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Materials and Methods
Cell Culture and Crosslinking of Chromatin. Human foreskin
fibroblasts from a normal karyotyped male individual (Cat #
CRL-2522, ATCC, Manassas, VA) were propagated in growth
medium, composed of MEM medium (cat #11095-098, Life
Technologies, Grand Island, NY), 10% fetal bovine serum
(FBS, cat #10082-147, Life Technologies), 1 X non-essential
amino acids (NEAA, cat #11140-050, Life Technologies), and
1 X antibiotic/antimycotic (cat #15240-062, Life Technolo-
gies).

To prepare cultures for time series Hi-C and RNA-seq exper-
iments, we trypsinized fibroblasts propagated in T225 flasks
with 0.25% trypsin (Cat #25200-056, Life Technologies). Dis-
sociated cells were plated in 150mm cell culture plates for Hi-
C experiments, and in 6-well plates for RNA-seq experiments.
Cells were cultured in growth medium for 36 hours before pro-
ceeding to cell cycle synchronization. To synchronize the cell
cycle, the cells were incubated in serum-free MEM medium
supplemented with 1 X NEAA and 1 X Antibiotic/antimycotic
for 48 hours. Under this condition, it has been reported that
more than 95% of the cells are in G0/G1 phase [1].

We also synchronized the circadian clock in the cell cycle-
synchronized cultures with dexamethasone treatment for one
hour [2]. At the 48th hour of cell cycle synchronization, we
added dexamethasone to the cultures at a final concentration
of 100nM for the treatment group. For the control group, we
added ethanol to cultures at a final concentration of 0.001%
(dexamethasone solvent concentration in the treatment cul-
tures). At the end of circadian clock synchronization, cells
were rinsed twice with PBS, fed with growth medium, and
time point zero was set.

Base line samples from dexamethasone treated plates and
control plates were taken at the end of the 1-hour circa-
dian clock synchronization without feeding of growth medium.
Thereafter, time series sampling of cells treated with dexam-
ethasone was performed at 8-hour intervals for a total of 56
hours. All samples for Hi-C experiments were cross linked in
situ. Total RNA was extracted directly from 6-well plates (see
RNA isolation and RNA-seq).

Approximately 25 X 106 cells were cross linked with 1%
formaldehyde (Cat #BP531-25, Fisher Scientific, Pittsburgh,
PA) in serum free-medium for 10 min at room temperature,
and then quenched with glycine (Cat #G8898-500g, Sigma-
Aldrich, St. Louis, MO) added to a final concentration of
0.125 M. Cross linked cells were harvested and flash frozen in
liquid nitrogen, and then stored at -80oC until the construc-
tion of Hi-C libraries.

RNA Isolation and RNA-seq. We used TRIzolr Reagent (Cat
# 15596-018, Life Technologies) to extract RNA from cells
grown in 6-well plates. All extracted RNA was treated with
RNAse-free DNaseI (Cat # 79254, Qiagen), then submitted to
the University of Michigan Bioinformaics Core lab for library
construction and RNA sequencing (RNA-seq) on the Illumina
Hiseq-2000 platform. Single-end 50-base sequence reads were
generated at a multiplex of 4 per sequencing lane.

During RNAseq data processing, we checked the raw reads
with FastQC [3] (version 0.10.0), to identify potential qual-
ity problems in the reads data (eg. low quality scores, over-

represented sequences, inappropriate GC content). We used
Tophat [4] (version 2.0.9) and Bowtie [5] (version 2.1.0.0) to
align the reads to the reference transcriptome (HG19). We
used default parameter settings for alignment, with the ex-
ception of: “–b2-very-sensitive” telling the software to spend
extra time searching for valid alignments, as well as “–no-
coverage-search” and “–no-novel-juncs” to limit the search
to known transcripts. We then performed a second round
of quality assessment using FastQC on the aligned reads.
Data was found to be of excellent quality overall. We
used Cufflinks/Cuffdiff[6, 7, 8, 9] (version 2.1.1) for expres-
sion quantification and differential expression analysis, using
UCSC hg19.fa as the reference genome and UCSC hg19.gtf as
the reference transcriptome. For the CuffDiff analysis, we used
parameter settings: “–multi-read-correct” to adjust expression
(FPKM) calculations for reads that map in more than one lo-
cus, as well as “–compatible-hits-norm” and “–upper-quartile-
norm” for normalization of expression calculations across sam-
ples. We used a locally developed Perl script to format the
Cufflinks output.

Bru-seq Analysis of Nascent RNA Species. Fibroblast cultures
were synchronized at G0/G1 phase with incubation in serum-
free medium for 48 hours. Dexamethasone was then added
to the cells (see Cell culture and crosslinking of chromatin).
Thirty minutes after the addition of Dexamethasone, Bro-
mouridine (Aldrich) was added to the media to a final con-
centration of 2 mM, and cells were incubated at 37 C for 30
min. Cells were then washed three times in PBS and collected
directly (nascent RNA, Bru-Seq). RNA was isolated by using
Trizol reagent (Invitrogen), and Bru-labeled RNA was isolated
from the total RNA by incubation with anti-BrdU antibodies
(BD Biosciences) conjugated to magnetic beads (Dynabeads,
Goat anti-Mouse IgG; Invitrogen) under gentle agitation at
room temperature for 1 h. Isolated Bru-labeled RNA was
used to prepare strand-specific DNA libraries by using the Il-
luminaTruSeqKit (Illumina) according to the manufacturer’s
instructions. Sequencing of the cDNA libraries prepared from
nascent RNA was performed at the University of Michigan
Sequencing Core by using the Illumina HiSEq-2000 sequencer.

Generation of Hi-C Libraries. We adopted the methods for Hi-
C library construction from Belton et al. (Methods 58:268,
2012). For each Hi-C library, approximately 25 X 106 cells
were resuspended in 1mL ice-cold lysis buffer, consisting of
10mM Tris-HCl, 10mM NaCl, 0.2% Igpel (Cat # 8896-50mL,
Sigma-Aldrich), and 10 mL protease inhibitor cocktail (Cat #
P8340-1ml, Sigma-Aldrich). All resuspended cells were incu-
bated on ice for 15 min. Cells were homogenized in a Dounce
homogenizer on ice with pestle A, and the lysate was transfer
to a 1.7mL tube. Cells were collected by spinning for 5 min-
utes at 2,000xg, and then washed twice in 500 µL of ice cold
1x NEB buffer 2. Cells were distributed between 4 individual
1.7 ml centrifuge tubes (50 µL per tube). Chromatins in each
tube were digested with 400u of restriction enzyme HindIII
(Cat # R0104M, New England BioLabs, Ipswich, MA) in 1x
NEB buffer 2 at 37oC overnight on a spin wheel.

After HindIII digestion, restriction site overhanging ends
were filled and labeled with biotin using DNA polymerase I
large (Klenow) fragment (Cat # M0210L, New England Bi-
oLabs) in a reaction containing dATP, dGTP, dTTP, and
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biotin-14-dCTP (Cat # 19518-018, Life Technologies) in each
of the 4 HindIII digestion tube. DNA fragments labeled biotin-
14-dCTP from each of the 4 tubes were ligated at 16oC for 4
hours in an 8.23 mL reaction containing 1x ligation buffer, 1%
Triton X-100 (Cat # T8787-250ML, Sigma-Aldrich), 1 mg/ml
bovine serum albumin (BSA)(Cat # BP9706-100, Fisher Sci-
entific), 10 mM ATP (Cat # A9187-1g, Sigma-Aldrich), and
50u T4 DNA ligase (Cat # 15224-025, Life Technologies). Re-
verse cross linking was performed in two steps. First, 50 µL
of 10 mg/ml proteinase K (Cat # 25530-015, Life Technolo-
gies) were added to each ligation reaction tube and incubated
at 65oC for 4 hours. Then, another 50 µL of proteinase K
were added to each tube and continued incubating at 65oC
overnight. Next, DNA was extracted with saturated phenol :
chloroform (1:1) (Cat # 1100631, Fisher Scientific), and de-
salted by using AMICONr Ultra Centrifugal Filter Unit (Cat
# UFC503024, Millipore, Billerica, MA) with 1 x TE buffer.
The final volume of desalted DNA was adjusted to 100 µL in
1 x TE buffer.

Removal of Biotin from un-ligated ends was carried out in
8 individual reactions each of 50 µL containing 5 µg of Hi-C
DNA, 1 mg/ml BSA,1X NEB buffer 2, 25 nM dATP, 25 nM
dGTP, and 15 u T4 DNA polymerase at 20oC for 4 hours.
The Hi-C DNA was then pooled in a single tube, purified
with single phenol extraction, and precipitated by ethanol.
The DNA was re-dissolved in 105 µL of water, and trans-
ferred to a microTUBE AFA tube (Cat # 520045, Covaris,
Woburn, Massachusetts). DNA fragmentation was performed
in a Sonicator (Covaris S2, Covaris). The DNA fragments of
size 200–400 bp were recovered with Agencourt AMPure XP
mixture (Cat # A63880, Beckman Coulter, Indianapolis IN)
following the manufacturer’s protocols.

DNA fragment ends were repaired in a 70 µL reaction con-
taining 1 X ligation buffer (Cat # B0202, New England Bio-
Labs), 0.25 mM of dNTP mixture, 7.5 u of T4 DNA poly-
merase (Cat # M0203L, New England BioLabs), 25 u of
T4 polynucleotide kinase (Cat # M0201S, New England Bio-
Labs), 2.5 u of DNA polymerase I large fragment at 20oC for
30 min. The reaction is purified with a MinElute column (Cat
28204, Qiagen, Valencia, CA). The DNA is eluted in 32 µL of
elusion buffer for A-tailing, which was performed in a 50 µL
reaction containing purified DNA (5 µg), 1 X NEB buffer 2,
0.2 mM dATP, 15 u Klenow fragment (3’→5’ exo-) (Cat #
M0212L, New England BioLabs). The reaction was incubated
at 37oC for 30 min, then at 65oC for 20 min to inactivate
Klenow (exo-).

