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Protein sequences and probe check by molecular dynamics simulation 
Protein sequences 
 

 
 

 
Figure S1. Top: Sequences of seven mutants of λ6-85 used in this work including the mutant that 
was simulated by D. E. Shaw Research (listed last). Three mutations of this simulated sequence 
with respect to the experimental template sequence λ12 are underlined: S6P, D14A, R85Y. Note 
that all experimental sequences also included the following fragment at the beginning, which was 
part of the pET-15b vector and was required for protein purification: MGSSHHHHH 
HSSGLVPRGSHM. Bottom: Structural characteristics of the lambda repressor and its 5 mutants 
during equilibrium 100 ns MD simulations. (a) Root-mean square deviation (RMSD), based on 
non-hydrogen atoms of the backbone. (b) Root-mean square fluctuations (RMSF), based on Cα 
atoms. RMSD and RMSF show relative stability of the proteins. 
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Equilibrium measurements 
Temperature melts of λ mutants monitored by circular dichroism spectroscopy 
 

 
Figure S2. Temperature melts of the new lambda repressor mutants probed by circular dichroism 
spectroscopy. (a–d) Raw data for λ12, λ13, λ32, and λ42, respectively. The spectra were taken in 
3 ˚C increments. (e) Mean residue ellipticity at 222 nm as a function of temperature for the new 
mutants. Solid lines are two-state thermodynamic fits. Note that λ12, λ13, and λ32 show a 
cooperative transition upon unfolding, while λ42 does not. The profile of λ42 was not fitted. 
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Temperature melts of λ mutants monitored by fluorescence spectroscopy 
 

 
Figure S3. Temperature melts of the new lambda repressor mutants probed by fluorescence 
spectroscopy. (a–d) Raw data for λ12, λ13, λ32, and λ42, respectively. The spectra were taken in 
3 ˚C increments. (e) Spectral mean of fluorescence spectra of the new lambda mutants as a 
function of temperature. Solid lines are two-state thermodynamic fits. 
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Temperature melts of λ12 in 2.2 M guanidine hydrochloride (i.e. sample λ12*) 

 
Figure S4. Equilibrium thermal denaturation of λ12 with 2.2 M GuHCl (λ12*). (a) Temperature 
melt of λ12* monitored by fluorescence spectroscopy. Spectra range from 5˚C (black) to 95 ˚C 
(light blue) in 3 ˚C increments. (b) Analysis of data in panel (a) in terms of the integrated 
fluorescence intensity. The data were normalized to start at 1 and end at 0. Solid lines are two-
state thermodynamic fits for λ12* and also λ12, λ13, and λ32 for comparison. (c) Analysis of data in 
panel (a) in terms of the mean wavelength (see Methods for details). Solid lines are two-state 
thermodynamic fits for λ12* and also λ12, λ13, and λ32 for comparison. (d) Temperature melt of 
λ12* monitored by circular dichroism spectropolarimetry. Spectra range from 5˚C (black) to 95 ˚C 
(light blue) in 3 ˚C increments. Absorption of GuHCl prevents measurement at wavelengths 
below 220 nm. (e) Analysis of data in panel (d) in terms of the mean residue ellipticity at 222 nm 
as a proxy for α-helical content. Solid lines are two-state thermodynamic fits for λ12* and also 
λ12, λ13, and λ32 for comparison. Note that the native state baseline is lower for λ12* than for λ12. 
This result is expected and has been reported previously for lambda repressor.1 (f) Tabulated 
denaturation midpoint temperatures for λ12 and λ12* as monitored by different order parameters. 
Note the expected destabilization of λ12* with respect to λ12. 
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Thermodynamic two-state fits using various probes and order parameters 
 
Table S1. Two-state thermodynamic fitting parameters for the equilibrium temperature melts of 
the studied mutants. Fitting coefficients for three order parameters are shown: integrated 
fluorescence intensity, spectral mean of fluorescence band, and mean residue ellipticity at 222 nm 
for the circular dichroism measurement. 

