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SI Materials and Methods
Subjects and Stimuli. In total, 21 right-handed (Edinburgh In-
ventory) healthy young volunteers (age range = 19–29 y old; 14
females) with no previous psychiatric or neurological history
participated in the study. All experiments were conducted with
the understanding and written consent of each participant ac-
cording to the Code of Ethics of the World Medical Association
and the Institutional Review Board and Ethics Committee at the
University of Chieti. Subjects performed a preliminary behav-
ioral session and an fMRI session, including 15 min of resting-
state scans followed by ∼45 min of the experimental task.
Stimuli were generated using the MATLAB Psychtoolbox-3

and consisted of two drifting Gabor patches with the following
parameters: 2 cycles/degree (deg) spatial frequency, 0.7 deg/s drift
rate, and 3° diameter (Fig. 1A). The two gratings were presented
at opposite symmetrical locations on the horizontal meridian at
an eccentricity of 5.5° from central fixation for the whole dura-
tion of the experiment. Subjects were instructed to maintain
fixation on a central cross while covertly directing attention to
one of two patches to detect briefly presented targets. The tar-
gets consisted of a brief (150 ms) change of the patch orientation
in either the clockwise or anticlockwise direction, and they oc-
curred, on average, every 9 s. The to-be-attended location was
indicated by the appearance of a peripheral cue consisting of a
300-ms isoluminant change in the color (pink or cyan) applied to
the two patches. The relevant cue color (e.g., pink) to be at-
tended for a whole block of trials was shown at the beginning of
each block at fixation and counterbalanced across blocks. After
the first cue was presented, the next cue stimulus could appear at
either the currently attended grating (stay cue) or the opposite
location/grating, indicating that attention had to be shifted (shift
cue). A pseudorandom stimulus sequence was designed to obtain
short periods of consecutive cues (two, three, or four cues) of the
same type (stay or shift), allowing us to investigate connectivity
modulations while subjects maintained or shifted attention for
several trials in a row. Cues appeared randomly every two, three,
or four repetition times (TRs) within a temporal window of ±400 ms
centered on the TR. After each cue, either zero, one, or two
targets could be presented. The cue correctly predicted the lo-
cation of the target with 80% probability (valid trials) but did not
predict when the target would appear, thus providing no tem-
poral information. In 20% of the trials, the target appeared at
the uncued location (invalid trials). Participants were instructed
to discriminate orientation changes as fast as possible by pressing
a key of a response pad with their right middle or index finger to
indicate clockwise or anticlockwise changes, respectively. The
difference between performance at the attended vs. unattended
location (valid vs. invalid) was a measure of the efficacy of at-
tention selection. Participants completed 12 fMRI runs that were
each 3.5 min in duration.

Eye Movement Recordings. The enrollment in the fMRI study was
based on a preliminary behavioral session aimed at measuring
task performance and monitoring eye position during task exe-
cution with an IR eye-tracking system (Iscan etl-400; RK-826
PCI). From this recruitment session, only subjects who showed a
significant validity effect on target accuracy (paired two-sample
t test; P = 0.05) and were able to maintain central fixation were
included. Eye position was monitored during the 2 s after cue
onset with respect to a 100-ms baseline interval measured before
each cue onset. Subjects showing eye movements larger than 1°
were excluded. Specifically, 11 subjects were ruled out.

To further verify that the selected group of subjects maintained
fixation as well during the fMRI experiment, eye movements were
recorded using anMRI-compatible IR eye-tracking system (Iscan
etl-400; RK-826 PCI). The event-related time courses of eye
position time-locked to the presentation of left and right shift and
stay cues were extracted during eight consecutive 250-ms time
bins (2 s total) after the cue onset. Plots of the event-related time
courses of eye position along the horizontal axis for one repre-
sentative subject and the average across subjects are shown in Fig.
S6. Mean values of eye position were 0.01° ± 0.06° (mean ± SD)
and −0.03° ± 0.07° for right and left stay cues, respectively, and
0.04° ± 0.07° and −0.07° ± 0.07° for right and left shift cues,
respectively (where negative numbers refer to leftward move-
ments). These small values indicate that subjects accurately
maintained fixation not only during periods of maintaining at-
tention but also, after the onset of a cue that shifted attention
from one location to another.