For Streptavidin pull-down of biotinylated Hi-C ligation
products, the biotinylated Hi-C ligation products are mixed
with MyOne C1 streptavidin bead solution (Cat # 65001,
Life Technologies) for binding of biotinylated Hi-C fragments.
Non-specifically binding DNA was removed by washing with
1 X binding buffer (5 mM Tris-HCl (pH8.0), 0.5 mM EDTA,
and 1 M NaCl), then with 1 X T4 Ligation buffer (Cat #
46300-018, Life Technologies). The DNA-bound beads were
resuspended in 38.75 µL of 1 X ligation buffer for adapter
ligation.

Illumina adapter ligation was performed in a 50 µL reac-
tion by adding to the DNA-bound beads suspension of 1 X
T4 ligation buffer, 90 pM of Illumina paired end adapter, 3 u
of T4 DNA ligase (Cat # 15224-025, Life Technologies). The
reaction was incubated at room temperature for 2 hours. The
beads were reclaimed, and the supernatant discarded. The
beads were washed twice in Tween Wash Buffer (5 mM Tris-
HCl (pH 8.0), 0.5 mM EDTA, 1 M NaCl, 0.05% Tween 20),
and once in 1 X binding buffer (5 mM Tris-HCl (pH 8.0), 0.5

mM EDTA, and 1 M NaCl), and twice in 1 X NEB buffer 2.
After the last wash, the beads were resuspended in 20 µL of
1X NEB buffer 2.

The Hi-C DNA sample was amplified by 15 PCR cycles
(optimized in the log amplification phase) for Illumina HiSeq
sequencing. Each PCR reaction in 25 µL, 1.5 µL of Bead-
bound Hi-C DNA, 0.35 µL of PE primer 1.0, 0.35 µL of PE
primer 2.0, 0.2 µL of 25mM dNTP, 2.5 µL of 10X PfuUltra
buffer, 19.6 µL of H2O, and 0.5 µL of PfuUltra Fusion DNA
polymerase. The PCR cycling parameters were 98oC for 30
seconds, followed by 15 cycles at 98oC for 10 seconds, 65oC
for 30 seconds, and 72oC for 30 seconds, and a final exten-
sion at 72oC for 7 minutes. PCR products pooled from the
supernatant of multiple reactions were subjected to AMpure
XP beads purification to remove primer dimers. A standard
quality control (QC) procedure was performed on the purified
PCR products (Hi-C library). Each Hi-C library passed the
QC procedure and was then sequenced in a single lane of a
flow cell on a HiSeq 2000 sequencer to generate paired-end
sequence reads at 100 bases per end read.

Generation of Hi-C Matrices. We standardized a pipeline to
process Hi-C sequence data at the University Bioinformat-
ics Core facilities. With this pipeline, raw sequence reads
were processed with FastQC (http://www.bioinformatics.
bbsrc.ac.uk/projects/fastqc/) for data quality control.
Paired-end reads with excellent quality were mapped to the
reference human genome (HG19) using Bowtie2 [10], with de-
fault parameter settings and the “–very-sensitive-local” pre-
set option, which produced a SAM formatted file for each
member of the read pair (R1 and R2). HOMER (http:
//homer.salk.edu/homer/interactions/) was used to de-
velop the contact matrix with “makeTagDirectory” with the
“–tbp 1” setting, and with “analyzeHiC” with the “-raw” and
“-res 1000000” settings to produce the raw contact matrix at
1MB resolution.

Supplementary Text
Cell Cycle Synchronization Analysis.We aim to initiate
the experiments with a cell population arrested at G0/G1
phase of the cell cycle. Serum-starvation has been shown
as an effect method for this purpose (Exp. Cell Res.
179:40, 1988; and ‘Part III Serum Starvation (G0/G1
block)’ in the protocol, “State of the art in human
cell synchronization” from the Biotech Research and In-
novation Centre, University of Copenhagen (http://www.
docstoc.com/docs/26023877/Synchronization-protocols-
for-human-cells---DOC---DOC#), and has been used previ-
ously (Science 283:83, 1999). Our experiment is designed to
investigate genome form and function over time following re-
stimulation of the initially arrested at G0/G1 cell population
into proliferation, but not to target specific cell cycle phases.

We used the ratio of near interactions to far interactions to
estimate the time point when the first wave of cell division
likely occurs (see Sec. 2.2 for details). Our RNA-seq data
corroborates this, though we acknowledge that the peaks of
chr21 are offset by 8 hours. From our RNA-seq data, expres-
sion of cell cycle genes aligns with cell cycle phase in the first
division wave after serum stimulation, i.e. genome replication
between 8-16 hours, then entering mitotic division. However,
this pattern is difficult to detect thereafter (Figure S5A).

We used mitotic cell counting to estimate that the first wave
of mitotic division begins at 20 hours and peaked at 32 hours
after serum stimulation (Figure S5B). The Gaussian distri-
bution centered around the 32 hr mark strongly suggests cell

2 www.pnas.org — — Footline Author

http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc/
http://homer.salk.edu/homer/interactions/
http://homer.salk.edu/homer/interactions/
http://www.docstoc.com/docs/26023877/Synchronization-protocols-for-human-cells---DOC---DOC#
http://www.docstoc.com/docs/26023877/Synchronization-protocols-for-human-cells---DOC---DOC#
http://www.docstoc.com/docs/26023877/Synchronization-protocols-for-human-cells---DOC---DOC#


i
i

“PNASTMPL” — 2015/6/1 — 9:17 — page 3 — #3 i
i

i
i

i
i

synchronization has occurred. An un-synchronized popula-
tion would demonstrate a fairly constant percentage of cells
in M-phase at each time point over the sampling period. Mi-
totic cells were defined as those showing a nuclear plate or
rosette, or a set of two daughter cells before chromosome de-
condensation (late metaphase, anaphase, and telophase), with
the full M-phase generally accepted to last ∼1hr in an ∼24
hr cell cycle. Though it is not possible to use these counts to
accurately estimate the total percentage of cells undergoing
division, if an arbitrary bin window of 20 minutes for these
sub-stages of the M phase of the cell cycle is selected, a rough
estimate of cells undergoing mitosis from the 16th to 52nd hrs
is 86.5%, with 76.0% in the 22nd to 42nd hr period (Figure
S5B).

The overall mitotic pattern of Figure S5B compares fa-
vorably to the pattern of S-phase human diploid fibrob-
last cells shown by flow cytometry of BrdU and propid-
ium iodide – stained cells in ‘Part III Serum Starvation
(G0/G1 block)’ in the protocol, “State of the art in hu-
man cell synchronization” from the Biotech Research and
Innovation Centre, University of Copenhagen (http://www.
docstoc.com/docs/26023877/Synchronization-protocols-
for-human-cells---DOC---DOC#) . In hindsight, a cell sort-
ing analysis would have provided corroborating data for the
gene expression and mitotic cell counting to further demon-
strate cell synchronization.

M-Phase Analysis. The genome can be viewed as a dynamic
graph, of which the structure is time variant. The dynamics of
the graph structure can be translated to the changes of Hi-C
counts. At a large scale, the most significant overall structural
change of chromosome can be expected at the Mitosis phase
(M-phase) where the pairs of chromosomes condense (imply-
ing higher contact frequencies). Literature shows that at M-
phase the captured intra-chromosome Hi-C matrices become
more concentrated along the diagonal, which can be expected
since chromosomes naturally line up in physical space during
this phase. Due to the mixture of inherently imperfectly syn-
chronized cells and the short duration of M-phase, we did not
specifically capture Hi-C matrices in this phase. However, in
order to verify that at some instances there may be some cells
that are in the M-phase in the population, we calculate the
ratio between the sum of counts close to the diagonal (diago-
nal bins + bins within 5% of chromosome length) and the sum
of the rest of this intra-chromosome matrix. If some cells at
M-phase exist in the population, this ratio would be increased.
We plot the change of this ratio over time for all chromosomes
in Figure. S5C. The peaks are generally found at time points
24 and 48, or over 16-24 and 40-48, during which periods the
cells are supposed to pass M-phase.

Gene expression Clusters Analysis. We present a dynamical
view of gene expression in human fibroblasts based on RNA-
seq analysis [11, 12] of a 56-hour time course. We analyzed
three replicates on each condition from cells initially with
cell cycle and circadian clock synchronized. Time zero in-
cludes Dexamethasone treatment samples (D) and correspond-
ing base line controls (E) without exposure to serum. The rest
are sampled at 8-hour intervals counting from time zero after
exposing to serum. Details of sampling scheme are described
in material and methods.

We identified a set of 7786 genes which significantly varied
in expression levels between any two-time points in the time
course studied (Table S2). The selection of this set of signifi-
cant genes was based on the following criteria: (i) showed at
least 1.5 fold difference between any two time points, (ii) over
time mean expression RPKM value >1, and (iii) Ratio be-

tween variance over time and variance within each time point
replicate larger than 1.5.