Order parameter Mutants Fitting parameters 
Tm (˚C) ΔH (J mol-1) ΔS (J mol-1 K-1) 

 
Integrated 
Intensity 

λ12 

  λ12* 
λ13 
λ32 
λ42 

66 ± 1 
48 ± 1 
50 ± 1 
46 ± 1 
39 ± 1 

−163765 ± 18813 
−171790 ± 25665 
−282433 ± 32487 
−256597 ± 41547 
−106443 ± 5967 

483 ± 55 
535 ± 80  
874 ± 99 
804 ± 129 
341 ± 17 

 
Mean 

wavelength 

λ12 

  λ12* 
λ13 
λ32 
λ42 

68 ± 1 
51 ± 1 
50 ± 1 
46 ± 1 
41 ± 1 

−241534 ± 4100 
−196385 ± 3167 
−138631 ± 6154  
−144575 ± 6830 
−86077 ± 7826 

708 ± 6 
605 ± 10 
429 ± 17 
453 ± 19 
274 ± 24 

 
Mean residue 

ellipticity at 222 nm 

λ12 

  λ12* 
λ13 
λ32 
λ42 

70 ± 1 
57 ± 1 
58 ± 1 
60 ± 1 

– 

−268343 ± 12281 
−196439 ± 4359 
−139414 ± 7358 
−142921 ± 11249 

– 

782 ± 34 
595 ± 13 
421 ± 21 
429 ± 33 

– 
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Kinetic measurements 
Dependence of kinetics on protein concentration 

 
 

Figure S5. Concentration dependence of λ13 kinetics. (a) Kinetic traces of λ13 were observed at a 
final temperature of 54 ˚C and protein concentrations of 25 µM (yellow), 50 µM (red), and 
373 µM (magenta). At higher protein concentration, slight aggregation was observed, which led 
to the appearance of a slow kinetic phase. Data taken at 25 µM could only be fitted to a single-
exponential function (solid black line). Data at 50 µM could be fitted to both a single-exponential 
function (solid black line) and a double-exponential function (dashed black line). At 373 µM, the 
data could only be fitted to a double-exponential function (dashed black line). (b) A zoom in of 
the first 200 µs of the kinetic traces (gray background in all panels). (c) The same data as in panel 
(a) plotted with logarithmic x-axis to highlight the fast phase. (d) Fitting parameters used for the 
fits in panels (a), (b), and (c).  
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Kinetic relaxation at several temperatures 

 
Figure S6. Temperature dependence of kinetic relaxation traces collected at 50 µM protein 
concentration. Kinetic traces of lambda repressor mutants λ12, λ13, and λ32 were observed after a 
9 ˚C temperature jump to the final temperatures indicated in panels (a), (b), and (c), respectively.  
 
Table S2. Time constants for the kinetic relaxation traces of the mutants studied at 50 µM 
concentration from Figure S6. Single-exponential relaxation time constants were fitted using an 
equation FI(t) = A exp(-t/τ). 

Mutant Temperature τ (μs) 

λ12 
66 °C 
71 °C 
76 °C 

43 ± 2  
63 ± 1  
97 ± 3	  

λ13 
49 °C 
54 °C 
59 °C 

62 ± 1 
50.4 ± 0.8 

63 ± 3	  

λ32 
49 °C 
54 °C 
59 °C 

49 ± 5  
39 ± 5  
35 ± 7	  
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Figure S7. Temperature dependence of kinetic relaxation traces collected at the concentrations of 
309 µM, 373 µM, and 140 µM for λ12 with 2.2 M GuHCl (λ12*), λ13, and λ32, respectively. 
Kinetic traces of lambda repressor mutants λ12*, λ13, and λ32 were observed after a 8 ˚C 
temperature jump to the final temperatures indicated in panels (a), (b), and (c), respectively. 
Double-exponential fits are shown as solid black lines. The fitting parameters are listed in Table 
S3. Data of λ32 has a three times larger binning period than that of λ12* and λ13. 
 
