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S.1 Nomenclature

Table S.1: Symbols used in the supplementary material.

Symbol Variable

S
p

ec
ie

s

M mRNA
P dark protein
F fluorescent protein
I protein fluorescence intensity
A autofluorescence artifacts and technical noise
Y total fluorescence

P
a
ra

m
et

er
s

MkM mean of the mRNA production rate across the population
VkM variance of the mRNA production rate across the population
kP protein production rate
kF protein maturation rate
cM mRNA degradation rate
cP protein degradation rate
dr dark reversion: decay parameter
h dark reversion: lag parameter
r scaling parameter to convert F into I

M
o
m

en
ts

µ̃e vector of all the uncentered moments up to order 4 in experiment e
µAi centered moment of order i of the autofluorescence and technical noise A
µe Fi centered moment of order i of F in experiment e
µe Ii centered moment of order i of I in experiment e
µei centered moment of order i of Y in experiment e
µ̂ei centered moment of order i of Y , estimated from measured data of experiment e

O
th

er
s

L sequence of red and far-red light pulses
γ̃ vector of all parameters except the scaling factor: [MkM VkM kP kF cM cP dr h]
γ vector of all parameters: [γ̃ r]
γ̂i MAP estimate of the parameter vector after i optimal experiments
I(γ, e) Fisher information matrix for experiment e, according to the parameter vector γ
N number of samples taken in every measurement
Q number of particles sampled from the parameter posterior distribution
u(t; γ, L) input that models the effect of the light pattern L on the mRNA production rate,

given the dark reversion parameters dr, h

∗J.R. and F.P. contributed equally to this work.
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Table S.2: Nomenclature associated with the experiments used to infer the parameters.

Name Type Figure illustrating the data

O1 first optimal Figure 2B (main text)
O2 second optimal Figure 2C (main text)

R1 random Figure S.5 R1
R2 random Figure S.5 R2
R3 random Figure S.5 R3

I1 experience-based Figure S.6 I1
I2 experience-based Figure S.6 I2
I3 experience-based Figure S.6 I3

Table S.3: Nomenclature associated with the validation and control experiments.

Name Type Figure illustrating the data

V1 validation Figure 3 (main text)
V2 validation Figure 4 (main text)

C1 control (mean) Figure 5A (main text)
C2 control (mean) Figure 5B (main text)
C3 control (variance) Figure 5C (main text)
C4 control (CV) Figure 5D (main text)

S.2 Stochastic modeling of the light-inducible gene expression circuit

S.2.1 Description of the biochemical reaction network

To model the light-inducible gene expression circuit we use the biochemical reaction network illustrated
in Figure 1 in the main text, that consists of the following reactions:

Reaction 1: ∅
kM ·u(t)
−−−−−→ M

Reaction 2: M
cM

−−−−−→ ∅

Reaction 3: M
kP

−−−−−→ M + P

Reaction 4: P
kF

−−−−−→ F

Reaction 5: P
cP

−−−−−→ ∅

Reaction 6: F
cP

−−−−−→ ∅,

where the empty set ∅ denotes that a certain species is produced or degraded without involving the other
species, in other words enters of leaves the system. This reaction network is similar to the one used in
[1] but contains a crucial difference in the way the light signal u(t) is incorporated. Here, we assume
that the mRNA production rate is multiplied by the signal u(t) = u(t; γ, L), where γ is the vector of
parameters and L is the applied light-pattern,

u(t; γ, L) = U
e−dr(t−tc)

e−dr(t−tc) + h
,

see Section S.2.1.1 for a more detailed derivation. When a red pulse is applied, tc is reset to the current
time and U is set to one, so that mRNA transcription takes place with maximum rate. The unknown
parameters dr and h capture the natural decay of the signal after a red pulse due to dark reversion [1].
When a far-red pulse is applied U is set to zero, so that transcription is arrested until a new red pulse
is applied.
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S.2.1.1 A theoretical justification for the input signal form

In this section, based on the available knowledge of the light-responsive PhyB-PIF3 module [2] used in
the circuit, we derive a model that maps the applied light-induction pattern into a time-varying mRNA
transcription rate profile. Since PhyB and PIF3 are highly abundant in the cell (� 1), we use for this
specific task a deterministic model. More in detail, the PhyB-PIF3 system can be modeled using the
following reaction scheme (further details can be found in [3]):

∅
kBr−−−→ Br

cD−−→ ∅ (1)

∅
kP3−−→ P3

cD−−→ ∅ (2)

Br
R−⇀↽−

dr,FR
Bfr (3)

Bfr + P3

k1−⇀↽−
k−1

BfrP3 (4)

BfrP3
dr,FR−−−−→ Br + P3 (5)

Bfr
cD−−→ ∅ (6)

BfrP3
cD−−→ ∅ (7)

In these reactions, PhyB (denoted by B) is assumed to be found in two states: the red-absorbing
(inactive) form, Br and the far-red absorbing (active) form, Bfr. PIF3 is denoted by P3. Both proteins
are produced constitutively in our system (with rates kBr and kP3 , respectively), and are known to be
very stable, which means that they are removed only by dilution due to cell growth and division (with
rate cD). Reaction (3) encodes the fact that red light (denoted by R) activates PhyB, while far-red light
(denoted by FR) deactivates it1. The active form of PhyB can also spontaneously revert to the inactive
form in the dark, through a phenomenon called dark reversion, that happens with rate dr. The dark
reversion half-life of PhyB is known to be in the order of tens of minutes, or even hours, depending
on the cellular context. Active PhyB is able to bind to PIF3 to form a complex BfrP3. This complex
can also decay through dark reversion, as modeled by reaction (5). Moreover, it is known that PhyB
(in)activation by light is a very fast reaction that is completed in a fraction of a second, and that complex
formation proceeds much faster than dark reversion or cell growth. Thus, after the application of red
light, we can consider (4) to be at equilibrium at any given time. That is,

[Bfr] · [P3]

x
=
k−1

k1
= K, (8)

where x = [BfrP3] denotes the concentration of the complex BfrP3.

Let the total amount of PhyB be denoted by BTOT and the total amount of PIF3 by PTOT3 ,

BTOT = Br +Bfr +BfrP3,

PTOT3 = P3 +BfrP3.

In the following we assume that the total amounts of PhyB and PIF3 are constant over all experiments,
since their respective genes are transcribed from constitutive promoters, as described in [1]. Hence,
BTOT and PTOT3 are constant over the course of the experiment.

Our main assumption is that the mRNA transcription rate is proportional to the concentration of the
complex BfrP3 present in the cell, which is able to recruit the Gal4 activation domain to the Gal4
promoter. To this end let

s(t) =
[Bfr(t)] + x(t)

[BTOT ]
= 1− [Br(t)]

[BTOT ]
, (9)

1To be more precise, red light also partially inactivates active PhyB, while far-red light partially activates the inac-
tive form. In other words, red and far-red light both establish a photoequilibrium of phytochrome molecules. For
simplicity, the residual (in)activation by the opposite wavelength can be safely ignored, since it is relatively small.
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denote the relative concentration of PhyB molecules that are in the active form, both free or bound to
PIF3. When a red pulse is applied all the inactive PhyB becomes active (Br = 0). Therefore, according
to equation (9), the effect of a red pulse is to reset the signal s to 1. On the other hand, if a far-red pulse
is applied all the active PhyB (even the one bound with PIF3) becomes inactive, hence Br = BTOT and
s = 0. Finally, in the dark the amount of active PhyB slowly decays according to reactions (3) and (5),
due to the dark-reversion effect. In particular, in between pulses, the amount of inactive PhyB follows
the differential equation

d

dt
[Br(t)] = dr([Bfr(t)] + x(t)).

This equation allows us to find the evolution of s in between pulses. In fact

d

dt
s(t) =

d

dt

(
1− [Br(t)]

[BTOT ]

)
= −

d
dt

[Br(t)]

[BTOT ]
= −dr

[Bfr(t)] + x(t)

[BTOT ]
= −drs(t).

Overall, the evolution of s is thus given by

s(t; γ, L) = Ue−dr(t−tc), (10)

where tc is the time when the last pulse was applied and U is set to 1 when a red-pulse is applied and
to 0 when a far-red pulse is applied.

The amount of the complex BfrP3 is related to the signal s by the following algebraic equation.

x(t) =
[
BTOT

]
s(t)− [Bfr(t)]

=
[
BTOT

]
s(t)−K x(t)

[P3(t)]

=
[
BTOT

]
s(t)−K x(t)

[PTOT3 ]− x(t)
, (11)

where we used the definition of BTOT in the first line, equation (8) in the second line and the definition
of PTOT3 in the last line. From (11) we get the quadratic equation

x2 − x
(
K +

[
PTOT3

]
+
[
BTOT

]
s
)

+
[
BTOT

] [
PTOT3

]
s = 0,

where for simplicity we dropped the dependence on time. This has solutions

x1,2 =

(
K +

[
PTOT3

]
+
[
BTOT

]
s
)
±√y

2
, where

y =
(
K +

[
PTOT3

]
+
[
BTOT

]
s
)2 − 4

[
PTOT3

] [
BTOT

]
s.

The solution x1, with positive sign, is not feasible since it would imply

2x = K+
[
PTOT3

]
+
[
BTOT

]
s+
√
y = K+ [P3] +x+ [Bfr] +x+

√
y ⇒ 0 = K+ [P3] + [Bfr] +

√
y > 0,

which is indeed impossible.