fMRI Acquisition and Apparatus. Functional T2*-weighted images
were collected on a Philips Achieva 3T Scanner using a gradient-
echo-planar imaging sequence to measure the BOLD contrast
over the whole brain [TR = 1,869 ms; Time of Echo (TE) = 25 ms;
39 slices acquired in ascending interleaved order; voxel size =
3.59 × 3.59 × 3.59 mm; 64 × 64 matrix; and flip angle = 80°].
Structural images were collected using a sagittal M-PRAGE T1-
weighted sequence (TR =8.14 ms; TE = 3.7 ms; flip angle = 8°;
voxel size = 1 × 1 × 1 mm) and a T2-weighted sequence (TR =3
s; TE = 80 ms; flip angle = 90°; voxel size = 0.958 × 0.958 × 3
mm; 39 slices). Stimuli were presented using a personal com-
puter running MATLAB software (Mathworks), projected onto
a screen situated behind the subject’s head, and viewed through
a mirror located above the subject’s head. Subjects wore MRI-
compatible earphones and responded using a Lumina LU400
Response Pad (Cedrus Corporation).

fMRI Preprocessing, Statistical Analysis, and ROI Selection. BOLD
images were motion-corrected within and between runs, cor-
rected for across-slice timing differences, resampled into 3-mm
isotropic voxels, and warped into 711–2C space, a standardized
atlas space (1, 2). Preprocessing included a whole-brain nor-
malization correcting for changes in overall image intensity be-
tween BOLD runs. The hemodynamic signals during the task
period were analyzed with a general linear model (GLM) with-
out a priori assumption of the hemodynamic response shape (3).
This model provided an unbiased estimate of the time course for
cues and targets generating separate Δ-function regressors for
each of seven MR frames after their onset. The GLM included
12 regressors: initial cues (left and right), standard cues (shift
left, shift right, stay left, and stay right), targets (valid left, valid
right, invalid left, and invalid right), and additional regressors
coding for baseline and linear trend in each scan.
The time courses of the evoked responses to cue stimuli were

analyzed at the whole-brain level using voxelwise ANOVAs with
cue type (stay and shift), cue location (left and right), and time
as factors. The voxelwise ANOVAs were corrected for non-
independence of time points by adjusting the degrees of freedom
and corrected for multiple comparisons using joint z-score/cluster
size thresholds (4) corresponding to z = 3.0 and a cluster size of
13 face contiguous voxels. A peak–search routine was used to
extract ROIs 6 mm in radius, with a minimum 12-mm ROI–ROI
distance from the cue type by time and cue location by time
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(LxT) statistical maps. Each ROI included about 30 voxels
on average.

IFC. We conducted three scans (∼5 m each), in which the BOLD
signal was measured while subjects maintained fixation on a
central black cross shown on a gray display. These fixation
resting-state scans were followed by 12 scans (3.5 min each) of
the experimental task. After standard preprocessing of BOLD
images, data were passed through an additional series of specific
processing steps for functional connectivity (IFC) (5). First, runs
were concatenated, and data were spatially smoothed using a
6-mm FWHM Gaussian blur. Second, several sources of spurious
variance were removed by linear regression: (i) six parameters
obtained by rigid body head motion correction, (ii) signal aver-
aged over the whole brain, (iii) signal averaged over the lateral
ventricles, and (iv) signal averaged over a region centered in the
white matter (6, 7). The task-evoked response was removed by
adding an additional set of regressors to the list of regressors for
IFC preprocessing. These regressors corresponded to the design
matrix of the GLM. Therefore, the residual dataset minimized
the contribution of the transient evoked responses to individual
stimuli (cues and targets) and reflected the variance related to
the maintenance of the task sets, which were characterized by the
constant allocation of visuospatial attention toward one hemi-
field. Instead of selecting a standard cutoff (i.e., 0.1 Hz) (5, 8), to
select the optimal low-pass cutoff frequency, we estimated the
range of responding frequencies for this paradigm. The power
spectral density (PSD) of the GLM residuals (averaged across
subjects) for task and rest periods was calculated using Welch’s
averaged modified periodogram method with a Hanning window
of 32 samples, no overlap, and a frequency resolution of 0.0167 Hz.
Then, a two-way ANOVA with frequency and run type (rest and
task) as factors was performed on the PSD values averaged
across subjects treating ROIs as the random effect. A main effect
of frequency was observed (F16,208 = 1,145; P < 0.0001), and
posthoc tests (Duncan) revealed no significant differences in the
PSD after 0.167 Hz (Fig. S3), which was selected as the low-pass
cutoff frequency (a similar cutoff is given in ref. 9).
Cross-correlation matrices were computed between all of the