To have a global view of the expression patterns of these
7786 genes (4824 increased expression levels, 2962 decreased
levels), we performed clustering analysis based on the correla-
tion matrix of their expression levels over time, and consider it
as the weighted adjacency matrix. Variance normalized spec-
tral clustering is then applied on this adjacency matrix with
the cluster number set to 6, 8, 16, or 32. We found that a
two-step spectral clustering process worked best, first to group
the genes into 8 top clusters (Figure S2A), then to re-cluster
each top cluster into 4 sub-clusters for total of 32 sub-clusters,
which mostly represent the expression patterns of the signifi-
cant genes. Overall, the expression variation over time domi-
nantly stands out at specific time points, however, the overall
changes between D and E is modest compared to that of other
time points. The differentially expressed genes are considered
as responding to Dexamethasone treatment (see Dexametha-
sone treatment responsive module).

We observed several characteristic expression patterns in the
cells after serum stimulation (Figure S2A). Compare to base
line D & E levels, the mean expression levels in top clusters
C1, C 2, C5, and C6 are increased over time and peaked at
hour 8 (C2), hour 16 (C5), hour 24 (C2), or hour 48 (C6).
A second peak can be seen at hour 32 (C6) or hour 48 (C2).
Top cluster C7 shows spiking levels at hour 8, then return to
slightly below D & E over time. C8 shows the opposite changes
compared to C7, with sharp repressed expression at hour 8,
and then returns to base line level over time. C3 expression is
significantly repressed at hour 8 & 16, and then remains at a
level slightly below D & E. C4 shows dramatically decreased
expression levels from hour 8 through 56.

We performed Gene Ontology (GO) analysis [13] of the
genes in each sub-cluster for enrichment under GO terms (Ta-
ble S3, FDR<0.05). A summary of the top 65 significant GO
terms enriched with genes (Bonferroni p <0.05) from each of
the 32 sub-clusters is presented in Table S4.

Among the top 65 significant GO terms, we found that the
most often used terms were cell cycle related terms such as:
cell cycle phase, cytokinesis, cell division, DNA-dependent
DNA replication, DNA repair, spindle checkpoint, (mitotic)
spindle organization and biogenesis, M phase, mitosis, and reg-
ulation of mitosis. Other terms include: amino acid metabolic
process, biopolymer metabolic process, cytoskeleton organi-
zation and biogenesis, nucleobase, nucleoside, nucleotide and
nucleic acid metabolic process, organelle organization and bio-
genesis, translation, and wound healing (Figure S2B-C).

RNA-seq Functional Module Analysis.

Cell cycle Module

We are interested in identifying genes related to cell cycle that
are novel findings from this study. We found that among the
7786 significant gene, 724 are functionally defined as cell cycle
genes based on 1) GO term “cell cycle” or 2) genes identi-
fied by Whitfield et al. [14]. Among the 724 genes (Table
S5), our spectral clustering correctly groups cell cycle phase
known genes in corresponding sub-clusters that are correlated
with the time points for S, G2/M, or M phase after serum
stimulation (Figure S5A). According to the expression pattern
of known cell cycle phase-expressed genes such as DNA repli-
cation/repair (S phase) genes, (Figure S5A) these genes are
repressed until an activation spike at the 16-hour time point.
This provides further evidence that our initial cell population
is indeed synchronized at G0/G1, and that DNA replication
occurs at around 16 hour as observed by others [15, 16]. In
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each cluster corresponding to cell cycle phase, in addition to
the well-known cell cycle genes, e.g., MCM2, MCM5, POLD1,
POLE, and RAD51 (DNA replication and repair); CCNA2
and CDC25C (promoting G1/S or G2/M transition); BUB1B,
CCNB1, CCNB2, and CDC20 (G2/M transition), there are a
large number of genes that have not been fully documented
for their role in cell cycle. Because their expression patterns
are very similar to those known to be cell cycle regulated, we
speculate that they are functionally similar to the known cell
cycle genes.

Circadian Clock Module

In mammalian cells, the core circadian genes, e.g., CLOCK,
ARNTL, PER1, PER2, PER3, CRY1, CRY2, NPAS1,
TIMELESS, are known to govern the autonomous circadian
clock [17]. The circadian clock oscillators (the cells) in a cul-
ture can be synchronized (phase resetting) with the treat-
ment of Dexamethasone [2]. In our experiment, the cells
were treated with Dex to reset the circadian clock. We an-
alyzed our time course RNA-seq data with the software JTK-
CYCLE designed for identifying gene expression rhythmic pe-
riodicity [18]. We obtained a set of 1040 genes which ap-
peared to have rhythmic period of 16, 24, or 32 hours (ad-
justed P<0.01 and amplitude>0.5) (Table S6). Gene ontology
(GO) analysis of these rhythmic genes identified a set of genes
(ARNTL, CRY1, CRY2, CSNK1D, NR1D1, NR1D2, PER1,
PER2, PER3 ) significantly enriched under KEGG pathway
“Circadian rhythm” which are known components of the core
circadian genes [11]. These 9 genes were also identified in
the 7786 genes list described above. Other components of
known core circadian genes had either no significant changes
(i.e. CSNK1A1, CSNK1D, CSNK1E, RORA) in expression
levels or were not detected in this experiment (FBXL21,
RORB, RORC ). We also identified C1orf51 (CIART) has a
32-hour period. This gene encodes an E-box binding protein
(CHRONO) known to modulate circadian gene expression and
function as a core component of the mammalian circadian
clock [19]. The large number of genes appears to have rhyth-
mic periods suggesting that additional genes play important
roles in the mammalian circadian clock.

Wound Healing Module

We are interested in genes responsive to serum stimulation
(wound healing genes). Genes in human fibroblasts responding
to serum are thought to play important roles in wound heal-
ing physiology and cancer pathophysiology [20, 15]. We ob-
tained a set of 939 wound healing genes from publicly available
data [20, 15], and found that our set of 7786 genes contained
709 of the known 939 wound healing genes (75.5%, Fisher ex-
act test P<1E-7) (Table S7). This suggests that the majority
of genes known to be related to wound healing and cancer
pathophysiology can be reliably identified. Furthermore, we
observed thousands of genes that changed expression levels in
this 56-hour time course study after serum stimulation, which
indicates a more complex situation that involves many more
genes with undefined roles in the wound healing process.

Dexamethasone (Dex) Treatment Responsive Module

Dexamethasone has been shown to reset the circadian clock in
peripheral tissue and culture cells [2, 21]. In our experiment we
not only synchronized the cells at G0/G1 phase, but also re-
set the circadian clock with Dex treatment (See Materials and
Methods). At time zero, D and E samples were not exposed

to serum. We identified a set of 953 genes with significantly
altered expression levels (P<0.05, FC>10%) in D samples con-
trast to E controls (Table S8), and 524 of them (55%) were
identified in the set of 7786 significant genes that varied over
time. We applied Bru-seq [22] to identify genes with instant
transcriptional changes due to Dex treatment (See Materials
and Methods). We identified 921 newly initiated transcripts
that show significant changes in expression levels 1.5 fold or
greater in the treated sample compared to the control (Ta-
ble S9). Among these 921 genes, 193 genes show significant
changes in response to Dex treatment at time zero (between
the D and E samples). The union set of 193 genes has sig-
nificant overlapping (Fisher exact test P = 1E-7) and shows
correlated expression changes (R2 = 0.77, and 93% in same
direction change) between Bru-seq and RNA-seq.

The Bru-seq technique targets instant transcription, how-
ever, our RNA-seq experiment only interrogates processed
mRNA transcripts. Since both RNA-seq and Bru-seq samples
were collected at the same time, the non-overlapping changes
in 728 genes (921-193) between the Bru-seq and time zero
sets may suggest that the instant nascent RNA transcripts
detected by Bru-seq may be not fully processed within the
sampling time window for RNA-seq. The other possibility is
that there are a portion of false discovered genes in both sets
of significant genes. In addition, considering a potential pro-
cessing lag between nascent transcripts and mature mRNAs,
there may be a higher percentage overlapping between Bru-seq
and RNA-seq. We compared the 921 Bru-seq significant genes
with the 7786 genes with high variance changes detected by
RNA-seq, and found that 695 of the 921 Bru-seq significant
genes (75.5%) were identified in the set of 7786 RNA-seq high
variance genes. This data indicates that a substantial pro-
portion of the 7786 genes may be detected in later hours and
are potentially Dex responsive genes, though a potential in-
fluence from serum stimulation on the expression changes of
these genes cannot be completely excluded.

Hi-C Matrix Normalization.

Toeplitz Normalization (O/E Normalization)

It is expected that nearby loci in linear base pairs distance
are more likely to be ligated than distant pairs. This makes
a Hi-C matrix highly diagonally dominant and conceals the
contact pattern embedded in the matrix. In order to alleviate
this effect, we normalize the counts by their contact probabil-
ity as a function of the linear distance, namely, each entry of
the matrix is normalized by its expected contact value. This is
equivalent to normalization of the Hi-C matrix by a Toeplitz
structure whose diagonal constants are the mean values cal-
culated along diagonals of the observed matrix. Considering
Hi-C matrix H(i) of chromosome i with length L(i), the nor-
malization is performed by:

H
(i)
TP = H(i) �E(i) [1]

where � represent the Hadamard division of matrices, and
entries of E(i) are given by

[E(i)]k` =
1

card(Dk`)

∑
m,n∈Dk`

[H(i)]mn [2]

with the set Dk` = {m,n |m−n = k− `, 0 < k, ` < L(i)}, and
card(·) denoting the cardinality of its set argument.
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Modified Toeplitz Normalization for Large Chromo-
somes

Centromeres separate chromosomes into two arms. The con-
tacts between two arms of the same chromosome are signifi-
cantly lower than contacts within the arms, and behave in a
manner closer to the inter-chromosome contacts. This phe-
nomenon leads to the Toeplitz normalized matrix contain-
ing much lower values at the off-diagonal entries close to the
centromere in large chromosomes, as compared to the rest
of the matrix. In order to alleviate this effect, the intra-
chromosome Hi-C matrix can then be segmented into four
divisions with boundaries determined by the centromere po-
sition. The Toeplitz normalization is then applied to each of
these divisions.