Hence the relation between x and s is given by

x =

(
K +

[
PTOT3

]
+
[
BTOT

]
s
)
−
√

(K + [PTOT3 ] + [BTOT ] s)
2 − 4PTOT3 [BTOT ] s

2
. (12)

Fig. S.1 illustrates this behavior for three different concentrations of total PhyB: 50, 500 and 1000 nM.
In each plot we used 10 different values of K, equally spaced between 10 and 100 (since the dissociation
constant of the PhyB-PIF6 complex has been previously estimated to be between 20 and 100 nM [4]),
and we assumed a total PIF3 concentration of 100 nM (∼ 2000 molecules per cell). From these plots it
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Figure S.1: Relation between x and s according to equation (12), for
[
PTOT3

]
= 100, K ∈

{10, 20, . . . , 100} and three different values of
[
BTOT

]
.

appears that the exact functional relation between x and s given in equation (12), can be approximated
using the Michaelis-Menten equation

x ∼ xmax
s

s+ h
, (13)

where h is an unknown parameter related to K,
[
PTOT3

]
and

[
BTOT

]
, and xmax is a scaling parameter.

In particular, we observe that if the total PhyB (BTOT ) is less abundant than the total PIF3 PTOT3

(left plot), then the relation between x and s is linear (obtainable for h large) while in the opposite
case (middle and right plots) it has a hyperbolic shape (obtainable for h small). The quality of the
approximation given in equation (13) is ultimately validated by the fact that this model can precisely
fit and predict measured data (as presented in the main paper).

Finally, we expect the mRNA transcription rate (rM ) to be approximately proportional to the concen-
tration of x, hence by using equations (10) and (13), we finally get

rM ∼ ρx ∼ ρxmax
s

s+ h
:= kM · U

e−dr(t−tc)

e−dr(t−tc) + h
:= kM · u(t; γ, L), (14)

where dr, kM and h are unknown parameters that have to be estimated from real data.

S.2.2 Conditional chemical master equation and population moment equations

In the previous section we described a biochemical reaction network that consists of 3 distinct chemical
species and 6 reactions. If the system is well stirred and in thermal equilibrium, it can be modeled by
a continuous-time Markov chain (CTMC) X(t) = [M(t) P (t) F (t)]> that describes how the amounts
of molecules of the different species change in time [5]. X(t) can take states x = [x1 x2 x3]> in N3.
The rate of occurrence for each possible reaction k is described by the reaction propensities ak(x; θ) :
N3 × (R+

0 )7 7→ R+
0 , k = 1, . . . , 6, which depend on the amounts x of molecules of the different species

which are present in the system and on the parameter vector θ = [kM kP kF cM cP dr h]>. The
propensity a1(x; θ) = a1(θ1, u(t)) of the mRNA production reaction also depends on the light-induction
pattern L through the signal u(t) = u(t; γ, L). In other words ak(x; θ)dt is the probability that the k-th
reaction takes place in an infinitesimal time interval [t, t+ dt] given that X(t) = x.

As stated in the main text, we assume that the parameter kM varies between the cells according to a
gamma distribution PkM with unknown mean MkM and variance VkM . Note that the gamma distribution
is a generalization of the exponential distribution and can be used to approximate a wide variety of shapes.
This assumption means that we allow the parameter kM to vary among cells but not in time. Other
formulations in which kM is allowed to additionally fluctuate in time would also be possible [6, 7], but
we do not investigate such approaches here. Under our assumption, the time evolution of the amounts
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of molecules in an individual cell can be described by a CTMC conditioned on the value of kM in that
cell. Consequently, we obtain a conditional chemical master equation (CME)

d

dt
p(x, t|kM ) =

6∑
k=1

−p(x, t|kM )ak(x; θ) +

6∑
k=1

p(x− νk, t|kM )ak(x− νk; θ), (15)

where p(x, t|kM ) is the probability that x molecules are present at time t conditional on the value of
the parameter kM in the cell. νk ∈ Z3, k = 1, . . . , 6 are the stoichiometric transition vectors of the
6 chemical reactions. Equation (15) implies that the stoichiometric transition vectors νk, the reaction
propensities ak(x; θ), the value of kM and the initial probability distribution p(x, 0|kM ) determine the
probabilities of having any possible combination of molecule counts x present in the cell at any time t,
i.e. they determine p(x, t|kM ) for all x ∈ N3 and t > 0. Solving (15) for p(x, t|kM ) is, however, usually
very difficult and would anyway only give the probabilities for a cell with a specific value of kM and not
the population distribution.

By integrating (15) over all possible values of kM with respect to the probability measure PkM and
simultaneously multiplying by different polynomials in x and summing over all possible values of x, we
can derive a system of population moment equations from (15) (see reference [8]) that depends on those
rate parameters that are fixed for all cells in the population and on the moments of the distribution
PkM . Since we assumed that PkM is an unknown gamma distribution parametrized by its mean and
variance, we obtain a system of population moment equations that depends on the parameter vector
γ̃ = [MkM VkM kP kF cM cP dr h]>

d

dt
µ̃(t; γ̃) = A(γ̃, u(t; γ̃, L)) µ̃(t, γ̃) +B(γ̃, u(t; γ̃, L)), (16)

where L is the light-induction pattern and µ̃(t; γ̃) is a vector which comprises moments up to a desired
order (in our case four) of the joint distribution of X(t) and the parameter kM (the tilde here serves to
refer to moments of the entire joint distribution whereas the symbol µ will be used later on to refer to
moments of a marginal distribution which can be associated with the measured fluorescence distribution).
The matrix A(γ̃, u(t; γ̃, L)) is determined by the model, the parameters γ̃ and the light induction pattern.
For our model, (16) is a system of 65 non-linear ordinary differential equations for the moments up to
order four that is closed in the sense that it does not depend on moments of higher order. Hence, its
solution can be computed numerically using standard solvers for ordinary differential equations. For
non-closed moment systems, (16) would have to be replaced by an approximate closed system using
some approximation technique [9, 10].

S.2.3 Measurement error model and moments of the fluorescence intensity distribution

From the solution of (16) we can extract the mean µF1 (t; γ̃) ∈ R+
0 and the centered moments up to order

four µF2 (t; γ̃) ∈ R+
0 , µ

F
3 (t; γ̃) ∈ R, µF4 (t; γ̃) ∈ R+

0 of the marginal distribution pFt (·; γ̃) of the amount of
fluorescent protein F (t). To compare this model output with the measurements we first need to convert
these moments into fluorescence intensity units. We assume that each molecule emits a deterministic but
unknown amount of fluorescence. This means that there exists an unknown scaling parameter r ∈ R+

by which we can multiply the molecule count output of the model to obtain the fluorescence intensity
I(t) ∈ R+

0 , i.e. I(t) = rF (t). Since r is unknown it has to be included as an unknown model parameter
leading to the final 9-dimensional parameter vector γ = [γ1 · · · γ9]> = [MkM VkM kP kF cM cP dr h r]

>.
The mean µI1(t; γ) and the centered moments up to order four µI2(t; γ), µI3(t; γ), µI4(t; γ) of the distribution
pIt (·; γ) of I(t) can then be obtained as follows:

µI1(t; γ) = rµF1 (t; γ̃)

µI2(t; γ) = r2µF2 (t; γ̃)

µI3(t; γ) = r3µF3 (t; γ̃) (17)

µI4(t; γ) = r4µF4 (t; γ̃).
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At every measurement time t, the collected data are the measured fluorescence intensities of the N cells
of the sample, which we denote as {yn(t)}Nn=1. We assume that these measurements are affected by
additive noise terms due mainly to two different sources: autofluorescence artifacts and technical errors.
Accordingly, each measurement yn(t) can be decomposed as follows:

yn(t) = rfn(t) + eBn + eTn

where rfn(t) is the quantity of interest, that is a realization of the random fluorescence intensity I(t) =
rF (t) due to the fluorescent protein F (t), eBn is a particular autofluorescence artifact and eTn is a particular
realization of the technical noise. In our model we assume that both the autofluorescence and technical
errors are independent of the gene expression process and that they are realizations of two random
variables whose distributions do not depend on time. More analytically, we assume that every cell
is characterized by a different value of autofluorescence eBn and that the measurement of every cell is
affected by a different realization eTn of the technical noise. Since in every sample we measure different
cells, we can assume that there exists a unique random variable A such that for every measurement
time t the elements of {eBn + eTn}Nn=1 are independent realizations of A. The random process Y (t) of
which the real measurements are taken is then given by

Y (t) = I(t) +A = rF (t) +A.

We assume that at time t = 0 no fluorescent protein is present in the cells. Consequently, any measured
fluorescence signal at t = 0 stems from A and we can estimate the distribution pA(·) of A, its mean µA1
and the centered moments up to order four µA2 , µ

A
3 , µ

A
4 from the realizations of the fluorescence intensity

Y (0) measured in the N cells of the sample at time 0. Since pA(·) is the same for all experiments
this estimation can also be performed using measurements at t = 0 obtained from multiple different
experiments. Accordingly, we assume that data from sufficiently many cells is used in this estimation
such that the statistical error of the estimates is negligible, i.e. that the moments µA1 , µ

A
2 , µ

A
3 , µ

A
4 can

be computed from the data without any significant error. This allows us to perform the final step
that is required to align the model predictions with the real measurements: we need to convolute the
distribution pIt (·; γ) of I(t), predicted by the model, with pA(·) and obtain distributions pYt (·, γ) of
Y (t) = I(t) + A which are compatible with the measured distributions. To be precise, we only require
the mean µ1(t; γ) and the centered moments up to order four µ2(t; γ), µ3(t; γ), µ4(t; γ) of pYt (·, γ) for
our sequential experiment design procedure (the subscript Y is dropped in the moments notation for
simplicity). These can easily be obtained from the moments up to order 4 of I(t) and A, that is
{µIi (t, γ), µAi }4i=1. Consequently, we do not actually have to perform the full convolution and we also
do not require the full distributions pIt (·, γ) and pA(·). This is important because the full distribution
pIt (·, γ) cannot be computed from the population moment equations. For the first two moments we
obtain

µ1(t; γ) = µI1(t; γ) + µA1 ,

µ2(t; γ) = µI2(t; γ) + µA2 ,

therefore the effect of the measurement noise A is to introduce a constant offset on the mean and variance
of I(t).