Table S3. Fitting parameters for the kinetic relaxation traces of the data shown in Figure S7. 
Double-exponential relaxation time constants were fitted using an equation FI(t) = A1 exp(-t/τ1) + 
A2 exp(-t/τ2). The protein folding time constant is highlighted in bold font. 

Temperature Mutants Fitting parameters 
A1 τ1 (µs) A2 τ2 (µs) 

49°C 
λ12* 
λ13 
λ32 

1.06 ± 0.06 
1.07 ± 0.08 
0.75 ± 0.16 

45 ± 3 
45 ± 6 
47 ± 19 

1.21 ± 0.06 
0.42 ± 0.07 
0.47 ± 0.22 

177 ± 7 
193 ± 93 

625 ± 1020 

52°C 
λ12* 
λ13 
λ32 

1.17 ± 0.05 
1.04 ± 0.09 
0.66 ± 0.12 

43 ± 2 
56 ± 7 
26 ± 10 

0.99 ± 0.05 
0.56 ± 0.05 
0.37 ± 0.06 

174 ± 7 
415 ± 158 
381 ± 277 

54°C 
λ12* 
λ13 
λ32 

1.32 ± 0.06 
0.87 ± 0.04 
0.65 ± 0.14 

36 ± 2 
53 ± 5 
13 ± 6 

1.09 ± 0.06 
0.32 ± 0.03 
0.25 ± 0.08 

149 ± 6 
548 ± 291 
186 104 

56°C 
λ12* 
λ13 
λ32 

1.83 ± 0.07 
0.48 ± 0.04 

− 

34 ± 2 
41 ± 6 
− 

1.16 ± 0.07 
0.22 ± 0.03 

− 

141 ± 7 
288 ± 86 
− 

59°C 
λ12* 
λ13 
λ32 

1.83 ± 0.11 
0.31 ± 0.03 

− 

39 ± 3 
44 ± 8 
− 

0.37 ± 0.11 
0.21 ± 0.04 

− 

197 ± 63 
620 ± 398 

− 

61°C 
λ12* 
λ13 
λ32 

0.66 ± 0.02 
− 
− 

35 ± 2 
− 
− 

0.09 ± 0.01 
− 
− 

307 ± 131 
− 
− 
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Figure S8. Kinetics of lambda repressor multi-site probe mutants. (a) All the data for a series of 
mutants collected at various protein and guanidine hydrochloride (GuHCl) concentrations. The 
data were collected for different protein expressions and by different researchers to provide a 
picture of the consistency that can be obtained under different conditions. SE means that the data 
was fitted using a single-exponential fit (data in Figure S6, fit parameters in Table S2). DE τfast 
means that the data was fitted using a double-exponential fit and the fast phase is shown (data in 
Figure S7, fit parameters in Table S3, fast phase highlighted in bold font). λ12 is in blue, λ13 is in 
red, and λ32 is in green. λ12* corresponds to λ12 with 2.2 M GuHCl. Squares represent data taken 
at 50 µM protein concentration. Circles represent data taken at 309 µM, 373 µM, and 140 µM for 
λ12 with 2.2 M GuHCl (λ12*), λ13, and λ32, respectively. Error bars represent the fitting errors. (b) 
A plot of data for only the measurements collected at 50 µM protein concentration and without 
GuHCl. λ12 is more stable than λ13 and λ32. However, if time constants at temperatures that 
correspond to the melting midpoint temperatures of each respective protein are compared, the 
ordering of contact formation rate is λ12 = λ32 > λ13 going from the fastest to the slowest. λ12 and 
λ32 are indistinguishable within the experimental uncertainty. Solid arrows on the right highlight 
the observed trend. Solid parabolas are guides for the eye. (c) A plot of data for measurements 
where more temperature points were collected for λ12 and λ13 albeit at a higher protein 
concentration. 2.2 M GuHCl was used to destabilize λ12 and compare it directly with the other 
two mutants at the same temperatures. The order of contact formation is still λ12 = λ32 > λ13 going 
from the fastest to the slowest. Solid arrows on the right highlight the observed trend. Solid 
parabolas are guides for the eye. 
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MD simulation analysis 
 
Analysis of MD simulations 
Data from D. E. Shaw Research2 were recorded every 200 ps, yielding 805,107 frames. 
All frames were used for our analysis. MD data generated by the authors (the 100 ns 
simulations) were collected at 100 ps intervals. 
 