Stratified Toeplitz Normalization for High Resolution
Matrices

Hi-C matrices at higher resolution (e.g. 100kb resolution)
may present a sparse pattern for off-diagonal entries, espe-
cially when we do not have a large number of total reads. The
contact probability at far off-diagonals can then be very small
due to the sparse nature of the region. Applying the Toeplitz
normalization on such a matrix will largely amplify the non-
zero entries at off-diagonals. This will lead to a normalized
matrix distorted by a band structure, and largely prevent us
from investigating its long-range structures. We thus propose
a stratified variant for Toeplitz normalization by using the
following expected matrix instead:

[E(i)]k` =
1

card(D̃k`)

∑
m,n∈D̃k`

[H(i)]mn [3]

with the set D̃k` = {m,n |m − n = k − `, 0 < k, ` <

L(i), [H(i)]mn 6= 0}.

Normalization for the Inter-chromosome Matrices

The inter-chromsome matrices can be normalized by dividing
their (stratified) mean contact probability, so that they have
similar visibility compared with intra-chromosome matrix. It
can be observed that inter-chromosome structures are inher-
ited from intra-chromosome Hi-C matrices.

Spectral Graph Theory. Graph theory plays an important role
in modeling and analyzing the genome architecture and func-
tion. Relevant concepts are reviewed for supporting and fram-
ing our analysis [23, 24]. We define a graph G = (V,E) where
V = {v1, v2, . . . , vN} is a finite set of vertices with the cardi-
nality N , and E is the edge set consisting of elements of the
form {vi, vj}. The adjacency matrix A(G) (or simply A for
short) is the symmetric N ×N matrix encoding the adjacency
relationships in the graph G, such that [A(G)]ij = 1 only if
{vi, vj} ∈ E, otherwise [A(G)]ij = 0, with [·]ij denoting the
ijth entry of its matrix argument. The degree of a given ver-
tex, denoted by d(vi), is the cardinality of the neighborhood
set of vi. This degree is equivalently expressed via the adja-
cency matrix by d(vi) =

∑
j∈N [A(G)]ij . The degree matrix,

D(G), is defined as a diagonal matrix with the ith diagonal
entry given by d(vi). The Laplacian of G is defined by

L(G) = D(G)−A(G) [4]

and the normalized variant is given by

L(G) = D(G)−
1
2
(
D(G)−A(G)

)
D(G)−

1
2 [5]

For a connected graph, let the ordered eigenvalues of L(G)
be denoted by λ1, λ2, . . . , λn. The relation 0 = λ1 ≤ λ2 ≤
. . . ,≤ λN holds. The second smallest eigenvalue λ2 is called
the Fiedler number, or Fiedler value of the graph, G. The
associated eigenvector is called the Fiedler vector. Accord-
ing to the entry signs of the Fiedler vector (+, or -) vertices
of a graph can be grouped into two clusters, with each clus-
ter having relatively stronger within-cluster connections and
weaker between-cluster connections [25]. More generally, in-
stead of considering binary connections between pairs, weights
can be assigned to each edge such that [A(G)]ij = wij only if
{vi, vj} ∈ E (otherwise [A(G)]ij = 0) to characterize the con-
nection strengths. The associated degree matrix, D(G), and
Laplacian, L(G), are still defined in the same way as previously
presented. Fiedler number and clustering based on the Fiedler
vector can also be defined and performed identically. In Fig.
2C we reported the correlation coefficient for each chromo-
some between the signed Fiedler vector and thresholded gene
expression (RNAseq counts) where the threshold was selected
to maximize the correlation.

The Fiedler vector can also be used for extracting TADs.
The sign pattern a Fiedler vector can divide the chromosome
to local units, which can be considered as TADs at relatively
large scale. In order to get finer structures, we can recursively
compute the Fiedler vector to split given obtained TADs until
the Fiedler value of the region is higher than some threshold.
The TAD structures in Figure S1E were obtained with this
method.

Topological Domain Identification via the Graph Theory. We
propose an algorithm to extract topological domains with the
consideration of overall organization. At the first step, we
consider the weighted graph with edge weights defined by the
Toeplitz normalized matrix HTP. The Fiedler vector, denoted
by v(1), of this graph is computed and segments the graph into
two clusters relying on the signs of Fiedler vector entries. A
number of locally compact structures are then given by the
sets of vertices with the same sign on the largest range of
continuous indices from i to j, i.e., the region Di-j defined

by v
(1)
i , v

(1)
i+1, . . . , v

(1)
j having the same sign. Each domain is

characterized by highly local compactness compared with the
neighboring domains. The sizes of these domains vary from
100kb to several megabases. They can naturally be defined as
topological domains at the first layer. We can identify over
2000 TADs determined by the Fiedler vector derived from
HTP, which is consistent with the number reported in the
literature. We will see that compared with the gene expres-
sion represented by RNAseq counts, regions within each do-
main generally behave in a binary manner, all active, or all
inactive. Further, all domains with the same sign behave sim-
ilarly. From the spectral graph theory, we know that domains
with the same sign are labelled as in the same cluster, and
have more contacts than a different cluster. This result is
obtained from HTP that considers the overall contact organi-
zation of the chromatin, and is biologically consistent with the
two chromosome compartments.

Topological domains are likely to have hierarchical struc-
ture, and domains at finer scale can have more compact local
organization. In order to identify domains at finer scale, we
propose to calculate the Fiedler vector for a obtained domain
Di-j to split the domain into sub-domains. The Fiedler value
of the obtained domains are calculated and compared with a
predefined threshold λthr to determine whether they are com-
pact enough, or can further be split. Since finer domains rely
more on the local compactness, these recursive steps will be
performed on sub-blocks of the original matrix H in log scale,

Footline Author PNAS Issue Date Volume Issue Number 5
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instead of HTP. Table 1 (in this document) provides a com-
parison of the proposed algorithm with the literature ones.

Gene Resolution Contact Map.

Fragment Level Contact Map

Each row of the fragment read file (.csv file) indicates a lig-
ated pair of fragments from the genome, with the coordinates
of both fragments given. This information enables us to know
the exact locations of the contacts existing in the genome.
Then, given any two regions defined by exact coordinates, the
contacts of these two regions can be identified by searching
over the fragment read file and counting the number of pairs
that are located within these regions.

Construction of Gene Resolution Contact Map

Convectional Hi-C matrices are generated by binning frag-
ments into fixed resolution bins (e.g., 100kb, 1Mb). However,
we found that the analysis of gene spatial relations can be dif-
ficult to perform using this method due to the large variability
of gene sizes (from several 1kb to 2Mb). This motivated us
to use original fragment read pairs for the construction of the
gene-resolution contact map. We generate a matrix with each
bin representing a gene, the number of inter-contacts between
a pair of genes is determined by summing up the fragment
pairs located within the region defined by these genes. The
diagonal entries are the number of contacts within each gene
itself. This matrix gives us an exact contact relation for all
genes. We denote this original gene-resolution contact matrix
by G.

Normalization of Gene Contact Matrix

In order to further study the gene level contact map, normal-
ization is needed on the original contact matrix G. A general
trend exists in which longer genes tend to have more HindIII
cutting sites, and therefore more contacts. We thus need to
normalize the inter-contact of two genes i and j, given by [G]ij
by the lengths of the two contributing segments, namely,

[GN1]ij =
[G]ij
LiLj

[6]

where Li and Lj are the lengths of genes i and j respectively.
The value [GN1]ij gives the density of contacts within a region
of the area Li × Lj .

Next, similar to a Hi-C matrix, it is expected that nearby
genes in linear base pairs distance are more likely to be ligated
than distant pairs. This makes the gene-resolution contact
matrix highly diagonally dominant and conceals the contact
pattern embedded in the matrix. In order to present the rel-
ative contact probability with respect to the linear distance,

we normalize the contact density [GN1]ij by the mean contact
of the gene pairs at the similar distance. Since gene distance
(defined by the linear distance between the middle points of
two genes) are not uniform, we binned the distances between
all pairs of genes on the chromosome under study into M in-
tervals (e.g.: M = 1000 in our analysis), then we calculate the
mean contact density of the pairs within each interval, then
normalize the contact density matrix by

[GN2]ij =
[GN1]ij
M(gi, gj)

. [7]

where M(gi, gj) denotes the mean contact density of all the
gene pairs with the distance in the interval where gi and gj
are located.

Phase Plane for 4DN.

Construction of Phase Plane

The concept of phase plane is introduced to characterize fea-
tures of 4DN, and it is a useful visual display for dynamical
systems. For the 4DN, one axis is a measure of the form,
denoted by F1(H), the other is a measure of function, de-
noted by F2(r), where F1 and F2 are the summarization func-
tions for form and function, respectively, and H and r are
the (normalized) Hi-C matrix and gene expression vectors at
a given scale. At time instant n, the state of the form and
function of a unit at this scale can be represented by a point(
F1(H(n)),F2(r(n))

)
on the phase plane.

• The phase plane in Figure 1G (right) was constructed by
considering the Fiedler value (as F1) of Toeplitz normalized
Hi-C matrix with desolate gene regions excluded (as H) for
form, and the mean square root (as F2) of the RNAseq
counts of the chromosome regions associated with H (as r)
for function.

• The phase plane in Figure 1G (middle) was constructed by
considering the Fiedler value (as F1) of each TAD in the
Toeplitz normalized Hi-C matrix (as H) for form, and the
mean square root (as F2) of the RNAseq counts in each
TADs for function.

