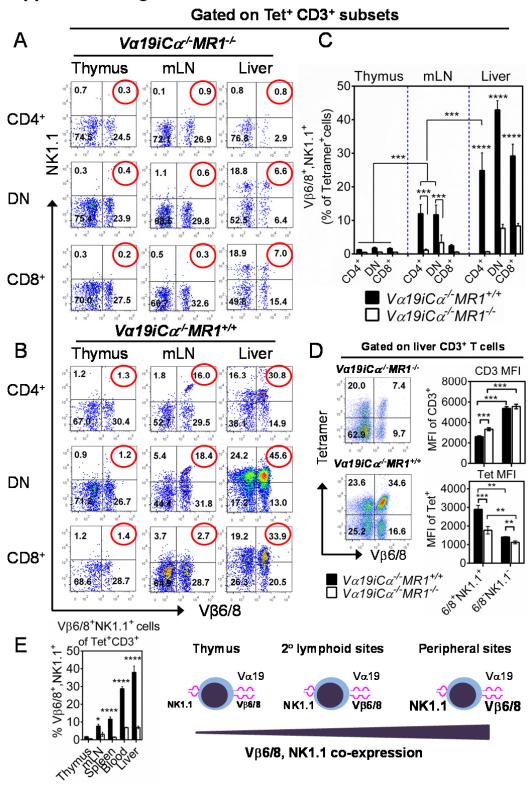

Supplemental Figure 1

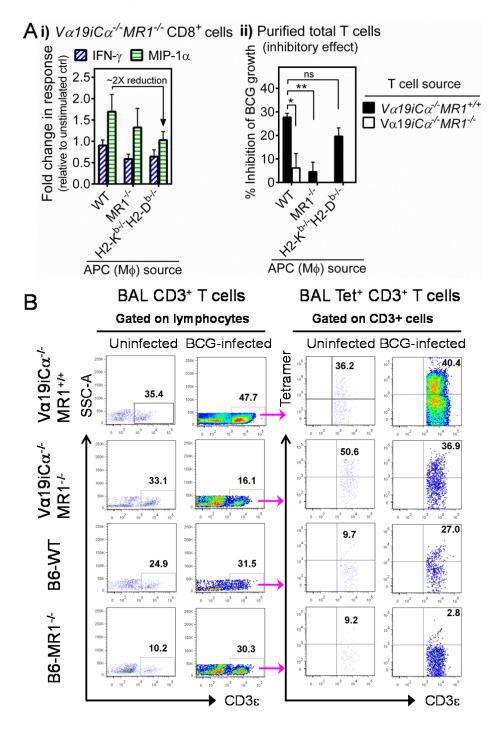
Supplemental Figure 1: Frequency and V β 6/8, NK1.1 phenotype of tetramer⁺ CD3⁺ T cells in the thymus, secondary lymphoid organs and peripheral sites. (A). Gating strategy of SSC-A vs. FSC-A to define lymphocyte population, FSC-W vs. FSC-H for doublet


discrimination and SSC-A vs. CD3 ε for CD3⁺ T cells. (**B**) Representative FACS plots of tetramer⁺ CD3⁺ T cells (*left dot plots column*), tetramer⁺ V $\beta6/8^+$ (*middle dot plots column*) and tetramer⁺ NK1.1⁺ (right dot plots column) cells in the thymus (CD3^{high}, mature thymocytes), mesenteric lymph nodes (mLN), spleen, blood and liver from $V\alpha19iCa^{-\prime}MR1^{+\prime+}$ mice. Numbers in the upper right quadrants are proportions of CD3⁺ cells that were tetramer⁺ (left column) and tetramer⁺ CD3⁺ T cells that expressed V $\beta6/8$ (middle column) and NK1.1 (right column). (**C**) Shown are bar graphs of proportions of tetramer⁺ CD3⁺ T cells (top panel), V $\beta6/8^+$ tetramer⁺ CD3⁺ T cells (middle panel) and NK1.1⁺ tetramer⁺ CD3⁺ T cells (bottom panel). Data shown are from more than three experiments. *P values* (obtained by 2way ANOVA, multiple comparison test) denote comparison between $V\alpha19iCa^{-\prime}MR1^{+/+}$ (filled bars) and $V\alpha19iCa^{-\prime}MR1^{-\prime-}$ (open bars). *p<0.05; **p<0.01, ***p<0.001 and ***p<0.001.

Supplemental Figure 2

Supplemental Figure 2: (A) CD44 staining in tetramer⁺ CD3⁺ T cells in the thymus, secondary lymphoid organs (mLN and spleen) and peripheral cells (liver). (B) $V\alpha 19iC\alpha^{-/-}$

 $MRI^{+/+}$ T cells respond to IL-12 plus IL-18 better than $Va19iTgMRI^{-/-}$ T cells. Purified splenic T cells from $Va19iCa^{-/-}MRI^{+/+}$ (top panel) or $Va19iCa^{-/-}MRI^{-/-}$ (bottom panel) mice were stained with antibodies specific for CD3 ε , CD4, CD8 α and MR1/RL tetramer, and tetramer⁺ cells sorted by FACS. Sorted tetramer⁺ T cells were rested overnight in medium and then cultured (2 x 10⁵ cells/well) in triplicates with 500 pg/ml IL-12 plus 1000 pg/ml IL-18 in the absence of APC for 24h at 37°C. The indicated cytokines and chemokines were measured in supernatants using Multiplex bead array assays according to manufacturer's instructions (Milliplex MAP Assays from EMD Millipore). Tetramer⁺ $Va19iCa^{-/-}MRI^{+/+}$ T cells (DN/CD8⁺ > CD4⁺) produced more IFN- γ than their counterparts that developed in the absence of MR1. (C) Absolute numbers of V $\beta6/8^{+/-}$ CD69⁺ CD3⁺ T cells in the spleen of $Va19iCa^{-/-}MRI^{+/+}$ vs. $Va19iCa^{-/-}MRI^{-/-}$ mice. Data shown are from two separate experiments. *P* values were obtained by Mann-Whitney U-test and 2way ANOVA (multiple comparison test) (*p<0.05, **p<0.01 and ****p<0.0001).



