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SI Results
In the main manuscript, we chose to present results for four
different study data with five separate discrepancies and a single
number of ancestral populations per study. The results from this
analysis are simple to interpret and present an elegant motivating
example for the use of PPCs for generative models. In reality, we
fit a finite admixture model to one of four genomic datasets across
a range of numbers of latent ancestral populations. Although
these additional results include ideas that require additional
explanation beyond the results presented in the paper for single
values of K, we include them in the supplemental information to
show a more thorough but complex analysis of model fit to ge-
nomic data.

Discrepancy in Genomic Similarity. When we apply the discrepancy
for interindividual similarity to the four studies across multiple
numbers of ancestral populations K, we observed a general de-
creasing trend in similarity as we increased K. Taken by itself,
this trend might be seen as indicating that larger numbers of
populations lead to overfitting, but when we compare the ob-
served values to replications from the fitted model, we see the
same trend. Similarities for replicated genomes are consistently
lower, and more variable, as we increase K, indicating that lower
similarity values are an expected feature of more fine-grained
models. We can compare observed values to the distribution of
replicated values using the z scores for each population, which are
shown with a color scale. The POPRES data shows the strongest
pattern, with similarities that are consistently lower than expected
for K = 3 and 4, but values closer to the mean replicated similarity
around K = 7.
Individuals in the POPRES, ASW, and Indian data are, on

average, more similar to each other overall than individuals in
HapMap, as we might expect considering the low relative hetero-
zygosity in these regional studies relative to HapMap.
Across these studies, interindividual similarity tends to de-

crease as the number of ancestral populations increases. In the
Indian data, the average similarity across individuals in all three
populations in the K = 3 model is greater than the average sim-
ilarity across individuals in all six populations at K = 6, suggesting
that the estimates of the allele specific distributions associated
with each ancestral populations have greater uncertainty (i.e.,
minor allele frequency [MAF] estimates closer to 0.5 than 0 or 1)
as the number of populations increases.
HapMap z scores show that, regardless of the number of an-

cestral populations, the within-population variation is well cap-
tured by the admixture model. For POPRES, ASW, and Indian
data, however, there is a preference for certain numbers of an-
cestral populations. In ASW and Indian data we found that two
populations captured within-population variation well, and for
ASW, Indian, and POPRES, larger numbers of populations (seven
for POPRES) were necessary to capture within-population genetic
variance.

Discrepancy in Background LD. When we apply the discrepancy for
interindividual similarity to the four studies across multiple
numbers of ancestral populations K, we found that fitting an
admixture model with additional ancestral populations K gen-
erally increases the background LD observed within each pop-
ulation: for a fixed lag (say, 20 SNPs) there is generally an
increase in the average MI within ancestral populations as the
number of ancestral populations increases, indicating greater LD

at farther distances as population structure is modeled at finer
resolutions.
Next, we applied the LD discrepancy to our replicated data

(Fig. S2). The z scores for the POPRES data deviate substantially
from a standard normal for all lags at K = 3 indicating more
observed background LD than expected, but are better captured
by a standard normal for K = 5 at lags 25 and 30, and are below
the replicated MI values at the same lags for K = 8, indicating
less observed background LD than expected with respect to the
sample replicates. Thus, despite having larger absolute MI values,
admixture models with larger numbers of ancestral populations
capture less background LD than expected for larger lags. This
may be due to smaller population-specific sample sizes: as K in-
creases, MI values on the observed data are estimated from fewer
alleles, leading to greater variance.

Discrepancy in Reported Ancestry. We applied this FST discrepancy
to the observed data from the four studies across different
numbers of ancestral populations. We found that, in general, the
average FST across the K ancestral populations increased as we
increased the number of populations (Fig. S3), suggesting that,
as we divide genomes more finely between larger numbers of
ancestral populations, within each inferred population less in-
formation is captured about reported ancestries.
The naïve interpretation of the FST discrepancy applied to the

observed data are that increasing the number of estimated
populations leads to lower-quality models that fail to capture
meaningful population structure, including structure infor-
mation available in reported ancestries. Another interpreta-
tion is that the increase in FST as K increases is because the
number of alleles from which variance is estimated shrinks as
we partition genomes both by inferred ancestry and again by
reported ancestry. Consider an extreme case where every in-
dividual within an estimated population k has the same reported
ancestry A except for one with ancestry B. Because the allele
frequencies for population k and ancestry B are estimated from
only one genome, the variances are drastically underestimated.
We applied the FST discrepancy function to replicates from