Finally, notice that the data, µ1(ts) and µ2(ts), to which we compare the model predictions are estimated
from the measurements {Yn(ts)}Nn=1, that is

µ̂1(ts) =
1

N

N∑
n=1

Yn(ts), (18)

µ̂2(ts) =
1

N

N∑
n=1

(Yn(ts)− µ̂1(ts))
2.

Regarding the measurements {Yn(ts)}Nn=1 as random variables, the estimated mean and variance are
random quantities as well, whose distribution depends on the distribution of Y (ts) and on the number
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of samples taken. According to the central limit theorem, for large values of N , the distribution of
the random vector µ̂(ts) := [µ̂1(ts) µ̂2(ts)]

> is approximately Gaussian with mean and variance that
depend on the moments up to order 4 of Y (t) [8]. The data distribution predicted by the model is
therefore

E [µ̂(ts; γ)] = [µ1(ts; γ) µ2(ts; γ)]> , (19)

Var [µ̂(ts; γ)] =
1

N

[
µ2(ts; γ) µ3(ts; γ)
µ3(ts; γ) µ4(ts; γ)− N−3

N−1
µ2(ts; γ)2

]
.

S.2.4 Noise properties of the system

To summarize, our model encodes three main sources of variability. Firstly, we assume the presence of
time-independent and process uncorrelated measurement noise, which produces an offset in the predic-
tions of the fluorescence intensity mean and variance. Secondly, since we estimate means and variances
from a finite sample, the data is approximately normally distributed around the predicted means and
variances according to formula (19). Thirdly, variability coming for example from the fact that the cells
are not identical, is allowed in our model through the parameter kM , which models cell heterogeneity.
Further noise sources could be added by allowing additional parameters to be heterogeneous among
the population, or as suggested in [6], by including simultaneous events (e.g. bursts in the protein
production) or more complicated non-constant models for the variability in the rates.

In order to judge whether our model can explain the variability observed in the data, we considered the
experiment in Figure 4 of the main text. Specifically, we used the data shown in Figure 4 (black dots) to
identify the vector of parameters γ̂F4 that produces the best possible fit for this particular experiment,
that is its MAP estimator. In Figure S.2 we show the predictions of mean and variance obtained using
γ̂F4, together with their uncertainty coming from our noise model.
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Figure S.2: Two replicates of the experiment in Figure 4 of the main text (data are shown as black and
blue dots respectively). The red lines are the simulated mean and variance computed using
the model with parameters γ̂F4. The shaded region shows the 99% confidence region coming
from the finite sampling Gaussian error distribution computed in formula (19). The additive
noise terms due to autofluorescence artifacts and technical errors appear in these plots as a
time invariant additive mean µA and variance σ2

A which become evident at time 0 where the
real process mean and variance should otherwise be zero.
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We then performed a replicate of the experiment in Figure 4 and verified that the new collected data (blue
dots), which were not used to identify γ̂F4, lie inside the predicted confidence region, hence validating
our noise model. We note that in Figure S.2 it can be seen that the uncertainty in the predicted means
and variances is not constant over time. This is due to the fact that the uncertainty in the estimates
µ̂(ts) := [µ̂1(ts) µ̂2(ts)]

> depends on the process distribution. For example, if we consider the estimate of
the mean, we see from formula (19), that its variance is proportional to the variance of the fluorescence
intensity. Therefore we can expect that whenever the process has high variance, the estimate of the
mean will also have large uncertainty.

As a final note to this, we would like to point out that it has to be expected that the variance of the
fluorescence distribution (and hence the uncertainty in the estimated mean) increases whenever the mean
increases, because the variance is not a scale free measure. On the other hand, one would expect the
coefficient of variation to decrease with increasing mean, because a larger mean corresponds to larger
molecule numbers, and this should lower the stochasticity in the individual chemical reactions. To better
illustrate this point we compare in Figure S.3 the measured mean, variance and coefficient of variation
in the two optimal experiments, together with their predictions according to the model with parameters
γ̂2 (see Table S.5). To compute the coefficient of variation, we used the moments of I(t), that is we first
subtracted mean and variance of A from the measured moments. This is necessary because otherwise
differences in the coefficient of variation that stem from larger molecule numbers might be overshadowed
by the autofluorescence and technical noise. As expected we can see in Figure S.3 that whenever the mean
increases the variance also increases but at the same time the coefficient of variation decreases.
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Figure S.3: Black dots: mean (top), variance (middle) and coefficient of variation (bottom) measured
in the first (left) and second (right) optimally designed experiment. The solid blue line is
the prediction obtained by simulating the model with parameters γ̂2 (see Table S.5). The
grey shaded area is the confidence region due to finite sampling noise (N = 2000). Early
measurement time points are not included for the coefficient of variation because at those
time points the measured distribution is only marginally different from the noise distribution
A, hence the computation of the coefficient of variation of the deconvoluted distribution I(t)
may be unreliable.
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S.3 Optimal experiment design

S.3.1 Computation of the Fisher information matrix

The first thing that is required for the design of optimal experiments is a way of quantifying the utility
of different experiments. The goal of our study is to estimate the model parameters γ with the highest
possible precision. Accordingly, we quantify the utility in terms of the information that an experiment
can provide about γ. One way of quantifying this information is through the computation of the Fisher
information matrix I(γ) [11]. The entries of the Fisher information matrix are given by

[I(γ)]k,l = E
[(

∂

∂γk
log p(Ȳ ; γ)

)(
∂

∂γl
log p(Ȳ ; γ)

)]
, (20)

where p(· ; γ) is the probability density of the data Ȳ given that γ are the model parameters, and the
expectation is taken with respect to all possible realizations of the data Ȳ . Thereby, the data Ȳ is a
collection of measurements taken from the process Y (t) at multiple different time points and possibly
even in different experiments. Accordingly, the expectation in (20) is taken with respect to a very high
dimensional and complicated distribution.

In our case, an experiment e = {Le, t1, . . . , tS} is characterized by a light pattern Le and measurement
times t1, . . . , tS . At each of these time points, flow cytometry allows us to measure a realization of the
random fluorescence intensities Yn(ts), n = 1, . . . , N in N different cells of the population. The Fisher
information matrix for such data can be approximately computed, using only the first four moments of
the probability distribution, according to the formulas derived in references [7] and [12]:

I(γ, e) =

S∑
s=1

Iets(γ) where (21)

[Iets(γ)]
k,l

= N

∂µe
1(ts)

∂γk

∂µe
1(ts)

∂γl

µe2(ts)
+N

(
µe2(ts)

∂µe
2(ts)

∂γk
− ∂µe

1(ts)

∂γk
µe3(ts)

)(
µe2(ts)

∂µe
2(ts)

∂γl
− ∂µe

1(ts)

∂γl
µe3(ts)

)
(µe2(ts))2 (µe4(ts)− (µe2(ts))2)− µe2(ts)(µe3(ts))2

,

where µe1(ts) = µe1(ts; γ) is the mean and µei (ts) = µei (ts; γ), i = 2, 3, 4 are the centered moments of
the distribution pYts(·; γ) of Y (ts) for experiment e, as introduced in the previous section. To evaluate
this formula, in addition to the moments themselves, partial derivatives of means µe1(ts; γ) and variances
µe2(ts; γ) with respect to γ have to be computed from the model. For the parameters γ̃ the partial
derivatives of the moments µeFi (ts; γ̃), i = 1, 2 can be obtained by solving the population moment equa-
tions (16) with any solver for ordinary differential equations which also returns parameter sensitivities,
such as CVODES of the SUNDIALS toolbox [13]. From this we can compute the partial derivatives of
µei (ts; γ), i = 1, 2 because

∂µei (ts; γ)

∂γk
=
∂(riµeFi (ts; γ̃) + µAi )

∂γk
= ri

∂µeFi (ts; γ̃)

∂γk

for i = 1, 2 and k = 1, . . . , 8.

Because the moments µeFi (ts; γ̃), i = 1, 2 do not depend on the parameter r, the partial derivatives of
µei (ts; γ), i = 1, 2 with respect to γ9 = r can be computed as follows:

∂µe1(ts; γ)

∂r
=
∂(rµeF1 (ts; γ̃) + µA1 )

∂r
= µeF1 (ts; γ̃)

∂µe2(ts; γ)

∂r
=
∂(r2µeF2 (ts; γ̃) + µA2 )

∂r
= 2rµeF2 (ts; γ̃).
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S.3.2 Sequential experiment design

The expectation in (20) is taken with respect to all possible realizations of the data. Accordingly, the
Fisher information matrix does not depend on any measurements and we can use it to evaluate the
utility of different experiments before they are performed. This means that we can search among all
possible experiments for the one which can be expected to provide the most information about the model
parameters. In other words we can aim at solving the optimization problem

e∗ = argmax
e∈E

{det I(γ, e)}, (22)

where I(γ, e) is the approximate Fisher information matrix defined in (21), E is the set of all possible
experiments and an experiment e = {Le, t1, . . . , tS} ∈ E consists of a light-induction pattern Le and
S measurement times t1, . . . , tS ∈ [0, Tmax] where Tmax is the maximal duration of the experiment.
The determinant det I(γ, e) in (22) provides one way of summarizing the information of an experiment
in a scalar quantity that can be maximized. This is known as D-optimality. There exist many other
optimality criteria, we refer the reader to [14, 15] for a detailed discussion.

It is important to underline that the Fisher information matrix depends on the values of the parameters γ
which are to be estimated. These parameters are obviously unknown (otherwise performing an exper-
iment for their identification would not be necessary). One way to overcome this problem is to invoke
sequential experiment design. In sequential experiment design the parameters γ are replaced by their
best currently available estimates γ̂, so that a new experiment is designed using γ̂ for the computation
of the Fisher information matrix. The data collected in this experiment can then be used to improve the
quality of the estimates and another experiment can be designed with the updated parameter estimates.
In general, there is no guarantee that evaluating I(γ, e) at estimated values γ̂ will result in the design
of informative experiments. Simulation studies [16], however, have shown that sequential experiment
design often leads to good results, especially if many different experiments are needed to identify the
model parameters.