Supplemental Figure 3

Supplemental Figure 3: Gradual increase in frequency of tetramer⁺ CD3⁺ cell subsets co-expressing Vβ6/8 and NK1.1 comparing mature thymocytes with secondary lymphoid

organs and peripheral sites. (A and B) Shows surface VB6/8.1-2 (X-axis) and NK1.1 (Yaxis) expression on tetramer⁺ CD4⁺ (top dot plots), DN (middle dot plots) or CD8⁺ (bottom dot plots) in thymus, mesenteric lymph nodes, (mLN) and liver in uninfected Val9iCa^{-/-}MR1⁻ ^{/-} (A) $V\alpha 19iC\alpha^{-/-}MR1^{+/+}$ (B) mice. Numbers in the upper right quadrants are V $\beta 6/8.1-2^+$ and NK1.1⁺ cells. (C) Increasing proportions of V $\beta6/8^+$ and NK1.1⁺ tetramer⁺ CD3⁺ T cell subsets from thymus (CD3^{high}, mature thymocytes; n=9), mLN (n=5) and Liver (n=4). (**D**) $V\alpha 19i$ Tg cells developing with MR1 have higher affinity for MR1/RL complexes. Shown in the left panel are VB6/8 (X-axis) vs. tetramer (Y-axis) FACS plots of CD3⁺ T cells in liver from $V\alpha 19iC\alpha^{-/-}MR1^{-/-}$ or $V\alpha 19iC\alpha^{-/-}MR1^{+/+}$ mice. Shown in the right panel are mean fluorescence intensities of CD3 ϵ (top bar graph) and tetramer (bottom bar graph) staining on liver tetramer⁺ VB6/8⁺NK1.1⁺ or VB6/8⁻NK1.1⁻ CD3⁺ T cells from $V\alpha 19iC\alpha^{-/-}MR1^{+/+}$ or $V\alpha 19iC\alpha^{-/-}MR1^{-/-}$ mice (n=4). Despite lower CD3 expression. Va19i Tg T cells from MR1^{+/+} mice display higher affinity for MR1/RL tetramers than $V\alpha 19i$ Tg cells from MR1^{-/-} mice. Furthermore, tetramer⁺ CD3⁺ T cells expressing both V β 6/8 and NK1.1 in V α 19*i* Tg MR1 sufficient mice display the highest affinity for tetramer binding. (E) Bar graph showing composite proportions of V $\beta 6/8^+$, NK1.1⁺ among tetramer⁺ CD3⁺ T cells from MR1^{+/+} (filled bars) and MR1^{-/-} (open bars) mice and a summary illustration of progressive increases in V β 6/8, NK1.1 co-expression on tetramer⁺ MAIT cells with peripheral activation. P values were obtained by Mann-Whitney U-test and 2way ANOVA (multiple comparison test) (*p < 0.05, **p < 0.01, ****p*<0.001 and *****p*<0.0001).

Supplemental Figure 4

Supplemental Figure 4: (A) Evidence that $V \alpha 19iC \alpha^{-/-}MR1^{-/-}$ T cells interact with MHC class 1a molecules. (A-i) Purified $V \alpha 19iC \alpha^{-/-}MR1^{-/-}$ CD8⁺ T cells from three individual mice were co-cultured for 24h at 37°C with uninfected or BCG Danish-infected BMDM ϕ from B6-WT, B6-MR1^{-/-} and H2-K^{b-/-}/H2-D^{b-/-} mice. Activation of CD8⁺ T cells was determined by

intracellular cytokine staining for IFN- γ and MIP-1 α /CCL3 using flow cytometry. Shown are relative fold increases in CD8⁺ T cell IFN- γ and MIP-1 α /CCL3 responses. There were approximately 2-fold reductions in MIP-1 α //CCL3 responses when CD8⁺ T cells were cocultured with H2-K^b/H2-D^b double knockout APC, indicating recognition of epitopes presented by MHC class Ia molecules. (**A-ii**) Inhibition of intracellular mycobacteria growth by purified total T cells from $V\alpha 19iC\alpha^{-2}MRI^{-2}$ mice was reduced in MR1 or MHC class Ia deficient macrophages, indicating a role for both MR1 and MHC class 1a molecules in the activation and function of $V\alpha 19i$ Tg T cells developing in the absence of MR1. (**B**) Representative FACS plots of CD3 ε (X-axis) vs. SSC-A (Y-axis) gated on lymphocyte population for CD3⁺ T cells (left panel of dot plots) and CD3 ε (X-axis) vs MR1–5-OP-RU tetramer (Y-axis) gated on CD3⁺ lymphocyte population for tetramer⁺ CD3⁺ T cells (right panel of dot plots) in BAL fluids from uninfected or BCG-infected mice.