• The phase plane in Figure 1G (left) was constructed by
considering the Fiedler value (as F1) of the matrix from
the fragment contact of a gene (as H) for form, and the
RNAseq counts of this gene (as r) for function.

Domain of Form and Function

For the fibroblast cells, we collected the data for N = 8 time
points. These points can define a domain of form and function
(DFF) that is cell-type specific. In this work, we considered
elliptic regions for DFF. To determine the ellipse, the two
eigenvalues of the 2 × 2 covariance matrix obtained from the

HMM DP Laplacian
Measure Directionality index Reads (normalized) Fiedler value

(normalized)
Key methods State estimation with Hidden

Markov chain
Optimization with dynamic
programming

Spectral clustering with
graph Laplacian

Characteristics Method in original paper Optimal in region total reads Good physical interpretation
Resolution Partially related with the

length for DI
Related with γ Related with λthr

Hierarchical No No Yes
Robustness Sensitive to initialization Unique solution Unique solution
Complexity Moderate High Low
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coordinates of the 8 points were calculated, with λmax and
λmin denoting the large one and the small one, respectively.
The center of the ellipse is given by the centroid of the 8
points. The orientation is determined by the direction of the
eigenvectors. The long axis and the short axis are determined
by δ
√
λmax and δ

√
λmin, where δ is the parameter to define

the allowance of the deviation. In our figures, δ was set to 3.

Graph Attached to the Genome. The components within the
nucleus interact with each other in various manners and form
a dynamic system. Defining these components and the in-
teractions among them as a graph allows one to assign them
with quantifiable values and to study the associated proper-
ties over time. Consequently, this dynamic view permits one
to study the process of differentiation as well as nuclear orga-
nization and its effect on cell properties. Genes can be consid-
ered as nodes in such a graph. Their interacting relationship
can be defined from several aspects. Gene expression data
(RNAseq) provides the basis for constructing a transcriptome
graph based on co-regulated genes. The Hi-C method probes
the 3D architecture of whole genomes by coupling proximity-
based ligation with massively parallel sequencing. Spatial
proximity maps of the genome can be constructed using Hi-C
at different resolution. Hi-C contact frequencies and the way
they changes over time can be used to define the graph with
physical contact relation.

Spectral Clustering. Spectral clustering is one of the most pop-
ular modern clustering algorithms. It can be solved efficiently
by standard linear algebra techniques and very often outper-
forms traditional clustering algorithms. Assuming that data
consists of N points, we can construct the weighted adjacency
matrix A based on the similarities among these data points.
We can then cluster these n data points into two clusters de-
termined by the entry signs of the Fiedler vector, and multi-
ple clusters can be obtained by clustering again on obtained
clusters, or by the following general spectral clustering algo-
rithm [26]:

• Compute the (normalized) Laplacian L of the weighted ad-
jacency matrix.

• Compute the eigenvectors u2, . . . .uK+1 of L.
• Let U ∈ IRN×K be the matrix constructed with column

vectors u2, . . . .uK+1.
• Construct matrix U by normalizing the rows to unit norm,

that is, [U]ij = [U]ij/(
∑N

k=1[U]2ik)2.
• Take each row as an input of the k-means algorithm, and

get clusters C1, . . . , CK .

Spectral Clustering on Hi-C Matrix. Hi-C matrices naturally
provide weighted adjacency relation between genome loci. The
Toeplitz normalized Hi-C matrix is thus considered as A, and
spectral clustering is then applied to segment the loci into two
or more clusters.

Spectral Clustering on Gene RNA-seq Profiles.N ′ genes with
relatively larger temporal variability are selected out of the
total 28000 possibilities. The correlation matrix of these N ′

gene expression variation profiles is computed and shifted by
1 to ensure nonnegative value for entries. Then this matrix is
considered as the adjacency A. This gene is then divided into
clusters via the spectral clustering algorithm. The center of
each cluster is then the mean of the centralized and variance
normalized RNAseq counts.

Contact Matrix and Spatial Reconstruction for a Gene.A
fragment read map is capable for illustrating how the frag-

ments within a gene contact with each other. This super-
resolution information enables us to (approximately) recon-
struct the gene spatial structure. Several methods are pro-
posed for this computation in literature. In order to maintain
consistency with the mathematical framework and graph the-
ory, we use the technique–Laplacian map to reconstruct these
spatial structures [27], using the fragment read level contact
information for a given gene and the enzyme cutting site lo-
cations within the gene region. The major steps are:

• Summarize the pair reads into a matrix according to the
cutting site locations; namely, (ij)th-entry of the matrix is
given by the total number of reads with two end coordinates
within (i, i+ 1) and (j, j + 1) respectively.

• Data transformation, such as square root transformation
can be applied to shape the matrix data. Calculate the
normalized Laplacian of the above matrix.

• Use the eigenvectors associated with the three smallest non-
zero eigenvalues as the output coordinates.

• Spline interpolation can be applied to smooth the data
points.

Criteria for Extracting Dynamic Genes. We establish several
criteria to extract gene that have significant dynamics of tran-
scription over time. These genes can be considered as genes
that are highly expressed in Fibroblast cells and have response
to serum stimulation. The criteria are listed here-below:

• At least 1.5 fold difference in expression between any two
time points (q value < 0.01).

• Mean expression over time RPKM value larger than 1.
• Variance over time larger than 0.5.
• Ratio between variance over time and variance within each

time point replicate larger than 1.5.

Extracting Possible Common Transcription Factors. We pro-
pose a method to extract possible common transcription fac-
tors of two genes, g1 and g2, via the motif data from ENCODE
database and gene expression data.

Prerequisite:

• Genes g1 and g2 have similar transcription evolution over
time (as given from RNA-seq data).

• The contacts between g1 and g2 (from Hi-C data) show
similar trend with their transcription.

(These two conditions ensure they may share common tran-
scription factors in a co-localization manner).

Extraction steps:

• Determine the location of g1 and g2 . Suppose they are
given by chr-n1 : x1 − x2, and chr-n2 : y1 − y2 respectively.

• Extend the regions at both sides of the genes, in order
to cover their regulation regions. Let the extended loca-
tion of g1 and g2 be denoted by chr-n1 : x′1 − x′2, and
chr-n2 : y′1 − y′2, typically, with x′1 < x1, y′1 < y1 and
x′2 > x2, y′2 > y2.

• Search in the ENCODE database and get the CMTmotif

set MT(1) = {mt(1)1 ,mt
(1)
2 , . . . ,mt

(1)
N1} in the region chr-n1 :

x′1 − x′2, and the motif set MT(2) = {mt(2)1 ,mt
(2)
2 , . . . ,

mt
(2)
N2} within the region chr-n2 : y′1 − y′2.

• Assign scores for each motif in the sets MT(1) and

MT(2), given by S(1) = {s(1)1 , s
(1)
2 , . . . , s

(1)
N1} and S(2) =

{s(2)1 , s
(2)
2 , . . . , s

(2)
N2}. The scores can be associated with

some related information of motifs within the region (e.g.
times of presence). Taking the motifs with largest score,
or using a thresholded score, we can extract small sub-

sets SMT(1) = {smt(1)1 , smt
(1)
2 , . . . , smt

(1)
N1?} and SMT(2) =

Footline Author PNAS Issue Date Volume Issue Number 7
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{smt(2)1 , smt
(2)
2 , . . . , smt

(2)

N2′} from MT(1) and MT(2), with

SMT(1) ⊂ MT(1) and SMT(2) ⊂ MT(2).
• Get the intersection set: CMT = SMT(1) ∩ SMT(2) =
{cmt1, cmt2, . . . , cmtN}.

• Check the transcription level of genes that produce the
transcription factors CMT. If a gene is not active in the
current cell type data, remove the associated transcription
factor from CMT.

• The remaining factors are considered as common transcrip-
tion factors for these two genes.

Circadian Genes. In this paper we place a keen interest on
circadian rhythms within mammalian cells; specifically the
CLOCK gene pathways. In this biological pathway, CLOCK
and ARNTL (BMAL1) genes transcribe proteins that form
a heterodimer protein in the cytoplasm. This heterodimer
protein then reenters the nucleus in areas with E-Boxes (5’-
CACGTG- 3’ and 5’-CACGTT-3’) to activate genes that con-
tain this motif structure. Key genes in this pathway include
the cryptochrome genes (CRY1 and CRY2) and period genes
(PER1 and PER2). The CRY and PER proteins transcribed
from these genes dimerize, and in turn inhibit CLOCK and
ARNTL transcription. This activation-inhibition pathway re-
sults in a continuous periodic cycle, equaling ∼24 hours in
mammalian cells. The gene position within the nucleus and
RNA activity of CLOCK, ARNTL, PER2, and CRY1 has been
further explored in this paper.

FISH Gene Selection. The co-location, (mRNA) expression,
and nuclear distribution of four circadian clock genes was in-
vestigated over time after G0 cell cycle arrest by serum starva-
tion and circadian rhythm reset by dexamethasone treatment
in cultured human fibroblasts. The four genes selected, Arntl,
(aka Bmal1, Mop3), Per2, Clock, and Cry1 are located on four
different chromosomes, allowing a relative degree of freedom
for each gene to distribute within the nucleus.

The Bmal1:Clock heterodimer binding to the e-box
cis-regulatory enhancer sequences of RORs, REV-ERBS,
Per1/Per2, and Cry1/Cry2, increase their expression, and,
in the case of ROR expression, increases the expression of
Bmal1, or, for the REV-ERBs, blocks Bmal1 expression. The
Per:Cry heterodimer, in conjunction with their phosphoryla-
tion by CK1e/d, blocks Bmal1:Clock activity [28]. It has been
shown that Bmal1 is essential in this process [29] Per2 shows a
very low Expressed Sequence Tag profile in human skin (Bioin-
formatics Lab, Wilmer Institute, John Hopkins University).
If mRNA expression levels in the present experiment confirm
this in fibroblasts, Per2 may serve as an internal control to
determine if this ‘silenced’ gene tends to gather at the nuclear
periphery.