ROIs previously selected on the basis of the task-evoked activity.
For the task dataset, the connectivity between each ROI pair was
assessed by computing the Pearson correlation coefficients be-
tween all ROIs voxel pairs for each run and averaging across runs.
Thus, correlation coefficient rXY between voxels X and Y was
computed as

rXY =
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where T was the total number of observation, and over bars
indicate the overall mean.
Then, the Fisher z transform z= 1=2 ln½ð1+ rÞ=ð1− rÞ� was

applied. The same procedure was repeated for the resting-state
dataset using the same window length as for the task runs and
overlapping windows to obtain the same number of averages.
Cross-correlation matrices for individual ROI pairs during rest
and task execution were obtained by averaging correlation values
of all subjects and voxels within that ROI pair (Fig. 2 A and B).
Eventually, we examined task-induced modulations of IFC by
computing the difference between task and rest IFC matrices
(Fig. 2C).
These matrices were submitted to a series of analyses.

i) We evaluated network segregation during rest and task
through a two-way ANOVA with condition (rest and task)
and network (within DAN, within VIS, and between DAN–

VIS) as factors. This analysis was run on the average across

pairs of the z Fisher correlation within the submatrices com-
prising DAN, VIS, and between DAN–VIS (Fig. 2D).

ii) We examined whether task execution induced a change in
the topology of the within-network correlation patterns by
comparing the individual cross-correlation submatrices at
rest with task using the Mantel test, which is a statistical test
on the correlation between two matrices. The significance of
the observed correlation was obtained through comparison
with a distribution of values obtained from 10,000 permuta-
tions of one of the original matrices.

iii) We directly compared the rest and task connectivity values
for each ROI pair by means of paired two-sample t tests (P =
0.05, Bonferroni corrected) with subject as a random effect
(SI Results discusses single ROI pair comparisons).

iv) We assessed whether task execution induced a network re-
organization (and the statistical significance of these topol-
ogy changes) using an approach based on graph theory. In
particular, we first converted the individual correlation ma-
trices at rest and during task into graphs and then, applied
the Network-Based Statistics toolbox (10) to test for signif-
icant changes in graph components. Network-Based Statis-
tics were used with primary (t statistic) thresholds of 3.0, and
each resulting component satisfied a P < 0.01 level of sig-
nificance (Fig. 2E).

v) We compared graph modularity across conditions using the
Brain Connectivity Toolbox (11). For each subject and con-
dition, modularity was estimated as the mean value obtained
from 10,000 runs using the Louvain modularity. The esti-
mated values (for both rest and task) were compared with
the associated random graph (mean modularity from 10,000
trials). A t test was used to assess significant changes across
conditions.

Finally, we examined the IFC modulations by conducting a
nonstationary connectivity analysis. In particular, we obtained
functional connectivity matrices corresponding to periods of
continuous stay and shift cues according to the following pro-
cedure: for each voxel pair comprised in an ROI pair, we com-
puted the time course of the nonstationary correlation using a
16.8-s (nine TRs) sliding window. The correlation at successive
increments of one TR was assessed as