Table S4. Distance between fluorophore side chains and solvent accessible surface area (SASA). 
SASA was measured with a probe of 1.4 Å radius in VMD. Mean values and standard deviations 
were calculated using 1,000 data points from 100 ns long trajectories. For comparison, SASA of 
the completely exposed side chains are 279.5 Å (W) and 253 Å (Y).  

 λ12 λ13 λ32 λ14 λ42 λ42b 
W/Y position 22/33 22/51 51/33 22/69 69/33 62/33 
Distance (Å) 5.8±0.4 4.4±0.5 6.2±0.5 6.0±0.6 10.1±1.0 14.5±0.8 

W SASA (Å2)  8.4±7.4 15.0±9.1 40.7±19.3 17.1±10.2 5.7±3.9 41.9±14.6 
Y SASA (Å2) 75.3±11.4 9.0±6.0 60.3±16.1 1.8±3.27 62.5±21.1 62.1±24.3 
 
 
Order parameters 
The distance between residues was defined to be the distance between centers of mass of 
the side chains. This distance, as well as RMSF and RMSD were calculated using the 
“measure” script in VMD. 

The fraction of native contacts (Q) is the order parameter that measures the similarity 
of a given structure to a structure in the native state as defined based on Q by Wolynes et 
al.3 We used the alpha carbon atom distances for atoms with |i-j|≥7 excluding nearest 
neighbors: 

𝑄 𝑡 =
2

(#𝐶! − 6)(#𝐶! − 7)
exp − 𝑑!" 𝑡 − 𝑑!"!"#

! 2|𝑖 − 𝑗|!
#!!

!!! !!

#!!

!!!

 

 
Distributions of the inter-helical distances were calculated with the “histc” command of 
Matlab with the distance data binned into 0.5 Å intervals.  The free energy in the order 
parameters of choice was calculated as 𝐹𝐸 = −𝑘!𝑇𝑙𝑛𝑃, where P is the probability of 
observing a particular value of the order parameters based on the distribution, kB  – 
Boltzmann constant, and T – temperature. 
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Figure S9. Free energy profiles of lambda repressor along various order parameters (161 µs 
simulation data set courtesy of D. E. Shaw Research): (a) RMSD and Rgyr and (b) the fraction of 
native contacts, Q. 
 
 
 
 
Autocorrelation functions 

 
Figure S10. The autocorrelation in Fig. 3b most closely mimics the experimental observable 
(Dexter-quenched Trp-Tyr with a quenching efficiency δij~exp(-Δij/a), with fitted double 
exponential times λ13: 160±10 ns and 4.48±0.01 µs; λ32:191±5 ns and 4.26±0.01 µs ; λ12: 262±2 
ns and 4.22±0.01 µs). However, autocorrelation analysis of molecular dynamics time trajectories 
of distances Δij without Dexter transfer efficiency scaling produce the same time ordering. For 
Fig. 3b in the main text and Fig. S10 above, Matlab function xcov was used to obtain the 
autocorrelation of the time trajectory. The ordering is not sensitive to time-smoothing of the MD 
trajectory, as can be seen in panels a-c. 
 
 



 S12 

 
Figure S11. Smoothed (by a 2 µs Gaussian filter) time traces of distances (with respect to the 
native state values) between side chains of the simulated mutant where Trp and Tyr are located in 
λ12, λ13, and λ32 (shown in color) and raw time traces (shown in gray). 
 