We are investigating whether genes tend to be closer in phys-
ical space when they express in-phase (and share similar tran-
scription machinery), while genes which express anti-phase
tend to be further apart. Silenced genes should be statisti-
cally closer to the nuclear periphery [30].

Oligo Creation.Oligonucleotide tags (MYtags, MYcroarray,
Ann Arbor, MI) for the genes Clock, Cry1, Per2 and Bmal1
were designed using MYcroarray’s proprietary software [31].
Input target sequences were cut into candidate tags staggered
every nucleotide along the target sequence. Tag length was
adjusted between 43 and 47 nucleotides to fit into the nar-
rowest possible Melting Temperature (Tm) range. Each tag
candidate was blasted against the reference genome previously
masked for the target sequences to prevent self-hit. A Tm of
cross-hybridization was predicted for every blast hit. Tag can-

didates having no significant potential cross-hybridization at
the hybridization temperature were selected and synthesized
for use as FISH probes. Fluorescent labeling of the probes
were performed in our laboratory using techniques adapted
from Murgha YE, et al (proprietary). The choice of fluores-
cent labels for each probe set was based on the dichroic filters
and lasers available to us and advice from Zeiss and MYcroar-
ray representatives on excitation/emission separation and ef-
ficiency of labeling. Atto488, MAX, Atto 550 and Atto633
were chosen from a list of available fluorophores (ATTO-TEC
GmbH; FreedomTM dyes IDTr).

The final dye-probe concentrations were acceptable, averag-
ing 8 pmoles/µL.

FISH Hybridization and Imaging. BJ ATCCr CRL-2522 ho-
mosapien skin fibroblasts were plated in large culture dishes
(for Hi-C), and 6 well culture plates containing 10 mm circular
coverslips (for FISH) in complete media (DMEM, 10% FBS,
NEAA, antibiotic/antimycotic) overnight, followed by G0 cell
growth arrest by serum starvation for 48 hrs [32, 33] in FBS-
deficient media. This was followed by a 1 hour treatment
with the addition of 100 nM dexamethasone [34].The control
sample was treated with carrier, 0.001% ethanol. Removal of
the dexamethasone/carrier was accomplished by two washes
in PBS. Complete media was added, and a total of 16 time
points were collected; at hr 0 and at 4 hr intervals afterward,
totaling 60 hours and over 2 full circadian cycles.

Fluorescent In Situ Hybridization (FISH): The 10mm cover-
slip fibroblasts for FISH were preserved using 4% PFA follow-
ing the ’Support Protocol 1: Preparing Tissue Culture Cells
for Interphase FISH)’ of Beliveau et al [35]. After 24 hrs stabi-
lization in 2xSSCT/50% formamide, the cells were dehydrated
in graded 70%, 90%, 100% cold ethanol at 5 minutes per step.
Storage was in 100% ethanol at -20oC.

Samples for hybridization were re-hydrated with reverse
graded cold ethanol (100%, 90%, 70%) followed by a 1 min
wash in PBS at room temperature. The ’Alternate Protocol
1: Fast 3D-FISH Using Oligopaint Probes’ [32] was then fol-
lowed, with modifications of hybridization buffer volumes and
probe amounts to reflect the 22x22mm to 10mm round cov-
erslip area difference. Individual probe volumes were mixed,
reduced to dryness in a 40oC heating block and reconstituted
in 1µL of DNase free water and 7µL of hybridization buffer
per sample.

Imaging was performed on a Zeiss LSM 710 confocal mi-
croscope using a 63x objective. Settings for laser intensities,
pinhole settings, photomultiplier gains, etc. were stored and
used consistently for all samples.

Manual selection of nuclei for analysis was based on clear
labeling of two areas for each of the four probes at each time
point. Processing to reduce signal cross-talk and obtain dis-
tance measurements between the labeled probes, nuclear cen-
troid, nuclear envelope and radial distance was performed with
image processing techniques. See Figure S4DI for the entire
workflow, which consists of modules with different roles. Con-
sidering the data size and the requirement of processing time,
simple but robust algorithms were applied for each module. In
what follows we briefly present the functions of these modules
and the used algorithms, starting with the raw image data IO
obtained from the microscope.

Pre-processing: The collected data is a three-dimensional
data such that IO with width w and height h, and n denoting
the number of observed slices, and C denoting the number
of color channels. In the multispectral mode of our system,
five channels are involved in the observation, namely, C = 5.
One channel is used for forming the nucleus shapes, while the
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others are used for labeling four pairs of genes. Considering
the natural disk-like shape of fibroblast cells we generate the
maximum intensity projection I of the image IO, to reduce
the data dimension.

Subregion extraction: Among a number of cells in the ob-
served scenario, only several one are considered as “good” by
observing the quality of the cells. The good cell center infor-
mation, i.e., (X,Y ) coordinates of the center of the good cells,
are currently provided manually. We then generate a series of
square sub-images IS centered at these centers and with side
length RS .

Threshold determination: Since we need to segment the nu-
clei away from the background in the following steps, it is nec-
essary to determine a segmentation threshold ν. In order to
avoid manually selection of the threshold in each scenario, this
module provides us with a value of nv by selecting a point that
is located between two peaks of the histogram of the channel
associated with nucleus coloring dye (DAPI).

Endmember extraction: In this experiment’s context, it is
reasonable to make the assumption that pure dye spectra ex-
ists in images. The nucleus dye (DAPI) has little crosstalk
with the others dyes, and gene positions are overlapped with
low probability if only several genes are colored. Due to these
conditions, we can assume the existence of pure pixels. Fur-
thermore, we can assume that pure pixels have more signifi-
cant contribution on its observation channel than the overlap
from the others dyes. The endmembers M are selected by the
brightest pixel in each channel.

Main cell segmentation: The subimages IS may contain not
only the cell to be analyzed but also parts of other cells that lie
in the current square. We thus need to determine a cell shape
mask to extract the desired cell and to eliminate the influence
from the others in the cell shape determination. This mask
will also be used in the following unmixing step to reduce the
number of pixels to be processed. In this module several oper-
ations are performed, e.g.: thresholding the subimage, labeling
the connected regions, and selecting the major region of inter-
est. Finally, image morphology operations are also applied to
eliminate small isolated objects.

Data unmixing: With the estimated endmember matrix and
the observations at hand, we are enabled to conduct the lin-
ear unmixing by solving the nonnegativity constrained least-
square problem.

Gene position determination: After evaluating the abun-
dance distribution A, we localize the positions (x̃i, ỹi) of two
genes on each channel by seeking two maximum intensity
points in the abundance maps.

Ellipse coordinate establishment: We model the shape of a
nucleus by an ellipse. The long axis and short axis of the el-
lipse are determined by PCA performed on the nucleus shape
mask. The genes are then marked in the obtained ellipse.

Cell alignment: Since the cells might be rotated and flipped,
it is better to align the cells to facilitate the comparison and
further computation. After aligning the nuclei by setting their
long axis to the vertical direction, we also flip/rotate cells to
so that their gene positions are maximally matched with a ref-
erence nucleus. Then the coordinates of genes are denoted by
(xi, yi).

Measures Used for Characterizing Gene Locations in FISH
Data.

• Mean closest distance (MCD) between two genes:
MCD is defined as the shortest distance between two dif-
ferent gene locations (given that there are two homologous
genes per target, there are 4 different “distances” between
two gene locations; take the shortest distance). MCD is
meant to be used as a measure of relative spatial interac-
tion between two genes at a given time point, with a lower
distance correlating to a higher likelihood of genomic con-
tact.

• Distance Matrix: The matrix with entries denoting the
distance in Euclidean space between two genes.

• Index of Stability: Derived from the Fiedler number
of normalized laplacian of the distance matrix. This can
be computed for any size distance matrix (i.e. number of
genes) to characterize relative structure. Our analysis used
the normalized laplacian to create a scale invariant measure
of stability.

Rationale for MCD. MCD was developed as a simple measure-
ment of inter-gene distance. Genes measured with MCD in our
analysis are biallelic, meaning each gene has a copy that also
is transcriptionally active. As a result of these gene copies,
when measuring the distances between two genes there are 4
possible combinations. The shortest distance derived from the
4 possible combinations, MCD, does not take into account the
gene copies, but was chosen to give a general picture of how
close two genes may be at certain time point.

Cell Normalization. After further analysis of our data we dis-
covered that nucleus area over time had a periodic nature as
well, with peaks aligning with our peaks in MCD data. It is
believed that this is largely due to natural fluctuations in cell
size in the cell cycle [36], but to eliminate this variable from
our analysis we also reviewed our data with normalized nu-
cleus size. To normalize our data we calculated the average
major axis (10um) and minor axis (5.4 um) at the first time
point and translated each nucleus to fit this form, while pre-
serving gene position within the nucleus. We then recompiled
our data to see how our findings were affected.

Fig. S3E-F show MCD between CLOCK and PER2 genomic
locations, much like Fig. 3B, with normalized data. A cyclic
pattern can still be seen, on similar amplitude, with a slightly
greater period ( 28 hrs). In our relatively small time window,
the overall relationship between MCD and RNA transcription
levels remains the same when cells are normalized.
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Fig. S1A. This figure shows the reproducibility of our data with previously published Hi-C data at 1M resolution for fibroblasts (Genome Research 23:260-269, 2013) for

chromosomes 4, 11, 14, 22. It can be observed that our data has superior quality with clearly structured organization.
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Fig. S1B. This figure shows how our method of chromosome partitioning compares to previously published methods from (Lieberman-Aiden et al. 2009). Green arrows

represent our method, red arrows represent Lieberman-Aiden et al method. In both methods the raw Hi-C Matrix is Toeplitz normalized to highlight long distance Hi-C contacts.