Here, we follow such a sequential experiment design procedure. To be able to design the first experiment
we used values found in [1] as initial estimates γ̂0 of the model parameters. Note that the index at the
estimates refers to the number of experiments which have been performed to estimate the parameters and
not to a component of the parameter vector. Specifically, we fixed ĉ0M = 0.03, ĉ0P = 0.0066, k̂0F = 0.0419
to the values found in [1] and M̂0

kM
= 0.9 and k̂0P = 0.22 such that 30 mRNA molecules and 1000 protein

molecules would on average be present at stationarity if the light signal u(t) would be constantly at 1.
Further, we chose V̂ 0

kM
= 0.27 such that the coefficient of variation of kM is 0.3 and the light parameters

d̂0r = 0.0155, ĥ0 = 0.5 such that the light signal drops slowly over time if no new light pulses are applied
to the cells. Since no a priori knowledge of the scaling parameter r was available we set its estimate to
r̂0 = 103.

The moments µi(ts; γ), i = 1, . . . , 4, s = 1, . . . , S depend on the moments µAi , i = 1, . . . , 4. Accordingly,
also the Fisher information matrix depends on them and we have to choose initial estimates also for
these moments if we want to design an experiment before any data is collected. We chose µA1 = 4

3
such

that the application of a single red light pulse at time zero leads approximately to a 7-fold increase in
the average fluorescence intensity according to the above parameters, µA2 = 1/2 such that the coefficient
of variation of pA(·) is 0.5 and µA3 = 0 and µA4 = 3(µA2 )2 according to a Gaussian distribution. To design
the first experiment we then have to solve the optimization problem

e∗ = argmax
e∈E

{
det I(γ̂0, e)

}
, (23)

where the dependence of I(γ̂, e) on the moments of pA(·) has been omitted in the notation.

It could be argued that a better strategy would be to start the sequential experiment design iteration
with an experiment (e.g. randomly chosen) and not with computations which necessarily have to be
performed with rather arbitrary initial guesses of the parameters. Another option would be to use a
measure of information which does not depend on specific values of the parameters and instead evaluates
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the information with respect to a prior distribution on the parameters. For instance, Bayesian experiment
design strategies [14] or the approach proposed in [7, 17] could be used. Such experiment design strategies,
however, have a computational cost that is usually much larger than the cost of the approach used here.
In addition, if no prior knowledge of the parameters is available, the choice of a prior distribution is no
less arbitrary than the choice of initial point estimates. We do not investigate such strategies here, but in
Section S.7.2.1 we show that the first experiment designed by locally evaluating the Fisher information at
the parameter values γ̂0 leads to better results than a random or an experience-based experiment.

The second experiment is designed using the maximum a posteriori (MAP) estimates γ̂1 that are obtained
from the data collected in the first experiment as described in Section S.4. An important thing to note is
that for the design of the second experiment the joint Fisher information matrix of the already performed
first experiment and the yet to be determined second experiment has to be computed. Since the data
from the second experiment is statistically independent of the data from the first experiment, the joint
information can be obtained by summing the Fisher information matrices of the two experiments, similar
to the summation over the different measurement time points in (21). If only the Fisher information
matrix of the second experiment alone would be used for the design, it would be likely that an experiment
which is similar to the first would be designed (since the only difference to the design of the first
experiment in (23) would be that the Fisher information matrix is evaluated at different parameter
values). If, on the other hand, the joint information is used, one can expect that an experiment that
adds new information and in some sense complements the already performed experiment is designed.
Consequently, to design the second experiment we have to solve

e∗2 = argmax
e2∈E

{
det I(γ̂1, {e∗1, e2})

}
, (24)

where e∗1 is the first optimal experiment and γ̂1 are the maximum a posteriori estimates that are obtained
from the data collected in the first optimal experiment.

According to the proposed sequential experiment design procedure one should design additional experi-
ments, as described above, until the parameter posterior distribution and the predictive distributions for
new experiments are sufficiently tight. We note that sequential experiment design allows one to distin-
guish whether poor model performances are due to lack of informativeness in the inference experiments
or to structural deficiencies of the model. Specifically, poor performances of the model after several
rounds of the proposed iterative scheme can be used as an indicator for the latter case.

S.3.3 Description of the algorithm for determining the most informative experiment

To search the set of possible light-induction patterns and measurement times we used a custom-designed
algorithm similar to the one used in [7]. First, in order to simplify the optimization problem (22) we
decoupled the search for the best light-induction pattern from the search for the best measurement times.
Specifically, we fixed Tmax = 300min as maximally allowed duration of the experiments and S = 10 as the
maximal number of measurement times (see Section S.3.4). For a start, we placed these 10 measurement
times equally spaced in the time interval t ∈ [0, Tmax] (i.e. every half hour) and then searched for the
light-induction pattern L that maximizes the information for these measurement times. To perform this
search we gridded the time axis into 5 minute intervals and only allowed light pulses to be placed on this
grid. This simplifies the optimization problem and is also convenient for the experiments because the
light pulses have to be manually administered to the cells and cannot be placed arbitrarily close to each
other. Further, we added the constraint that each light-induction pattern must have a red light pulse at
t = 0, because this initializes the gene expression and any experiment which does not have such a light
pulse is effectively of a shorter duration than 300min and cannot be optimal. We then used a stochastic
search in which, starting from an arbitrary initial light-induction pattern, new experiments are proposed
randomly either by adding a new light pulse (randomly either red or far-red) at a random grid point,
by removing an existing light pulse, or by shifting the existing light pulses to neighboring grid points as
detailed in the following.
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• If the light-induction pattern has only the one fixed red light pulse at t = 0, the algorithm adds
a new light-pulse at a random grid point according to a uniform distribution and chooses it to be
either red or far-red with equal probability.

• If the light-induction pattern already has more than the one light pulse, one of three possible
actions is chosen.

1. With probability 0.05 a new light pulse is added. This light pulse is placed on the grid
according to a uniform distribution over all the grid points which do not already have a light
pulse. Then, the new pulse is chosen either as red or far-red. Thereby, if the last previous
light pulse in the light-induction pattern is far-red, the new light pulse is automatically chosen
as red. This prevents the placements of subsequent far-red light pulses which do not change
the experiment because far-red light sets the light signal u(t) to zero and it does not have any
effect to set the signal to zero if it is already at zero. If the last previous light pulse in the
light-induction pattern is red, the new light pulse is chosen either as red or far-red with equal
probability.

2. With probability 0.05 an existing light pulse is removed at random.

3. With probability 0.9 the existing light pulses are adjusted. Thereby, with equal probability
each existing light pulse is either moved to a neighboring grid point that currently does not
have a light pulse or left where it is.

The population moment equations (16) and formula (21) are then used to determine the Fisher infor-
mation matrix for the new light-induction pattern and the new pattern is accepted with probability 1 if
the information provided by the new experiment is larger than for the previous light-induction pattern
and with a probability that depends on the difference in information if the information provided by the
new experiment is smaller than for the previous light-induction pattern. We ran this search for 10000
iterations, recorded the information for each light-induction pattern and determined the light-induction
pattern that leads to the highest information.

Subsequently, we used this light-induction pattern to sequentially place the measurement times. Specif-
ically, for the first designed experiment we hand-placed two measurements, one at t = 300min and the
other at t = 150min. This is necessary because with only two measurements the model parameters are so
badly identifiable that the determinant of the Fisher information matrix is essentially zero for all possible
placements of the measurement times, i.e. according to this measure of information all measurement
times are equally bad. The remaining 8 measurement times in the first experiment were then added in
a sequential fashion: first we gridded the time axis into one minute intervals, then for all the grid points
we determined the information that would be obtained by adding a new measurement at this grid point
to the already placed measurements and finally we placed the new measurement at the grid point which
lead to the maximal information. Thereby, we added the constraint that no measurement is placed before
time t = 10min because one cannot expect that the maturation of the fluorescent reporter is fast enough
to allow one to detect protein production before that time. Further, we added the constraint that any
new measurement must be placed at least 5min apart from all the other measurements to ensure that
taking all measurements at the computed time points is practically feasible.

To conclude this section we note that the procedure for designing the first and second experiment, with
this algorithm, is essentially equivalent with the difference that for the design of the second experiment the
joint Fisher information of the already performed first experiment and the potential second experiment
has to be computed and its determinant has to be maximized with respect to the second experiment
only (see SI Section S.3.2). This also means that hand-placing the first two measurement times for the
second experiment is not necessary because the joint Fisher information matrix always involves the 10
measurements of the first experiment and its determinant is always sufficiently far from zero.
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S.3.4 A discussion of the design choices

There are two main design choices we made in the search for the experiment that maximizes (22). Firstly,
to reduce the computational complexity of the optimization algorithm, we decoupled the search for the
optimal light induction pattern from the placement of the measurement times. Specifically, in the first
step of the optimization procedure we search for the optimal light induction pattern, assuming equally
spaced measurements. The main motivation for this choice (apart from the computational simplification)
was that we expected that measurements taken every half hour should suffice to capture the dynamics
of each experiment. Therefore experiments that rank among the best ones when the measurement times
are equally spaced should be nearly optimal also for the original optimization problem (22). Nonetheless,
since we are restricting the class of possible experiments to E1 := {e ∈ E | ti = i · 30 min}, the light
pattern of the optimal solution ẽ∗1 ∈ E1 of this first step is not guaranteed to coincide with the one of
the optimal experiment e∗ ∈ E , solution of (22). Since the optimization problem (22) restricted to the
class E1 is still very difficult to solve, we opted for a randomized maximization algorithm. To ensure
that our randomized search actually finds the optimum of the simplified problem, we ran the search for
the light-induction pattern several times starting from different initial light induction patterns. In each
case the same light induction pattern was returned confirming the effectiveness of our approach. Once
the light pattern has been fixed, in the second step of our procedure, we search for the best measurement
times in the restricted class E2 := {e ∈ E | Le = Lẽ∗1}. This second optimization problem was solved
sequentially by enumeration on a very fine time grid, which means that for any practical purposes the used
measurement times are the best times that can be found using a sequential procedure for their placement.
Overall, the final experiment ẽ∗2 ∈ E2 is not guaranteed to exactly coincide with e∗ ∈ E , however for
the reasons detailed above, we believe that the information provided by ẽ∗2 should be only marginally
smaller than the information provided by e∗. Since a small difference in the provided information
should not lead to a large difference in the precision of the parameter estimates, we believe that the
computational advantages of the two step procedure outweight the loss of optimality. Nonetheless, it
should be noted that our use of the term “optimal experiment” should not be interpreted as optimal
in the set E but rather as optimal according to our simplified two step version of the problem. We
conclude this discussion by noting that, for more complicated systems, even the proposed two step
procedure might be computationally too expensive. If this is the case, available information about the
system can be used to further restrict the class of experiments E . For instance, one could restrict E
by only allowing red light, far-red light and measurements to be placed in an alternating fashion. This
would simplify the optimization problem but it might exclude more informative experiments, such as
O1, that contain sequences of consecutive red light pulses and measurements placed both after red light
pulses (giving information about parameters involved in protein production) and after far-red light pulses
(giving information about parameters involved in protein degradation).

