
1

Supplementary Material

SM.1 Score baseline and distance normalization
Each alignment score was normalized to a baseline of alignment scores given random trees of the same

sizes of the neurite sequence pair. For each sampled length, 1,000 tree shapes were generated

randomly and encoded as sequences. Sequence alignment was performed between ordered sequences

for each length pair such that the nth sequence of length L1 was aligned with the nth sequence of length

L2 to avoid any dependence between scores, resulting in 1,000 scores for each length pair. Each score

was then converted to a per-character score (Spc) based on the length of the shorter sequence. This was

achieved by adding back to the score the length difference of the two sequences, as well as the value of

one gap opening (G), and dividing by the shorter sequence length. An optimal per-character score would

be 1 and the lower bound for the score is limited only by the size of the sequences and the potential

number of gaps and gap openings. With no gap open cost the minimum per character score would be -1.

The mean and standard deviation of those per-character scores was taken for each length pair. Means

and standard deviations of length pairs falling between those sampled were interpolated. All real

neurite per-character scores were converted to z-scores based on the per-character score mean and

standard deviation of the neurite pair’s lengths (Supplementary Figure 2). Each z-score was converted

back into a per-character score using a set mean and standard deviation, creating a fully normalized

score (Snorm). The mean and standard deviation were chosen such that the probability of a perfect per-

character score of 1 would be exceptionally low. Finally, the fully normalized scores were converted to

distances by subtracting each score from the optimal score of 1. In the rare case of a fully normalized

score above 1, resulting in a distance value less than 0, an exponential function was applied making the

distance greater than 0. Baseline score normalization was calculated in R prior to further analysis.

SM.2 Non-metric MDS
Non-metric MDS is performed by embedding (usually by the standard MDS algorithm) then iteratively

shifting element location until stress is minimized. Stress is the measure of how different each neurite

pair’s position is between the original ordered list of distances and the ordered list derived from the

embedded space. Thus, the two neurites with the smallest distance between them in the original data

should also be the two nearest neurites in the new space, while two neurites that were a median

distance apart in the original data will be about a median distance apart in the new space relative to

other neurite pairs.

The MASS [23] R package was used to perform non-metric MDS on datasets consisting of all neurites

and separate instances of the data composed of neurites from each arbor type. In each case a sufficient

number of dimensions were used such that the stress was at or below 15% and was decreasing by less

than 1% with each additional dimension. Inspection of the spaces showed no effective differences in the

2

primary dimensions used for analysis between spaces generated using more dimensions. Moreover, the

spaces produced for each arbor type were very consistent with the space produced for all arbors.

SM.3 Model-based clustering
We used the mclust [26, 27] R package for model-based clustering, which performs Expectation

Maximization (EM; [28]) for generating optimal parameter values in order to fit the data with a set of

multivariate Gaussian models. Variable Gaussian features include size, shape (different size in each

dimension), and orientation. Shape and orientation may be unspecified, resulting in spherical clusters

(similar to k-means clustering), or ellipsoidal clusters without orientation. Each parameter type could be

equivalent or variable across clusters. These options are not exhaustive, but for the purposes of

exploration they are effective and provide a useful limit on an otherwise unlimited set of models.

Multiple parameter sets and number of clusters were tried and a Bayesian Information Criterion (BIC)

value produced for each. The BIC quantifies the optimal balance between the predictive power of a

model (measured by the log of its likelihood given the data) and its complexity (in terms of number of

parameters k and the log of dataset size n):

SM.4 Cluster-metadata associations
To quantify the association between clusters and metadata groups with by χ2 test, the expected counts

were computed from the marginals of the contingency table. The standardized residuals (indicating how

much any given cluster-group pair contributed to the result) were converted into raw p-values; these

were then adjusted with Bonferroni-correction using the degrees of freedom (NC - 1) x (NG - 1), where NC

and NG are the number of clusters and metadata groups, respectively. Cases in which the count in a cell

was higher than the expected value and in which the corrected p-value was less than 0.05 indicated a

statistical overrepresentation, and thus an association between the cell’s cluster and group.

SM.5 Classification
In order to maximize classification performance and determine the most informative features, clustering

was run on all possible permutations of alignment space dimensions and all possible permutations of

topological metric principal components for a specified pair of neurite groups. For two-class

discrimination (e.g. CA3 and CA1 pyramidal neurons) models were fixed to two clusters and alignment

space Gaussians were limited to equal size and no orientation.

LDA and feature selection were respectively performed by the R packages MASS [23] and klaR [29].

Variables could be added or removed in the selection process and the threshold for updating the model

was a 1% improvement in accuracy. A 10-fold cross-validation was used, leaving 10% of the data for

testing the accuracy of the final model. Given the stochastic nature of data division, different models

were generated with non-identical accuracy values in multiple runs. The process was run 10 times for

each case and the accuracy averaged. The optimal models were found most times and always provided

the final accuracy value. The order of mean, median, and max accuracy scores between variable sets

(alignment space and topological metric principal components) were consistent.

3

Supplementary Figures

Supplementary Figure 1: Dynamic programming alignment of tree node types. a. The first table shows

the generic calculation of scores for a given matrix position (x,y) using the scores of cells to the left, top,

and top-left. The score from the top-left is added to the match score for the characters at (x,y). The

score for gapping from above equals the score above (x-1,y) minus the gap penalty, while the score for

gapping from the left is that score (x,y-1) minus the gap penalty. The cell’s score is then the maximum

value of the match and gap scores. b. Cells with certain node type pairs have restrictions as to whether a

match, left-gap, or right-gap is allowed. c. For each node type pair, arrows point to where the scores are

originating from. Dashed arrows for gapping a T node represent a multiple position gap based on the

requirement that the gap continue until the start of the node’s subtree. d. In this complete alignment

matrix for the shown sequences, the blue path represents the optimal back-trace. The backward arrows

of every cell with a score lead back to the preceding cell that produced the optimal score. Arrows with

dashes followed by a diagonal solid line represent an alignment of a C node with a larger subtree, such

that the gap begins at a T and back-traces to an A that matches the C.

4

Supplementary Figure 2: Normalizing the per-character alignment score. A given per-character

alignment score has a z-score with respect to the distribution of baseline scores for the specific length

pair of the aligned sequences. The yellow and green points represent scores from alignments with

different length pairs. The lines represent the baseline distribution of per-character scores. Each point is

then normalized (arrows) using their respective distribution to the mapped value along an arbitrary

length pair distribution (blue points). The distance values are calculated by subtracting the normalized

per-character scores from the maximum possible score of 1.

5

Supplementary Figure 3: Multiple sequence alignment algorithm. a. Flow chart of the process, ending

in a multiple alignment and a threshold-defined consensus. b. Construction of a composite begins with

the matching of two sequences from the set to be aligned. The alignment of those sequences is merged

into the composite which is then aligned to the next sequence. The process repeats until all N sequences

have been merged into the composite, forming the final composite. c. All sequences are aligned to the

final composite, creating a multiple alignment. A position-specific scoring matrix (PSSM) is generated

based on the conservation of each position (i.e. how many sequences align at the position). The

sequences are again aligned to the composite, but this time the score of a match is determined by the

PSSM. The process repeats until the multiple sequence alignment is stable.

6

Supplementary Figure 4: Within and between-class distances. Distributions of distances within and

between hippocampal CA1 and CA3 apical dendrite classes based on (a) average partition asymmetry

and (b) caulescence.