(Lieberman-Aiden et al. 2009) then creates a correlation matrix based on the Toeplitz normalized matrix. The first eigen vectors of this matrix acts to partition the chromosome

into two compartments. Our method partitions the chromosome directly from the Toeplitz normalized matrix by calculating the fiedler vectors of this matrix. The end results

from each method are comparable, but Fiedler vector partitioning has clear physical interpretation and is more flexibility for extra analysis (such as TAD identification and 3D

reconstruction).

Footline Author PNAS Issue Date Volume Issue Number 11



i
i

“PNASTMPL” — 2015/6/1 — 9:17 — page 12 — #12 i
i

i
i

i
i

Fig. S1C. Compartment identification with Fiedler vector for Hi-C at 100kb resolution for chromosome 14. Left : Comparison of gene expression levels (represented by

average RNA-seq counts over time, over 100kB binned region; top) and the clustering matrix results on chromosome 14 at 100kb resolution (bottom). The Fiedler vector

divides the bins by the sign of its value(+/-). Clustering results are projected onto gene expression and annotated by colors. It can be observed that clustering from Hi-C divides

the bins into transcriptionally active and inactive regions. The Classification Map shows the long-range connection of clusters. Right part: Fiedler vectors of chromosome 14

Hi-C over time. Bins with different clustering results compared with time T = 0h are denoted by blue vertical lines. Note that this large scale structure is stable over time, and

slight changes only appear at cluster boundaries.
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Fig. S1D. Correlation coefficients between thresholded Fiedler vectors and RNA-seq counts for chromosomes 1-22 over time, and the average coefficient across chromo-

somes is 0.5421 (dashed black line), while the average coefficient from the principle component analysis is 0.5171.

Fig. S1E. Upper panel: Hierarchical identification of TADs with graph Laplacian, illustrated by the region of bins 229 ? 491 Hi-C matrix of chromosome 4, at 100kb

resolution. With the increase of Fiedler value threshold, we obtained finer TADs that are inherited from the previous level. Lower panel: standard deviation of RNAseq within

TADs with the increase of Fiedler number threshold (decrease of TAD sizes).
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Fig. S1F. Individual gene fragment contact and a gene-resolution contact map. The left dot plots shows the fragment contact maps of three genes: G1: RBM23(Chr

14:23369853-23388396), G2: SLC7A8(Chr 14:23594503-23652869), and G3: THTPA(Chr 14:23980968-24048009). The red squares along the diagonal enclose all interaction

fragments of each gene with defined genomic locations, dashed green lines indicate Hind-III cutting sites. The off-diagonal rectangles display the contact between gene pairs

from Hi-C data. The distance d between two genes is defined as the linear distance between their centers. The gene size is denoted by L. The right plot shows gene-resolution

contact matrix generated from the left contact map. The values are obtained by summing up the number of fragment reads in the associated regions.
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Fig. S1G. The left figure shows the normalized gene-resolution contact matrix averaged over time for all genes on chromosome 14. The bins (genes) are normalized by

gene length and its expected contact frequency (see supplementary for the normalization method). The red-green bar plots above the gene-resolution contact matrix show the

RNA-seq counts for each gene (top) and the Fiedler vector of this normalized gene contact matrix (second bar plot from top). The correlation coefficient between these two

vectors is 0.34 less than that in Fig. S1D. Right: Gene-resolution contact maps over time for all the genes on Chr 14. The red bar plots show the expression vector.
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Fig. S1H. Top: The circus plot of interactions, modeled 3D structure, time, and Fiedler number for CLOCK. Bottom: Fragment interaction dynamics of PER2. PER2

is a core circadian gene with a period of 24h (depicted in this figure). The evolution of PER2 expression, measured by RNAseq, plotted along the top of the figure (green).

Simplified fragment level Hi-C contact maps of each time points are depicted by red grids. The regulatory regions containing the significant patterns are denoted with grey and

blue rectangles within the red grids. Note that the times points with high transcription have similar contact patterns in the regulatory regions.
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Fig. S1I. MSANTD4 is a gene determined to have a period of 16 hours. Its RNA-seq evolution is plotted in the middle of the figure. Hi-C matrices of each time points

are plotted correspondingly. Gene boundaries are denoted by the red vertical and horizontal lines. Hind-III cutting sites are denoted by non-uniform teal grids. The regulation

regions with specific changing patterns are denoted in red and green rectangles. Note that the time points with high transcription have similar contact patterns (red rectangles),

while those with low transcription have distinctly different pattern (green rectangles).
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Fig. S1J. PER2 is a core circadian gene with a period of 24 hours. Its RNA-seq evolution is plotted in the middle of the figure. Hi-C matrices of each time points are

plotted correspondingly. Gene boundaries are denoted by the red vertical and horizontal lines. Hind-III cutting sites are denoted by non-uniform teal grids. The regulation regions

with specific changing patterns are denoted in red and green rectangles. Note that the times points with high transcription have similar contact patterns (red rectangles), while

those with low transcription have a distinctly different pattern (green rectangles), except for the outlier time T = 40h. Furthermore, note that the pink rectangles emphasize

another replicated contact pattern for the low transcription time points.
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Fig. S1K. PER1 is a gene that has significant response to DEX. Its RNA-seq evolution is plotted in the bottom-left of the figure. Fragment level Hi-C matrices of selected

time points are plotted correspondingly. Gene boundaries are denoted by the red vertical and horizontal lines within the Hi-C matrices. Hind-III cutting sites are denoted by

non-uniform teal grids. Note that replicated patterns in red rectangles exist at high transcription time points T = 24h and 48h, which differ from the pattern at T = 56.

Furthermore, note the more contacted pattern at T = 0h, which could be caused by the DEX. Contact matrices of the other time points are not shown here as they do not

show clear particular patterns.
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Fig. S1L. Phase plane characterization of genome form-function at different scales. Left: Phase plane for selected genes on chromosome 4. Middle: Phase plane for

selected topological domains on chromosome 4. Right: Phase plane for chromosomes 4.

Fig. S1M. A 4DN phase plane illustration shows how genomic regions (at an arbitrary scale) of specific cell types may occupy different regions. The red shaded ellipse

depicts a given cell type’s phase plane domain of structure and function (DSF), derived from multiple time points of S-F positioning. The green shaded ellipse depicts another

cell type’s DSF (or the DSF of an abnormal cell). The arrows depict a path showing potential shifts from one DSF to another with changes in cell state (differentiation or

reprogramming) or with disease progression.
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Fig. S2A. Expression patterns of the 7786 genes identified by Spectral clustering. We identified 7786 genes with high temporal dynamics out of the total 23615 genes

picked in RNAseq, then cluster these genes into 8 clusters based on expression profiles. The heat maps of the 8 clusters are illustrated in the 1st column. The average normalized

values of each cluster are illustrated with line plots in the 2nd column (blue line), with the shaded area denoting the standard deviations, and boxes indicate sampling time

points. The time points of sampling are horizontally shown at the bottom on each panel, D: time zero samples treated with Dexamethasone for 1 hour without exposure to

serum (contrast to E) , E: indicates base line time zero control without exposure to Dexamethasone & serum , and numbers indicate hours after serum stimulation from time

zero. The 8 clusters are then clustered into 4 sub-clusters to investigate finer expression patterns?with heat maps shown in the 3rd column, and the average normalized values

of each cluster are illustrated in the 4th column. Color: green represents expression levels below the mean, red above the mean, dark: mean level, the scale is shown in a line

plot next to each heat map.
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Fig. S2A. (Cont’d). Expression patterns of the 7786 genes identified by Spectral clustering.
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Fig. S2B. Summary of gene ontology (GO) analysis for the 32 sub-clusters. Genes from each sub-cluster are subjected to GO analysis. Main significant GO terms with

false discovery rate ¡ 0.05 are summarized in this figure.
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Fig. S2C. Summary of significant biological process terms from gene ontology (GO) analysis (Bonferroni P < 0.05) for the most significant clusters.

Fig. S2D. Distribution of the genes (in percentage) from three biological modules: wound healing, cell cycle, and circadian clock over the 32 sub-clusters. Note that cell

cycle genes most concentrate on clusters 6, 17, and 21, consistent to the biology functions identified for these clusters. This shows the effectiveness of our clustering.
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Fig. S3A. Algorithm for extraction of Dynamic Form Function correlated gene pairs.
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Fig. S3B. Summary of Statistically Significant Gene Pairs: From the set of “Dynamic Intra-Correlated Genes”, gene pairs that were found to be inter-correlated in

form and function were extracted from each chromosome. These inter-correlated gene pairs were found to share more motif sequences than randomly expected in 16 out 22

chromosomes. This give evidence to the idea that these gene pairs are inter-correlated due to being involved with common transcription factories. Average number of shared

motifs was calculated by averaging the number of shared motifs between all possible gene pairs (taken from the “Dynamic Intra-Correlated Genes” set) on each chromosome.
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Fig. S3C. . This graph shows that FN correlation corresponds to more Hi-C contact between genes. The 2574 Dynamic intra-correlated genes were analyzed by computing

the FN correlations between all possible pairs, resulting in 3,311,451 pair-wise interactions (2574 choose 2). The corresponding gene pair Hi-C contact over time was also

extracted, and averaged over the 8 time points. The gene pairs are ordered in terms of FN correlation value (absolute value) and binned in groups of 10,000 gene pairs along

the x axis. The y-axis is the corresponding average Hi-C interaction of all the gene pairs in each bin (Normalized RPM). A clear trend emerges, showing that if two genes

have high FN correlations over time, these genes are more likely to interact. Normalized RPM is calculated by summation of counts between pairs, divided by total counts of

experimentation, multiplied by a hundred million.