The second main design choice was to fix Tmax = 300min as the maximal duration of the experiments
and S = 10 as the maximal number of measurement times. The choice of measuring on average every
half hour was made mainly for experimental convenience, but also because we believed that this would
provide a sufficiently fine time resolution to observe the dynamics of the system. The choice of the
experiment length, on the other hand, is more subtle. It is clear that longer experiments with more data
samples lead to more information (and hence more precise parameter estimates), however since the design
of the optimal experiments depends on the current estimates of the parameters it might be preferable
to update these estimates as often as possible (hence voting for short experiments). Accordingly, we
decided to fix a duration of the experiments which is as short as possible while still allowing us to excite
the system properly. Based on our a priori knowledge of the system we estimated 5 hours to be a good
compromise.

Note that a priori, without knowing the parameters of the system, there is no way to determine the
optimal experiment length. It is, however, possible to test whether the choice made is justifiable a
posteriori. For example, using the obtained parameter estimates, one can compare the informativeness
of the performed two optimal 5h experiments to a single 10h experiment. More in detail, we can compare
the information of the following set of experiments
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1. {Oγ̂
0

10h}: a single optimal 10 hours experiment, with 20 optimally placed measurement times,
designed using the initial parameter estimates γ̂0;

2. {O1, O2}: the two performed 5 hours experiment designed respectively using γ̂0 and γ̂1;

3. {Oγ̂
2

10h}: a single optimal 10 hours experiment, with 20 optimally placed measurement times,
designed using the final parameter estimates γ̂2.

By using the final parameter estimates γ̂2 to compute the information of all these experiments, that is
the best available estimate of the real parameters and hence of the real information of the experiments,
we found that

det (I(γ̂2, Oγ̂
0

10h)) < det (I(γ̂2, {O1, O2})) < det (I(γ̂2, Oγ̂
2

10h)).

This means that our 5h iterative experiment design procedure was a good strategy as it provided more
information than what could have been obtained with the same experimental effort from one 10h ex-
periment. From the second inequality we can see that the failure of the 10h approach is not due to the
fact that such experiments cannot provide sufficient information, but rather to the fact that good 10h
experiments cannot be found without good estimates of the model parameters.

Finally, it is important to notice that even though the time and number of measurements for a single
experiment are fixed, the total combined duration and the total number of measurements of all identifi-
cation experiments can be adjusted in the process of the iterative identification (in our case in multiples
of 5h and 10 sampling times) by terminating the iterative procedure at the iteration where sufficient
information is available.

S.4 Parameter Identification

S.4.1 Moment-based inference

Consider a characterization experiment ed. To compute posterior distributions for the model parameters
from the measured data we used a Bayesian moment-based inference scheme [8]. In particular, we
used the means µ̂ed1 =

[
µ̂ed1 (t1) . . . µ̂ed1 (tS)

]
and variances µ̂ed2 =

[
µ̂ed2 (t1) . . . µ̂ed2 (tS)

]
of the measured

fluorescence distributions as data. In flow cytometry experiments the cells are discarded after being
measured. Consequently, measurements at different time points are statistically independent. Further,
it is a direct consequence of the central limit theorem that the joint distributions of the measured

means and variances µ̂ed(ts) =
[
µ̂ed1 (ts) µ̂

ed
2 (ts)

]>
, s = 1, . . . , S at each time point of experiment ed are

approximately two-variate Gaussian distributions. Accordingly, the likelihood of the data D =
(
µ̂ed1 , µ̂

ed
2

)
can be obtained as

p (D | γ) = p
(
µ̂ed1 , µ̂

ed
2 | γ

)
=

S∏
s=1

pts

(
µ̂ed1 (ts), µ̂

ed
2 (ts) | γ, Led

)
, where (25)

pts (·, · | γ, Led) = N
(
µed(ts; γ),Σed(ts; γ)

)
, and

µed(ts; γ) =
[
µed1 (ts; γ) µed2 (ts; γ)

]>
,

Σed(ts; γ) =
1

N

[
µed2 (ts; γ) µed3 (ts; γ)

µed3 (ts; γ) µed4 (ts; γ)− N−3
N−1

(
µed2 (ts; γ)

)2 ]

where N is the number of measured cells [8]. It is important to note that the Gaussian distributions
which define this likelihood only depend on moments of pYt (·; γ) up to order four. Accordingly, the
likelihood can be evaluated from the solution of the population moment equations, with light pattern
Led, and the entire distribution pYt (·; γ) is not required.
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The posterior distribution can then be obtained using Bayes formula

p (γ | D) =
p (D | γ) p(γ)

p (D)
, (26)

where p(γ) is the parameter prior. We draw samples from this distribution using a Sequential Monte
Carlo algorithm which is described in the next section. This gives a particle approximation of the
posterior distribution which is the final result of the parameter inference. If point estimates γ̂ of the
model parameters are desired we can also extract the maximum a posteriori (MAP) estimates, i.e. the
values of the parameters for which the probability density function of the posterior distribution attains
its maximum, from this particle approximation.

Since the data collected in different experiments is statistically independent, it is straightforward to
extend (25) and (26) to multiple experiments, D = {

(
µ̂ed1 , µ̂

ed
2

)
}Dd=1, by using the likelihood

p (D | γ) =

D∏
d=1

S∏
s=1

pts

(
µ̂ed1 (ts), µ̂

ed
2 (ts) | γ

)
, (27)

where µ̂ed1 and µ̂ed2 are the means and variances measured in experiment ed, d = 1, . . . , D.

S.4.2 Description of the parameter inference algorithm

Analytic calculation of the parameter posterior distribution given the experimental data is infeasible in
practise, as it depends on the solution of a large system of moment equations. We thus have to resort to
approximation methods, such as Monte Carlo sampling, which can be used to generate a set of samples
(termed particles) from the desired posterior. This particle approximation of the posterior can then be
used to provide further approximations to posterior-related quantities, such as the posterior predictive
distributions.

Sampling from the complex, high-dimensional parameter posteriors generated by a dynamic system
is not a trivial computational problem [18], and therefore requires the use of sophisticated sampling
algorithms. In this work we use a Sequential Monte Carlo (SMC) scheme [19], based on the idea
of Annealed Importance Sampling [20], which has already been tested successfully in computationally
complex parameter inference and model selection problems [21, 22].

Our SMC sampler is able to circumvent the problem of sampling from complex, high-dimensional pos-
teriors by generating weighted samples from a sequence of distributions fβ which form a “bridge” from
the (typically very diffuse) prior to the much more concentrated posterior. This sequence is generated
according to the following “cooling” scheme:

fβj (γ) ∝ p(D|γ)βjp(γ), for 0 = β0 < β1 < · · · < βJ = 1.

At each ”cooling” step, the distribution fβj is used to perform importance sampling with fβj+1 as target
distribution: starting from the sampled points of fβj , samples from fβj+1 are drawn using a Markov
chain transition kernel Kj whose invariant distribution is fβj+1 . This is the only requirement imposed
on Kj , which can be selected to be arbitrarily complex.

Since the quality of the particle approximation of intermediate distributions tends to deteriorate with
each cooling step, the Effective Sample Size (ESS) [19] of the particle population is monitored at each
cooling step, and the particles are resampled when ESS < 0.5Q, where Q is the population size used to
approximate the target distribution of each cooling step, that is the number of particles.
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S.4.3 Parameter settings and implementation details

For all the posterior approximations in this work, we use a population of Q = 8000 particles, which are
propagated using an adaptive annealing schedule [23]. That is, at each annealing step βj , the next step
βj+1 is chosen such that the effective sample size of the particle population at the next step, ESSj+1, is
equal to αESSj , with α ∈ (0, 1), as suggested in [23]. Note that this is possible, thanks to the fact that
ESSj+1 depends on the particle population at the j-th annealing step [19].

To sample from the distribution fβj+1 , we use a Markov Chain Monte Carlo (MCMC) [24] kernel, con-
sisting of 15 iterations of an Independent Metropolis-Hastings sampler [24], whose proposal distribution
is defined through a Gaussian mixture density estimate obtained from the available particle population
at step j.

For every parameter, we use a log-uniform prior distribution p(γi) centered around the nominal parameter
value and spanning mi orders of magnitude, as given in Table S.4. Equivalently, we define the new
parameters

γ′i := log10

(
γi

γi,nom

)
, i = 1, . . . , 9 (28)

with uniform prior distribution p(γ′i) ∈ U [−mi,mi] , and we use the above scheme to perform inference
on γ′.