rXY ðtÞ=
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where over bars indicate the mean over the appropriate window.
The matrices representing the stay- and shift-specific IFCs were
produced by averaging over the voxel pairs within each ROI pair
and over time the nonstationary correlation during periods of
consecutive stay and shift cues. These periods, randomly included
in the experiment, were about 40 for each attentional condition
(stay and shift) and characterized by an average length of 8.6 TRs.
To consider the intrinsic spread of the nonstationary time course,
the last four points (one-half window) of each period were ex-
cluded from the average. Then, a Fisher z transform was applied
to the average nonstationary correlation, and the values of con-
nectivity during resting state were subtracted.
To assess the functional significance of task-inducedmodulations

of IFC, we calculated the correlation between IFC modulations
(task-, shift-, and stay-specific) and behavioral performance (dis-
crimination accuracy in valid conditions) across subjects using
Pearson tests. This analysis was performed on both submatrices
(P = 0.05, FDR corrected) and ROI correlation matrices (P =
0.05) (Fig. 3A and Fig. S5). When the correlation between be-
havior and IFC was examined at the level of the different ROI
pairs, the results did not survive the correction for multiple
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comparisons because of the large number of comparisons. The
analysis was restricted to submatrices showing a significant task-
induced modulation of the IFC and to the ROIs comprised in
these submatrices. Examples of this IFC–behavior correlation are
shown in Fig. 3 B and C for L-dFEF vs. L-V3a–V7 and R-MT vs.
L-V3a–V7, respectively.

DFC. Directional connectivity was studied by Granger Causality
(GC) analysis using the MATLAB Toolbox Granger Causal
Connectivity Analysis (12). This method estimates the influence
of signal X in predicting signal Y (unrestricted model) compared
with the prediction offered by the past of signal Y itself (re-
stricted model) (13). The approach has been successfully applied
to fMRI time series (14) and more specifically, in the context of
visuospatial attention by Bressler et al. (15). It has to be noted,
however, that the GC method faces methodological challenges
associated with the effect of sampling rate and the different lags
of hemodynamic responses across areas (16, 17). Recent work
indicates that it is possible to use GC analyses to fMRI by ap-
plying strategies of analyses that minimize the above issues (14,
18, 19). For instance, our analysis focuses on GC changes be-
tween two conditions, which is a more conservative approach
with respect to the analyses of single conditions given sampling
rate limitation and heterogeneity of neurovascular coupling across
regions (18).
The amount of causality from X to Y was assessed by con-

sidering two regression models: (i) the restricted model Y ðtÞ=
α1Y ðt−mÞ+ «1ðtÞ and (ii) the unrestricted model Y ðtÞ=
α2Y ðt−mÞ+ βXðt−mÞ+ «2ðtÞ, where Y ðtÞ is the Y time series at
time t; Y ðt−mÞ is the m-lagged Y time series; α1,   α2,   and  β are
the regression coefficients, and «1 and «2 are the model re-
siduals. Reduction of variability of the unrestricted model
residual quantified causal influence. It was measured as an F
statistic that approximately follows an F distribution with
degrees of freedom m and T − 2m − 1:

F =

RSSr −RSSur
m

RSSur
T − 2m− 1

,

where RSSr is the restricted residual sum of squares, RSSur is the
unrestricted residual sum of squares, m is the model order (the
number of lagged observations to include in the regression
model), and T is the total number of observations. The F statistic
was significant when it was larger than the critical value at P <
0.05 in the standard Fm,T − 2m − 1. To estimate GC, we adopted
bivariate autoregressive models of order 2 between BOLD re-
siduals of each pairwise combination of voxels. The best model
order was selected using the Bayesian information criterion. In
addition, we verified that the residuals of the models were un-
correlated using the Durbin–Watson test (20) and that the por-
tion of the data captured by the models was greater than 80%
using the consistency test (21). Both conditions were satisfied
for all subjects. Computing a separate bivariate autoregressive
model for each voxel pair avoids the possible pitfalls of across-
voxel averages and is more stable than multivariate model be-
cause of the large dimensionality of observations. However, we
acknowledge that this approach is not taking into account pos-
sible effects of other driving or intermediate time series (22).
Maps were produced by computing F statistics for any two ROIs
in both directions between residuals of every voxel pair in those
ROIs and computing the fractions of F statistics that were sig-
nificant (Granger consistency) (15). The consistencies of all ROI
pairs were shown in a matrix in which rows were the sources
either at rest (Fig. 4A) and during task execution (Fig. 4B). Then,
the difference between task and rest consistencies was computed

(Fig. 4C), and a group statistical analysis of directional connec-
tivity changes was performed on the differences between task
and rest consistency values from the individual subjects. In par-
ticular, a paired two-sample t test with subject as a random effect
was conducted with a significance threshold of P = 0.05 (FDR
corrected). In Fig. S3, a flowchart of the described procedure
is shown.