each of the fitted models, conditional on the inferred ancestry
assignments for each SNP, to compute the z scores for this dis-
crepancy. HapMap requires six or more ancestral populations to
properly model the structure in the ancestry labels (there are 14).
In particular, the z scores for the POPRES data are well captured
by a standard normal across all numbers of inferred populations,
in agreement with previous results that inferred admixture pop-
ulations capture the same information as the 32 reported geo-
graphic labels at approximately K ≥ 4 (1, 2). In contrast, the Indian
data ancestry labels best capture the underlying heterogeneity in
the data with two populations, which is believed to be the truth
(3), but poorly fit a standard normal distribution for K > 3 despite
the large number of ancestral assignments (there are 15). We
hypothesize that the ancestry labels for the POPRES and Indian
data do not reflect underlying population structure, but instead
split each inferred population into partitions that do not have a
strong genomic signature, but instead reflect geographic or cul-
tural basis. On the HapMap data, the z scores indicate a poor
model fit to the population labels for K < 6. As prior work sug-
gests, the “best” number of ancestral populations in these data
were six (4).

Discrepancy in Uncertainty in Ancestral Population Assignments. We
applied the population assignment discrepancy to the observed
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data from the four studies across different numbers of ancestral
populations. We found that, in general, the average entropy across
ancestral populations increased as we increased the number of
ancestral populations (Fig. S4), illustrating that, as the number
of ancestral populations grows, the uncertainty in the population
assignments of alleles increases. This trend is stronger in the
two studies that have poorly separated ancestral populations
(POPRES, Indian).
The HapMap data are notable for this PPC: at every value of K

there is at least one population with average entropy lower than
expected by at least three SDs (z score < −3) (Fig. S4). These
populations with greater certainty than expected are enriched for
individuals with reported ancestry in South and Central Amer-
ica; for K = 3, this population with lower-than-expected entropy
combines the Americas and East Asia. In absolute terms, these
populations with greater than expected certainty have average
entropy within range across k. It is only when we compared ob-
served entropy to replication entropy that misspecification with
respect to these populations emerged.

Discrepancy in Correcting for Population Structure in Genome-Wide
Association Studies. We applied the association mapping dis-
crepancy function to the observed data and found variable results
across studies and numbers of ancestral populations (Fig. S5). We
found that the maximum log10 BF across studies and K was small
(<0.15) indicating that the model is effective at avoiding false
positives. This maximum log10 BF tended to decrease as we in-
creased the number of populations, indicating that overfitting
the admixture model is advantageous when using the parameters
for downstream structure corrections.
We then performed the PPC with this discrepancy function on

replicated data, and, as for our four other discrepancy functions,
we found that the PPC supports different conclusions than the
observed discrepancy. The largest deviations from normality in z
scores are at low numbers of populations for HapMap and
POPRES, but these studies violate normality of z scores in op-
posite directions. In HapMap at K = 3, log10 BFs are significantly
greater than expected under the model, showing that controlling
for biased estimates of latent structure limits the ability to reject
false positives in association testing. In POPRES at K ≤ 7, not
only are maximum log10 BFs small, they are significantly smaller
than expected according to the replicated data.

Summarizing PPC Results Within Study. Our results across PPCs do
not show a succinct picture of how admixture models are mis-
specified for genomic data, but instead tell a complex story for
each study. Although these results are written for the case of
multiple values of K, they are meant to supplement and detail the
summarized results in the main manuscript.
HapMap phase 3. Across our application of PPCs to the HapMap
phase 3 data, we found, not surprisingly, that there is substantial
allelic heterogeneity within individuals in ancestral populations,
illustrated in both interindividual PPC and the entropy PPC.
Moreover, we found substantial variability in allelic heterogeneity
across ancestral populations: admixture LD is badly misspecified
in the admixture model for these data. These data did not show