Table S.4: Nominal values and range mi used in the inference algorithm

cM kP kF cP dr h MkM VkM r−1

0.0811 1868 0.0047 0.0134 0.0359 0.1067e-7 0.8230 0.01607 2500

2 2 2 2 2 2 2 2 1

S.5 Predictions of the outcome of new experiments

S.5.1 Computation of the posterior predictive distributions

The most straightforward approach for using the model to predict the response of the system to new
light-induction patterns would be to solve the corresponding population moment equations with the MAP
estimates γ̂ as model parameters γ. Even though this is a valid approach, we will use it for example later
on to determine the light-induction patterns for the control experiments (see Section S.8.2), it does not
allow us to quantify how certain we can be about the model predictions. Consider, for instance, a case
where the parameter posterior distribution is very flat such that its density function is only marginally
larger at the MAP estimates than at other parameter values. In such a case predictions computed with
parameters other than the MAP estimates would, according to our knowledge, be almost equally likely
outcomes of the new experiment. In other words, predictions computed using only the MAP estimates
do not take into account that the model parameters might be only badly identifiable from the data that
was used to compute the MAP estimates. Accordingly, such predictions do not take into account that
we might not be very certain that the MAP estimates are actually precise.

Due to the above considerations we decided to validate our model by using the complete posterior
predictive distributions for the population means and variances instead of predictions computed with
point estimates only. These distributions describe how likely different measurements of the moments
µ̂ev(ts) = [µ̂ev1 (ts) µ̂

ev
2 (ts)]

> , s = 1, . . . , S, are in a new experiment ev, given all the previously measured
data D. They can be computed according to

ppredts
(µ̂ev(ts)) := pts(µ̂ev(ts) | D) =

∫
γ

pts(µ̂ev(ts) | γ, Lev)p(γ | D)dγ, (29)

where p(γ | D) is the posterior distribution given data D and pts(· | γ, Lev) is the distribution of the
data µ̂ev(ts) for the new experiment ev given that γ are the model parameters and the light pattern

17



Lev is applied. It is difficult to compute these predictive distributions exactly, but approximations
can easily be obtained by replacing the integral over γ with a sum over samples γq, q = 1, . . . , Q,
drawn from the posterior distribution p(γ | D). Recalling from Section S.4.1 that pts(· | γ, Lev), s =
1, . . . , S, are two-variate Gaussian distributions that can be computed from the solution of the population
moment equations according to (25), we obtain Gaussian mixture approximations of the predictive
distributions

ppredts
(·) ≈ 1

Q

Q∑
q=1

N (µev(ts; γq),Σ
ev(ts; γq)), s = 1, . . . , S. (30)

It is straightforward to compute means and variances of these Gaussian mixture distributions. However,
to compute the confidence regions shown in Figure 3 and Figure 4 in the main text, the entire predictive
distributions are required. To obtain approximations of the entire predictive distributions, we took Q =
4000 samples γq, q = 1, . . . , Q, from p(γ | D). For each sample we solved the population moment equa-
tions and computed the Gaussian distributions N (µev(ts; γq),Σ

ev(ts; γq)) s = 1, . . . , S, q = 1, . . . , Q.
Finally, we took one sample from each of the Gaussian distributions. This gave us Q = 4000 samples
for each of the predictive distributions ppredts

(·), s = 1, . . . , S, which we used to compute the confidence
regions shown in Figure 3 and Figure 4 in the main text.

S.5.2 Stochastic simulation of the model

The population moments equations can only be used to predict moments of the fluorescence distribution
in new experiments. If predictions of the entire fluorescence distributions are required, other approaches
have to be used. Directly computing these distributions using finite state projection-based approaches
[25] is not possible due to the continuous distribution of the parameter kM . A possibility would be
to sample values of kM from PkM and then approximately solve the conditional CME (Eq.15) for all
the sampled values using finite state projection. This approach is, however, computationally expensive
because the rather large amount of protein necessitates very large state truncations. An alternative is
to sample values of kM from PkM and then simulate the model with Gillespie’s stochastic simulation
algorithm [26] with the sampled values of kM . While also this approach is computationally very expensive
(simulating one 10h trajectory of the system may take up to 2min on a standard computer), it is the
only approach that can give exact samples from the fluorescence distribution and, hence, we decided to
use it to generate the results in Figure 3B in the main text.

Specifically, we generated 30000 trajectories of the system using the MAP estimates γ̂2, extracted the
amount of fluorescent protein at the measurement time points F (ts), ts = s · 30min, s = 1, . . . , 20 and
converted the values to fluorescent units through multiplication with the final estimate of the scaling
parameter r̂ = (1.7171 · 104)−1. This gives us 30000 samples from I(t) = r̂F (t) at the measurement
times. To obtain samples from Y (t) = I(t) + A that are comparable to the measured fluorescence
intensity values, we randomly took 30000 samples from the measured fluorescence values at t = 0 in the
two optimal experiments and added them to the samples from I(t). The final comparison of simulated
and measured distributions in Figure 3 in the main text was then performed using histograms with 50
bins.

S.6 Iterative characterization of the model

In this section we provide detailed results of the iterative identification procedure. Figure S.4, top row,
shows some of the two-dimensional marginals of the posterior distribution that was obtained from the
data collected in the first optimal experiment (Figure 2B in the main text). For this posterior distribution
as well as for the following ones, the marginals according to all the possible pairs of parameters are
reported for completeness at the end of the supplementary. It can be seen that for some parameters
the marginals of the posterior distribution are tight, whereas for others they are very spread out. For
instance, the parameters kP and kF are difficult to identify. The corresponding panel suggests that the
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reason for this is that the estimates of these parameters are highly correlated. Contrary to that, other
parameters, for instance the degradation rates cM and cP , are identified with only small uncertainty. The
MAP estimates γ̂1, which we extracted from this posterior distribution and used to design the second
experiment, are reported in Table S.5.

Table S.5: Initial estimates γ̂0 of the model parameters and MAP estimates obtained from the first
optimal experiment γ̂1 and from both optimal experiments γ̂2

cM kP kF cP dr h MkM VkM r−1

γ̂0 0.03 0.22 0.0419 0.0066 0.0155 0.5 0.9 0.27 10−3

γ̂1 0.0124 3159.9 0.0022 0.0465 0.2677 1.3450 · 10−10 0.1185 0.0045 2.5831 · 103

γ̂2 0.0322 731.1953 0.0300 0.0114 0.2741 1.7482 · 10−10 0.1484 0.0080 1.7171 · 104

Figure S.4, bottom row, shows how the marginals of the posterior distribution change if the data collected
in the second optimal experiment (Figure 2C in the main text) are also used. It can be seen that for
some parameters, for instance for kF , the region of high posterior probability is significantly smaller
than if only the first optimal experiment is used, hence additional certainty about the model parameters
has been gained from the second experiment. The MAP estimates γ̂2 extracted from this posterior
distribution are shown in Table S.5.

Figure S.4: Comparison of the posterior distributions computed from the data collected in the first
optimal experiment O1 (top row) and from both the optimal experiments O1O2 (bottom
row). The different panels show some of the two dimensional marginals of the full posterior
distribution of the parameters γ′, as defined in (28). The color is an index of the likelihood
of each particle: blue for the particles with lower likelihood and red for the particles with
higher likelihood.

S.7 Comparison of different experiments

S.7.1 Description of the performed random and experience-based experiments

In this section we describe the random and the experience-based experiments that are used in the
main paper to quantify the advantage of the optimal characterization approach. To ensure that any
difference in the posterior distributions and in the predictive distributions can really be attributed to
the experimental approach we fixed the duration of these experiments and the number of measurement
times to the same values that were used for the optimally designed experiments. Specifically, we chose
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Tmax = 300min and S = 10 for all experiments and placed the 10 measurements equally spaced in the
time interval [0, 300min], i.e. every half hour.

Random experiments. To obtain these experiments we randomly generated light-induction patterns.
More in detail, we restricted the possible times to apply a light pulse to be every 5 min and, at every
possible time, we applied a red/far-red pulse with probability 0.25 each. Note that since these experi-
ments are designed without considering the model dynamics we allow consecutive far-red pulses, even
though according to our model they are redundant.

The generated light-induction patterns and the data collected in these experiments are shown in Fig-
ure S.5. Initially, we generated two random experiments (panels R1 and R2) for a fair comparison to the
two optimally planned experiments. Subsequently, we performed a third random experiment (panel R3)
to investigate whether the lower information content of the random experiments can be compensated by
performing more experiments.
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Figure S.5: Random characterization of the light-inducible gene expression circuit. (R1) Applied light-
induction pattern and measured means and variances in the first random experiment (black
dots). The blue line is the model output with the MAP estimates obtained from this first
random experiment. (R2) Applied light-induction pattern and measured means and variances
in the second random experiment. The blue line is the model output with the MAP estimates
obtained from the first two random experiments. (R3) Applied light-induction pattern and
measured means and variances in the third random experiment. The blue line is the model
output with the MAP estimates obtained from the three random experiments.

Experience-based experiments. The model used in [1] was identified from the measured average flu-
orescence of 8 characterization experiments. Here, on the one hand, we exploit for each experiment
the additional information provided by the measured variances. On the other hand, we use a model
that contains more parameters than the simple one used in [1]. Hence, it is unclear whether more or
less experiments are required for our study. The result that only two optimally designed experiments
are enough to characterize the system, however, suggests that less than eight experiments might be
sufficient.
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Figure S.6: Experience-based characterization of the light-inducible gene expression circuit. (I1) Applied
light-induction pattern and measured means and variances in the first experience-based ex-
periment (black dots). The blue line is the model output with the MAP estimates obtained
from this first experience-based experiment. (I2) Applied light-induction pattern and mea-
sured means and variances in the second experience-based experiment. The blue line is the
model output with the MAP estimates obtained from the first two experience-based experi-
ments. (I3) Applied light-induction pattern and measured means and variances in the third
experience-based experiment. The blue line is the model output with the MAP estimates
obtained from the three experience-based experiments.