Fig. S3D. Summary of Statistically Significant Gene Pairs: From the set of dynamic gene pairs that were found to be inter-correlated in form and function were extracted

from each biological module. These inter-correlated gene pairs were found to share more motif sequences than randomly expected for all biological modules. This give evidence

to the idea that these gene pairs are inter-correlated due to being involved with common transcription factories. Average number of shared motifs was calculated by averaging

the number of shared motifs between all possible gene pairs of a biological module.
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Fig. S3E. Networks of Dynamic intra- and inter-correlated form-function gene pairs on chromosome 14. Green nodes represent genes, thick edges between pairs of nodes

represent a correlation. The colors of edges show how the two genes are correlated. Genes that have transcription factors in common with all edges are denoted by shaded blue

squares. Transcription factors associated with gene pairs are shown in Table S10.
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Fig. S3F. Networks of Dynamic intra- and inter-correlated form-function gene pairs of cell cycle gene set. Green nodes represent genes, thick edges between pairs of

nodes represent a correlation. The colors of edges show how the two genes are correlated. Genes that have transcription factors in common with all edges are denoted by

shaded blue squares. Transcription factors associated with gene pairs are shown in Table S10.
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Fig. S3G. Networks of Dynamic intra- and inter-correlated form-function gene pairs of circadian 24h gene set. Green nodes represent genes, thick edges between pairs

of nodes represent a correlation. The colors of edges show how the two genes are correlated. Genes that have transcription factors in common with all edges are denoted by

shaded blue squares. Transcription factors associated with gene pairs are shown in Table S10.
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Fig. S3H. Networks of Dynamic intra- and inter-correlated form-function gene pairs of would healing gene set. Green nodes represent genes, thick edges between pairs

of nodes represent a correlation. The colors of edges show how the two genes are correlated. Genes that have transcription factors in common with all edges are denoted by

shaded blue squares. Transcription factors associated with gene pairs are shown in Table S10.
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Fig. S3I. Networks of Dynamic intra- and inter-correlated form-function gene pairs of DEX response gene set. Green nodes represent genes, thick edges between pairs

of nodes represent a correlation. The colors of edges show how the two genes are correlated. Genes that have transcription factors in common with all edges are denoted by

shaded blue squares. Transcription factors associated with gene pairs are shown in Table S10.
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Fig. S3J. Significance of identified pair numbers via permutation test. The empirical null was generated by randomly shuffling 1000 times the contacts of gene pairs.

Fig. S3K. The number of identified gene pairs for chromosome 14 as a function of expression correlation threshold and expression-interaction correlation threshold.
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Fig. S3L. . Top panel shows three co-regulation networks of chromosome 14. Two genes of each connected pair have expression correlation larger than 0.8 and

expression-inter-contact correlation larger than 0.8. Middle panel: line plots show the average expression values of the genes corresponding to each network lined in columns

over time, shaded area indicates expression variance. Bottom panel: line plots show the average inter-contact of gene pairs in corresponding networks lined in columns over time.

These figures illustrate how the expression responds to the spatial interaction of genes, implying co-transcription or the existence of transcription factories. Gene information

and shared transcription factors are reported in Table S11.
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Fig. S3M. Top panel shows three co-regulation networks of the cell cycle set. Two genes of each connected pair have expression correlation larger than 0.8 and

expression-inter-contact correlation larger than 0.8. Middle panel: line plots show the average expression values of the genes corresponding to each network lined in columns

over time, shaded area indicates expression variance. Bottom panel: line plots show the average inter-contact of gene pairs in corresponding networks lined in columns over time.

These figures illustrate how the expression responds to the spatial interaction of genes, implying co-transcription or the existence of transcription factories. Gene information

and shared transcription factors are reported in Table S11.
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Fig. S3N. Top panel shows three co-regulation networks of the circadian 24h gene set. Two genes of each connected pair have expression correlation larger than 0.8 and

expression-inter-contact correlation larger than 0.8. Middle panel: line plots show the average expression values of the genes corresponding to each network lined in columns

over time, shaded area indicates expression variance. Bottom panel: line plots show the average inter-contact of gene pairs in corresponding networks lined in columns over time.

These figures illustrate how the expression responds to the spatial interaction of genes, implying co-transcription or the existence of transcription factories. Gene information

and shared transcription factors are reported in Table S11.
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Fig. S3O. Left panel shows a co-regulation network of the wound healing gene set. Two genes of each connected pair have expression correlation larger than 0.8 and

expression-inter-contact correlation larger than 0.8. Middle panel: line plots show the average expression values of the genes corresponding to each network lined in columns

over time, shaded area indicates expression variance. Bottom panel: line plots show the average inter-contact of gene pairs in corresponding networks lined in columns over time.

These figures illustrate how the expression responds to the spatial interaction of genes, implying co-transcription or the existence of transcription factories. Gene information

and shared transcription factors are reported in Table S11.
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Fig. S3P. Top panel shows three co-regulation networks of the DEX response gene set. Two genes of each connected pair have expression correlation larger than 0.8 and

expression-inter-contact correlation larger than 0.8. Middle panel: line plots show the average expression values of the genes corresponding to each network lined in columns

over time, shaded area indicates expression variance. Bottom panel: line plots show the average inter-contact of gene pairs in corresponding networks lined in columns over time.

These figures illustrate how the expression responds to the spatial interaction of genes, implying co-transcription or the existence of transcription factories. Gene information

and shared transcription factors are reported in Table S11.
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Fig. S3Q. Top panel shows three networks of chromosome 14. The pairs have anti-correlation with RNAseq and interactions. Two genes of each connected pair

have expression correlation larger than 0.8 and expression inter-contact correlation larger than -0.8. Middle panel: line plots show the average expression values of the genes

corresponding to each network lined in columns over time, shaded area indicates expression variance. Bottom panel: line plots show the average inter-contact of gene pairs in

corresponding networks lined in columns over time. These figures illustrate how the expression responds to the spatial interaction of genes, implying co-transcription or the

existence transcription factories.
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Fig. S4A. . Contact maps of four core circadian genes: CLOCK, ARNTL, PER2 and CRY1 over time T = 0h to 24h. It can be seen there are few inter-gene contacts.
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Fig. S4B. Contact maps of four core circadian genes: CLOCK, ARNTL, PER2 and CRY1 over time T = 32h to 56h. It can be seen there are few inter-gene contacts.
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Fig. S4C. Illustration of the value taken for mean closest distance (MCD) calculation between two different genes.

Fig. S4D. Fiedler Number between CLOCK and PER2 distance matrix, and RNA-seq expression of CLOCK and PER2 over time. Dashed lines depict Fiedler number

real data (black) and sine fit data (red) and correspond to the right y-axis scale (um). Solid lines depict RNA-seq expression of CLOCK (blue) and PER2 (magenta) and

correspond to the left y-axis scale (RPKM, reads/Kb/million reads).
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Fig. S4E. CLOCK-PER2 summary. RNA-seq, MCD, and Fiedler number trends are simplified to fit within 4 6-hours time points, representing 1 full circadian cycle.

PER2 and CLOCK RNA-seq expression trends (pink and blue solid lines, respectively, top). Dashed red line depicts the CLOCK-PER2 Fiedler Number (FN) trend. Dashed

green line shows the CLOCK-PER2 MCD trend. Pink and blue circles depict physical space between PER2 and CLOCK, as simplified from MCD analysis.
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Fig. S4F. Left: A proposed feedback circuit for CLOCK and PER2 expression, where CLOCK has a mechanism in which it can reactivate itself (SOM). Right:

Relative expression of CLOCK and PER2 at given relative Euclidian distances.

44 www.pnas.org — — Footline Author



i
i

“PNASTMPL” — 2015/6/1 — 9:17 — page 45 — #45 i
i

i
i

i
i

Fig. S4G. Procedure for analyzing the FISH images and extracting gene locations.
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Fig. S5A. Expression patterns of cell cycle phase genes. Normalized gene expression values (over time mean subtracted & variance normalized) are used for spectral

clustering. The heat maps of 3 sub-clusters (sC17, sC6, and sC24) are illustrated in the 1st column, and the average of normalized gene expression values (patterns) of each

cluster are shown by the curves to the right of the heat maps, with the shaded area denoting the standard deviations, and boxes indicating sampling time points. The time

points of sampling are horizontally shown at the bottom on each panel in hours (hr). “D0” is the time zero sample treated with Dexamethasone for 1 hour without exposure

to serum (contrast to E); “E0” indicates base line time zero control without exposure to Dexamethasone and serum, and numbers indicate sampling time points in 8-hour

intervals after serum stimulation from time zero. Color: green represents expression levels below the mean, red above the mean, dark: mean level.

Fig. S5B. M phase cell counts. The number of M phase cells (%) counted in slide cultures are plotted against time in hours (4-hour interval). No M phase cells are seen

before hour 20 after serum stimulation.
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Fig. S5C. Dynamics of contact structures over time in different scales. The ratio between the sum of the diagonal band counts and that of the entire collection of

intra-chromosome Hi-C matrices for chromosomes 1-22. Peaks can mainly be found at time points 24h and 48h. This possibly implies the contribution from diagonal dominant

matrices introduced by the M-phase of cell cycle
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