position specific background LD patterns we found in other
studies, but background LD was also misspecified for these data
across all tested values for K. The appropriate number of an-
cestral populations is in the range K ≥ 6. Below this range the
model does not fully account for information present in reported
ancestries, and cannot effectively filter false-positive gene asso-
ciations. For exploratory analyses relating to contrasting within-
and across-population heterogeneity, these PPCs would suggest
using more admixture models that capture background LD and
admixture LD with K ≥ 6 for these data, such as SABER (5).
European samples.Across our application of PPCs to the POPRES
data, we found that there was strong allelic homogeneity among
individuals within ancestral populations, and we also found that
there were strikingly similar levels of interindividual homogeneity
across populations from the interindividual PPC, background LD
PPC, and entropy PPC. Admixture LD and background LD were
misspecified in this application, but background LD was fit well
when K = 5 and lag was greater than 15. This indicates a possible
correction may be to subsample the genomic data every fifteenth
SNP in the data, although this would remove a large number of
SNPs that may be essential to discriminating these relatively similar
ancestral populations. It appears, across PPCs, that a good range of
K is around 4≤K ≤ 7; when correcting for population structure,
fitted parameters seem to perform well when K = 7 for these data.
For exploratory analyses related to European population sub-
structure, these PPCs would suggest using admixture models that
capture admixture LD, such as the Structure 2.0 method (6); an-
other indication would be to model latent structure with a con-
tinuous population model (e.g., principal components based).
African Americans. Across our application of PPCs to the ASW
data, we found strong allelic homogeneity within some ancestral
populations, and a large variance across populations for within-
population homogeneity. Unlike the first two applications, most
of the PPCs appear well fit for K = 4 for many downstream
analyses; the one exception is for the background LD, where all
models appeared misspecified across most lags in SNP adjacency.
For these data, it may be useful to include a more descriptive
model of background LD (5), which may change the appropriate
number of ancestral populations (7). Nonetheless, this application,
with recent admixture between two well-separated ancestral pop-
ulations, appears well suited for analysis using the admixture model.
Continental Indians. Across our application of PPCs to the Indian
data, we found substantial allelic homogeneity among individuals
within a population, and little variation among the estimated
ancestral populations in the homogeneity of the individuals, al-
though there is more variation in this application than in the
POPRES application. Because we see so little variation among
estimated ancestral population, but we believe the true ancestral
populations may be well separated, it is possible that the more
ancient admixture events and the absence of an individual with
ancestry in only one of the ancestral populations imply poor
estimation of the ancestral populations. Despite this, it appears
that, across the PPCs, K = 2 with a base-pair lag of greater than
10 is well-specified across many downstream analyses.
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Fig. S1. Average population-specific interindividual similarity, varying K, across four studies. Each x axis represents the number of ancestral populations in the
fitted admixture model; panels represent application to HapMap, POPRES, ASW, and Indian studies, respectively. The y axis represents the mean interindividual
similarity across individuals conditioned on each ancestral population. Small semitransparent points represent values from replicated data. Larger points
represent values from real data, colored by their z scores relative to the empirical distributions of the replicated values. Stars indicate significant divergence in
z scores from a standard normal. (A) HapMap data; (B) POPRES data; (C) ASW data; and (D) Indian data, with K = 2,3,4,5,6.
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Fig. S2. LD discrepancy function PPC, varying K, across four studies. Each x axis indicates the number of lag SNPs between pairs of SNPs over which mutual
information is averaged. The y axis represents the average mutual information between SNPs at varying lags. Each panel shows different numbers of ancestral
populations in the fitted admixture models. Observed values for each population are connected by lines across lags and colored by z score. Stars indicate
significant divergence in z scores from a standard normal. (A) HapMap data, with K = 3,5,8; (B) POPRES data, with K = 3,5,8; (C) ASW data, with K = 2,3,5; and
(D) Indian data, with K = 2,3,5.
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Fig. S3. FST discrepancy function, varying K, across four studies. The x axis represents the number of ancestral populations K in the fitted admixture model;
columns represent application to HapMap, POPRES, ASW, and Indian studies, respectively. The y axis represents the FST value of a single ancestral population
k with respect to the self-reported ancestry information. Smaller values indicate a closer match between the reported and estimated ancestral populations.
POPRES values are within the expected range for all K, indicating that the increasing observed values are an artifact of increasing subdivision of the data. For
HapMap K = 6 is the smallest model for which reported ancestries are no longer informative. With the smaller datasets (ASW, Indian), models with more
populations show consistently lower association between alleles and reported labels than expected. (A) HapMap data; (B) POPRES data; (C) ASW data; and
(D) Indian data, with K = 2,3,4,5,6.
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Fig. S4. Average entropy discrepancy function, varying K, across four studies. The x axis represents the number of ancestral populations in the fitted ad-
mixture model; panels represent application to HapMap, POPRES, ASW, and Indian studies. The y axis represents the average entropy of the posterior dis-
tribution over populations for each allele. Larger absolute value entropy represents greater uncertainty over population assignments. Replicated values are
shown as smaller gray circles. (A) HapMap data; (B) POPRES data; (C) ASW data; and (D) Indian data, with K = 2,3,4,5,6.
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Fig. S5. Association mapping correction PPC, varying K, across four studies. The x axis represents the number of ancestral populations in the fitted admixture
model; panels represent application to HapMap, POPRES, ASW, and Indian studies, respectively. The y axis represents maximum log10 BFs. Maximum log10 BFs
from replicated genomes are shown with smaller gray points. Colors of the observed data discrepancy values represent the z score with respect to the rep-
licated samples from fitted admixture models. Stars indicate deviation from normality in z scores, suggesting that larger numbers of populations are more
effective in controlling for latent population structure in POPRES and, to a lesser degree, HapMap. (A) HapMap data; (B) POPRES data; (C) ASW data; and
(D) Indian data, with K = 2,3,4,5,6.
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