For a fair comparison to the two optimally planned experiments we had to choose two experiments out
of the eight characterization experiments in [1]. There is no argument for preferring any two of the
eight experiments. To reduce any possibly bias stemming from this choice we chose three experience-
based experiments (one from each panel of Figure 1 in [1]) and compared the two optimally planned
experiments to any combination of two of the three experience-based experiments. The light-induction
pattens and the data collected in the three experience-based experiments are shown in Figure S.6.

S.7.2 Comparison of parameter posterior distributions and protein predictive distributions

S.7.2.1 After one performed experiment

In this section we compare the results from only the first optimal experiment to the results from one
random experiment and to the results from one experience-based experiment. While our main comparison
will be performed after two experiments, the comparison in this section is also educational because it
allows us to determine whether it is reasonable to design an experiment before any real estimates of the
model parameters are available.

Figure S.7 shows the comparison of some of all the possible two-dimensional marginals of the full posterior
distribution computed from the first optimal experiment (Figure 2B in the main text), the random
experiment shown in Figure S.5R1 and the experience-based experiment shown in Figure S.6I1.

It can be seen that the random experiment leads to tight marginals of the posterior distribution for
some parameters but also to very wide distributions for others. Especially the parameters dr and h that
characterize the light signal cannot be identified very well from this experiment.

The differences between the first optimal experiment and the experience-based experiment are more
subtle, but on a close inspection it can be noticed that some of the parameters (for instance h and VkM )
can be identified with higher precision from the optimal experiment.
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Figure S.7: Comparison of the posterior distributions computed from the data collected in the first
random experiment R1 (top row), the first experience-based I1 (middle) and the first opti-
mal experiment O1 (bottom row). The different panels show some of the two dimensional
marginals of the full posterior distribution of the parameters γ′, as defined in (28). The color
is an index of the likelihood of each particle: blue for the particles with lower likelihood and
red for the particles with higher likelihood.

Table S.6: Comparison of optimal, random and experience-based after 1 experiment. For
each performed experiment the log of the mean likelihood of the measured data according to
the three different posterior distributions is computed. The best model among O1, I1 and R1
is the one with highest expected likelihood and is denoted with a star.

O1 I1 R1

Figure 5A −115.5? −232.3 −210.9
Figure 5B −224.3? −293.1 −262.1
Figure 5C −223.1 −252.2 −202.4?

Figure 5D −83.4 −78.7? −127.5

Figure 3 −111.4? −225.5 −193.6
Figure 4 −414.6 −11.5 1.6?

Because the differences in the posterior distributions are not easy to notice and also because we ultimately
want to predict new experiments, we performed a second comparison using the posterior predictive
distributions for all the control and validation experiments that we performed throughout our study. To
summarize the quality of the predictions in a scalar quantity we computed the mean likelihood of the
data collected in the control and validation experiments using the posterior predictive distributions of
the first optimal, random and experience-based experiment. Table S.6 shows that the collected data was
predicted best on average by the posterior predictive distribution of the first optimal experiment.

S.7.2.2 Comparison of two optimal and the random experiments

In this section we compare the results from the two optimal experiments to the results from two and
three random experiments.
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Figure S.8: Comparison of the posterior distributions computed from the data collected in the first two
random experiment R1R2 (top row), in all the random experiments R1R2R3 (middle) and
in the two optimal experiments O1O2 (bottom row).

Figure S.8 shows that the posterior distribution obtained from the two optimal experiments is much
tighter, not only than the one obtained from the first two random experiments, but also than the one
obtained from all three random experiments. In fact, almost no additional knowledge about the model
parameters was gained from the third random experiment. The corresponding predictive distributions
for the two validation experiments are shown in Figure S.9.
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Figure S.9: Predictive distributions for the two validation experiments shown in the main text. The
different colors correspond to the predictive distributions obtained with different experimen-
tal approaches. Green: with all three random experiments. Blue: with the two optimal
experiments. Magenta: with two random experiments.

Figure S.9 shows that there is hardly any difference between the predictive distributions obtained from
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two and three random experiments. In particular, both are not informative for the second validation ex-
periment, V2. Contrary to that, the predictive distributions obtained from the two optimal experiments
are very tight and agree reasonably well with the measured data in both the validation experiments.
A similar conclusion can be reached by investigating the differences of the mean likelihood of the data
collected in all control and validation experiments, using the posterior predictive distributions identified
from the two optimal experiments versus three randoms (Table S.7).

Table S.7: Comparison of two optimal with three random experiments. For each performed
experiment the log of the mean likelihood of the measured data according to the different
parameters posterior distributions is computed. The best model is the one with highest mean
likelihood and is denoted by a star.

O1O2 R1R2R3

Figure 5A −44.7? −161.3
Figure 5B −174.4? −252.6
Figure 5C −67.7? −164.0
Figure 5D −67.1? −68.2

Figure 3 −28.8? −132.4
Figure 4 −69.6 −59.9?
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Figure S.10: Marginals of the predictive distribution for the validation experiment V2 at different time
points. The different colors correspond to the predictive distributions obtained with different
experimental approaches. Green: with all three random experiments. Blue: with the two
optimal experiments. Magenta: with two random experiments.

One peculiar and seemingly unintuitive result in Table S.7 is that the mean likelihood for the validation
experiment shown in Figure 4 is slightly larger for the parameter posterior distribution obtained from
the three random experiments R1R2R3 than for the one from the two optimal experiments O1O2.
In other words, the probability density of the predictive distribution from R1R2R3 evaluated at the
measured data is larger than the corresponding quantity for O1O2. This seems to be in contrast to
the confidence regions for the predicted means and variances given in Figure S.9, which show that the
predictive distribution from the random experiments is more spread out than the one from the optimals.
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A closer inspection of the shape of the predictive distributions at different time points (see Figure
S.10), however, resolves this apparent contradiction. It can be seen that the predictive distributions
obtained from the random experiments are bimodal with a large peak far away from the measured data
and another smaller peak close to the measured data. Since these distributions are very spread, many
different outcomes of the experiment can be explained with a small, but not negligible, probability. The
predictive distributions obtained from O1O2, on the other hand, are unimodal with very small tails,
i.e. there is almost no uncertainty about the predicted value. Consequently, for some time points, the
measured data, while being quite close to the predicted values from O1O2, turned out to have a lower
likelihood according to this distribution than according to the one from R1R2R3 (see Figure S.10 for
example at 360 min).

Since the mean likelihood does not take into account the uncertainty about the prediction, looking
only at this number one would therefore slightly prefer R1R2R3 to O1O2. It is however important to
remember that the predictive distributions are used to predict new data: as can be seen in Figure S.9
and S.10 the most likely prediction from R1R2R3 is the one corresponding to the main peak which is
not at all consistent with the measured data. For this reason the results of Table S.7 cannot be used
alone but need to be complemented by other posterior predictive checks, such as the visual inspection
of high-density regions in the predictive distributions.

S.7.2.3 Comparison of two optimal experiment and different pairs of experience-based experiments

Figure S.11: Comparison of the posterior distributions computed from the data collected in different com-
binations of two experience-based experiments (first three rows) and from the two optimal
experiments O1O2 (bottom row).
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In this section we compare the results from the two optimal experiments to the results from different
pairs of experience-based experiments. Figure S.11 show the posterior distributions obtained from the
two optimal and all pairs of experience-based experiments. It is easy to notice that different pairs lead
to significantly different posterior distributions. The corresponding predictive distributions are shown in
Figure S.12.
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Figure S.12: Predictive distributions for the two validation experiments shown in the main text. The
different colors correspond to the predictive distributions obtained with different combina-
tions of two of the experience-based experiments in Figure S.6. Green: with the experiments
from panel I1 and I2. Red: with the experiments from panel I1 and I3. Light blue: with
the experiments from panel I2 and I3.

It can be seen in Figure S.12 that different combinations of two experience-based experiments lead to
drastically different performances. The same conclusions can be reached from the differences of the mean
likelihood of the data collected in all control and validation experiments, using the different posterior
predictive distributions. Table S.8 shows the comparison of different combinations of experience-based
experiments.

Table S.8: Comparison of different pairs of two experience-based experiments. For each per-
formed experiment the log of the mean likelihood of the measured data according to the three
different parameters posterior distributions is computed. The best model is the one with
highest expected likelihood and is denoted by a star.

I1I2 I2I3 I1I3

Figure 5A −125.1? −200.9 −356.5
Figure 5B −210.0? −235.5 −342.3
Figure 5C −135.9? −169.2 −315.1
Figure 5D −71.2? −123.3 −131.5

Figure 3 −123.0? −186.3 −335.0
Figure 4 30.6 68.0? 20.2

By assuming uniform prior over the models, the likelihoods reported in Table 1 (in the main text)
and Table S.8 can be used to statistically compare the models identified from the different pairs of
experiments (optimal, random and experience-based) via Bayes factors. According to this metric, the
model identified from the two optimal experiments outperforms all the other candidates obtained both
with randoms and experience-based experiments (Bayes factor � 1 for each pair).
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S.8 Control of population statistics

The model derived in the previous sections can be used not only to predict the behavior of the system
in future experiments but also to design input sequences achieving a desired objective. For example,
in biotechnological applications where genetically modified organisms are used to produce antibiotics or
biofuels, one may require high protein production consistently in all cells of the population. On the other
hand, to study effects related to heterogeneous cell populations, also the case of high variability between
the expression levels in different cells could be of scientific interest. These properties can be enforced by
regulating the mean and/or the variance of the protein across the population.

S.8.1 Reachability analysis

In order to determine whether the protein mean and variance can be regulated to follow a desired time-
varying reference, the more basic question of what configurations of mean and variance can be achieved
at a fixed time point using the available input must be addressed first. In the terminology of control
theory such problems are known as reachability problems where the set of states that can be reached
from the origin are determined for the system and input under consideration.