 
 
 
 
 
 
 
 
 
 



 S13 

Transition matrix 
To calculate the transition matrix in Fig. 4j, we defined three states: native (N) with 
Q>0.6 and short inter-probe distances, trapped state (T) where Q>0.6, the distance 
between helices e.g. 1 and 3 (Δ13) is native-like (short) but distances between helices 1 
and 2 (Δ12) and helices 3 and 2 (Δ32) are longer than in a native structure (Δ13 < 3 Å while 
Δ12 > 5 Å and Δ32 > 5 Å), and denatured (D) state, which included all other possibilities. 
Transitions between and within the three states for three possible models were counted 
and probability of transition was normalized by the state. The matrix calculations were 
performed in Matlab. 
 
Table S5. Markov model is presented for the three-state system used for analysis of the 
off-pathway trap state with Δ13 < 3 Å while Δ12 > 5 Å and Δ32 > 5 Å (161 µs simulation 
data set courtesy of D. E. Shaw Research).  

State Native (N) Trapped (T)  
Δ13 < 3 Å 

Denatured (D) 

Native (N) 210,714 436 4,179 
Trapped (T) Δ13 < 3 Å 438 6,272 310 

Denatured (D) 4,176 312 578,269 
 
Table S6. Markov model is presented for the three-state system used for analysis of the 
potential off-pathway trap state with Δ12 < 3 Å while Δ13 > 5 Å and Δ32 > 5 Å (161 µs 
simulation data set courtesy of D. E. Shaw Research).  

State Native (N) Trapped (T) 
Δ12 < 3 Å 

Denatured (D) 

Native (N) 217,766 9 4,454 
Trapped (T) Δ12 < 3 Å 7 78 35 

Denatured (D) 4,455 33 578,269 
 
Table S7. Markov model is presented for the three-state system used for analysis of the 
potential off-pathway trap state with Δ32 < 3 Å while Δ12 > 5 Å and Δ13 > 5 Å (161 µs 
simulation data set courtesy of D. E. Shaw Research).  

State Native (N) Trapped (T) 
Δ32 < 3 Å 

Denatured (D) 

Native (N) 217,834 11 4,489 
Trapped (T) Δ32 < 3 Å 11 4 0 

Denatured (D) 4,455 0 578,269 
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Mean first passage time  
Mean first passage times on the estimated free energy profiles (Fig. 4b) were calculated 
using Matlab as follows:4  

𝑀𝐹𝑃𝑇 = 𝑑𝑦
!!

!!

exp  (𝛽𝐹𝐸 𝑦 )
𝐷(𝑦) exp  (−

!

!
𝛽𝐹𝐸 𝑧 )𝑑𝑧 

where FE(y) is the free energy estimate, D(y) is diffusion coefficient as a function of 
order parameter y, and 𝛽 = 1/𝑘!𝑇. 
The free energy along    the order parameter of choice (y) was estimated as 
 𝐹𝐸 𝑦 = −𝑘!𝑇𝑙𝑛

!!
∆!  

, where Pi is the probability of observing a value of the order 
parameter in the bin i based on the distribution of the MD data. 
Diffusion coefficients D(y) were estimated as follows:5  

𝐷 𝑦
!!!!

≈ ∆𝑦!𝑅!!!,!
𝑃!
𝑃!!!

! !  

, 

where i and i+1 are neighboring bins of yi  and yi+1  and Rij – elements of the rate matrix 
that for short Δt were approximated as follows: 

𝑅!"Δ𝑡 ≈
𝑁!" + 𝑁!"

𝑁!!𝑃! + 𝑁!!𝑃!
𝑃!   , 

where Nij – number of transitions from bin j to bin i. 
 
Table S8. Mean first passage time for Dexter-scaled MD trajectories binned into 20 bins 
for varied lag time (Δt, ns) as compared to the time scales from experiments and MD 
autocorrelation functions. 
 Experiment 

τ, µs 
Computation 
autocorrelation 
τ, µs 

MFPT, µs 
Δt=0.2  Δt=1  Δt=2  Δt=5  Δt=10  Δt=20  

λ12 43 4.22 0.038 0.18 0.37 0.91 1.85 4.2 
λ13 62 4.48 0.063 0.30 0.60 1.39 2.81 5.2 
λ32 49 4.26 0.047 0.21 0.42 1.15 1.88 4.0 
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