Definition 1 (Reachable set from the origin) The reachable set R from the origin, for the control
system

ẋ(t) = f(x(t), u(t)),

with x(t) ∈ Rn, f(·, ·) : Rn × R 7→ Rn and bounded input u(t) ∈ [0, 1], is defined as the set of all states
x̄ ∈ Rn that are reachable in finite time from x(0) = 0, using an admissible control law. That is

R =

{
x̄ ∈ Rn | ∃ t̄ ≥ 0, ∃ u : [0, t̄]→ [0, 1] s.t

{ x(0) = 0
ẋ(t) = f(x(t), u(t)) ∀t ∈ [0, t̄ ]
x(t̄) = x̄

}
.
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Figure S.13: The shaded region corresponds to the outer approximation of the reachable set for the
mean and variance of the protein P , obtained using the approach suggested in [27] and
the parameters identified from the two optimal experiments, γ̂2. For this computation, the
population is assumed to be homogeneous, therefore VkM is set to zero. The protein mean
and variance are scaled by the stationary values that would be obtained if u(t) ≡ 1 for all
times, which are the maximum reachable values of protein mean and variance [27].
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Generally, determining the set R can be very difficult for non-linear systems. For a simplified model
of the light-inducible gene expression circuit, an outer approximation of R can be obtained using the
approach proposed in [27]. Figure S.13 shows the approximation that is obtained with MAP estimates
γ̂2. It can be seen that not all the configurations of protein mean and variance are achievable using
the available input. In particular, it is not possible to drive the system to extreme configurations with
high mean and low variance or viceversa. This suggests that also for the full model such configurations
cannot be achieved.

S.8.2 Computing the light-induction patterns

Once a desired reference z(t), compatible with the analysis of Section S.8.1, has been chosen it is possible
to design a light sequence able to track it by solving the following optimization problem

L?[0,T ] = argmin
L∈L

∫ T

0

J(µ(τ ; γ), z(τ))dτ (31)

subject to:
d

dt
µ̃(t; γ) = A(γ, u(t; γ, L))µ̃(t, γ) +B(γ, u(t; γ, L)), ∀t ∈ [0, T ]

where µ(τ ; γ) = [µ1(t; γ) µ1(t; γ)] is the vector of the mean and variance of the fluorescence intensity
Y at time τ , T > 0 is the total duration of the experiment, L is the set of admissible light-induction
pattern sequences and J(·, ·) : R2 × R 7→ R is a function that weights the deviation of the fluorescence
mean µ1(t; γ), variance µ2(t; γ) or of the coefficient of variation, from the given scalar reference z(τ)
at time τ . According to the objective that we wanted to achieve, we used the following cost functions

mean tracking: J(µ, z) = ‖µ1 − z‖2

variance tracking: J(µ, z) = ‖µ2 − z‖2

coefficient of variation tracking: J(µ, z) = ‖
√
µ2−µA

2

µ1−µA
1
− z‖2

(32)

To simplify the optimization problem (31), we approximate the integral of the cost function using the
Euler method, with time step Ts, and we limit the choice of possible light sequences to the set LTL

of light patterns obtainable if the pulses can be applied every TL min. Therefore we have to solve the
optimization problem

L?[0,T ] = arg min
L∈LTL

bT/Tsc∑
k=1

J(µ(kTs; γ), z(kTs)) (33)

subject to:
d

dt
µ̃(t; γ) = A(γ, u(t; γ, L))µ̃(t; γ) +B(γ, u(t; γ, L)), ∀t ∈ [0, T ]

For all the experiments of Figure 5, we chose Ts = 5min and TL = 15min. For an experiment of 10hrs this
corresponds to # [LTL ] = 341 = 3.6473 ·1019 different sequences. Since the solution of problem (33) using
this set LTL is prohibitive, we decided to solve (33) in a receding horizon fashion. We set a time horizon
H := hTs < T and solved (33) over this horizon by enumerating all the possible sequences and selecting
the one with the lowest cost. Then we fixed the first designed pulse and repeated the same procedure for
the following time interval, see Algorithm 1. We chose H = 60min for mean and variance tracking and
H = 90min to track the coefficient of variation. Note that Algorithm 1 leads to a suboptimal solution
of Problem (31), however we verified by simulation that the model output corresponding to the input
pattern Ltot was able to track the given reference z(t) with satisfactory precision.

28



Algorithm 1: Receding horizon light sequence design

Initialization. Choose an horizon h > 0, a time step size Ts > 0, an input grid step size TL > 0 and a
reference z : [0, T + hTs] 7→ R;

Let K := bT/TLc and initialize Ltot(t) = 0 ∀t ∈ {kTL}Kk=0;

for k = 0 : K do

Compute L?[0,(k+h)TL] according to (33) with

LTL :=

{
L | L(iTL) = Ltot(iTL) for i ∈ {0, . . . , k − 1}

L(iTL) ∈ {R,FR, 0} for i ∈ {k, . . . , k + h}

}
;

Set Ltot(kTL) = L?(kTL);

end
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S.9 Appendix

S.9.1 One dimensional marginals of the parameters posterior distribution
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Figure S.14: One dimensional marginal posterior distribution of the parameters. The color legend on
the left identifies combinations of random (magenta), experience-based (green) and optimal
(blue) experiments.
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S.9.2 Two dimensional marginals of the parameters posterior distribution

S.9.2.1 Optimal Design

Figure S.15: Two dimensional marginals of the posterior distribution, obtained from O1, according to
all the possible pairs of parameters.
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Figure S.16: Two dimensional marginals of the posterior distribution, obtained from O1O2, according
to all the possible pairs of parameters.
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S.9.2.2 Experience-based Experiments

Figure S.17: Two dimensional marginals of the posterior distribution, obtained from the experience-based
experiment I1, according to all the possible pairs of parameters.
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Figure S.18: Two dimensional marginals of the posterior distribution, obtained from the two best
experience-based experiments I1I2, according to all the possible pairs of parameters.
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S.9.2.3 Random Experiments

Figure S.19: Two dimensional marginals of the posterior distribution, obtained from one random exper-
iment R1, according to all the possible pairs of parameters.
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Figure S.20: Two dimensional marginals of the posterior distribution, obtained from two random exper-
iments R1R2, according to all the possible pairs of parameters.
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Figure S.21: Two dimensional marginals of the posterior distribution, obtained from three random ex-
periments R1R2R3, according to all the possible pairs of parameters.
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[6] Bretó C, Ionides E (2011) Compound markov counting processes and their applications to modeling
infinitesimally over-dispersed systems. Stochastic Processes and their Applications 121:2571–2591.

[7] Ruess J, Milias-Argeitis A, Lygeros J (2013) Designing experiments to understand the variability
in biochemical reaction networks. Journal of the Royal Society Interface 10:20130588.

[8] Zechner C, et al. (2012) Moment-based inference predicts bimodality in transient gene expression.
Proceedings of the National Academy of Sciences of the USA 109:8340–8345.

[9] Singh A, Hespanha J (2011) Approximate moment dynamics for chemically reacting systems. IEEE
Transactions on Automatic Control 56:414–418.

[10] Ruess J, Milias-Argeitis A, Summers S, Lygeros J (2011) Moment estimation for chemically reacting
systems by extended kalman filtering. The Journal of Chemical Physics 135:165102.

[11] Komorowski M, Costa M, Rand D, Stumpf M (2011) Sensitivity, robustness, and identifiability in
stochastic chemical kinetics models. Proceedings of the National Academy of Sciences of the USA
108:8645–8650.

[12] Ruess J, Lygeros J (2013) Identifying stochastic biochemical networks from single-cell population
experiments: a comparison of approaches based on the Fisher information. IEEE 52nd Annual
Conference on Decision and Control (CDC). Florence, Italy. pp 2703–2708.

[13] Hindmarsh A, et al. (2005) SUNDIALS: Suite of Nonlinear and Differential/Algebraic Equation
Solvers. ACM Transactions on Mathematical Software (TOMS) 31:363–396.

[14] Chaloner K, Verdinelli I (1995) Bayesian experimental design: a review. Statistical Science 10:273–
304.

[15] Franceschini G, Macchietto S (2008) Model-based design of experiments for parameter precision:
State of the art. Chemical Engineering Science 63:4846–4872.

[16] Hagen D, White J, Tidor B (2013) Convergence in parameters and predictions using computational
experimental design. Interface Focus 3:20130008.

[17] Pronzato L, Walter E (1985) Robust experimental design via stochastic approximation. Mathemat-
ical Biosciences 75:103–120.

[18] Lawrence ND, Girolami M, Rattray M (2010) Learning and inference in computational systems
biology (The MIT Press).

[19] Del Moral P, Doucet A, Jasra A (2006) Sequential monte carlo samplers. Journal of the Royal
Statistical Society: Series B (Statistical Methodology) 68:411–436.

[20] Neal RM (2001) Annealed importance sampling. Statistics and Computing 11:125–139.

38



[21] Milias-Argeitis A, Porreca R, Summers S, Lygeros J (2010) Bayesian model selection for the yeast
GATA-factor network: a comparison of computational approaches. IEEE 49th Annual Conference
on Decision and Control (CDC). Atlanta, GA, USA. pp 3379–3384.

[22] Milias-Argeitis A (2013) Computational methods for simulation, identification and model selection
in systems biology. Doctoral dissertation, ETH Zurich.

[23] Del Moral P, Doucet A, Jasra A (2012) An adaptive sequential monte carlo method for approximate
bayesian computation. Statistics and Computing 22:1009–1020.

[24] Robert CP, Casella G (2004) Monte Carlo statistical methods (New York: Springer) Vol. 319.

[25] Munsky B, Khammash M (2006) The finite state projection algorithm for the solution of the
chemical master equation. The Journal of Chemical Physics 124:044104.

[26] Gillespie D (1976) A general method for numerically simulating the stochastic time evolution of
coupled chemical reactions. Journal of Computational Physics 22:403–434.

[27] Parise F, Valcher M, Lygeros J (2014) On the reachable set of the controlled gene expression system.
IEEE 53rd Annual Conference on Decision and Control (CDC). Los Angeles, USA.

39