SI Results
Pairwise Difference Between Task and Rest IFC Matrices (Single ROI
Pair Comparisons).A direct test of the difference between rest and
task conditions revealed a significant modulation within the VIS
and between the VIS and the DAN but not within the DAN (Fig.
2C). Interestingly, we observed a decrease of correlation be-
tween visual regions that was particularly evident in homotopic
ROIs (e.g., left and right V3a–V7). In contrast, we observed an
increase of IFC between several regions of the DAN, including
dFEF and R-SPL, and all regions of the VIS independently of
hemisphere. A between-network increase of IFC was also ob-
served between the VIS and the other parietal regions (PreCu
and vTPJ).

Control Analysis on Visuotopic ROIs. To control that the observed
general decrease of correlation within VIS regions (MT, V3a–V7,
and V4–V8) during the attention task did not hide specific in-
creases of correlation between visual regions that have a reti-
notopic organization, we selected a new set of ROIs including
early visual regions, such as V1v, V2v, VP (ventral posterior
area), V1d, V2d, and V3. These regions were selected based on
the intersection between visuotopic regions from the CARET
software (23) (Fig. S4 A and B) and voxels exhibiting a main
effect of time in our experiment (obtained from the voxelwise
ANOVA with cue type, cue location, and time as factors) (Fig.
S4 C and D). We used the main effect of time compared with the
LxT interaction effect to include enough voxels in early visual
cortex (V1 and V2). As for the original ROI set, rest- and task-
related cross-correlation matrices were estimated for each ROI
pair, and task-induced modulations were computed on the task
vs. rest difference. As shown in Fig. S4E, the results were qual-
itatively similar to those observed in our original VIS regions,
with a general decrease of the inter- and intrahemispheric IFCs,
which particularly involved V3, V3a, V4v, V7, VP, and V8 re-
gions, and no specific increase of IFC between retinotopically
correspondent subregions. To quantify this impression, a three-
way ANOVA was conducted with task condition (rest and task),
correspondence [correspondent (dorsal–dorsal or ventral–ven-
tral) and noncorrespondent (dorsal–ventral ROIs)], and hemi-
spheric relationship [ipsilateral (left–left or right–right) and
contralateral (left–right ROIs)] as factors on IFC between V1,
V2, and V3/VP early visual regions (Fig. S4F). The results in-
dicated a main effect of task (F1,20 = 7.3; P = 0.01), correspon-
dence (F1,20 = 207.8; P < 1 × 10−6), and hemispheric relationship
(F1,20 = 74.4; P < 0.1 × 10−6) and a significant correspondence by
hemispheric relationship interaction (F1,20 = 4.7; P < 0.05) but
no significant task condition by correspondence (F1,20 = 1.2;
P = n.s.) or task condition by hemispheric relationship (F1,20 = 0.05;
P = n.s.) and no significant three-way interaction. In summary,
we found stronger IFC between retinotopically correspondent
regions (e.g., within the left ventral visual cortex V1v, left V2v,
and left VP), which is in line with previous studies (24), but also,
an overall significant decrease of IFC during attention, with no
significant interaction between task condition and other fac-
tors. This control analysis generalizes our original findings
by excluding the hypothesis that adjacent early visual regions
(V1–V3/VP) show specific IFC increases when shifting from
rest to attention.
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Analysis on DAN ROIs Extracted from Cue LxT Map. Based on pre-
vious studies (25–29) on the functional segregation in parietal
cortex between shift-related and spatially selective signals (in
medial and lateral parietal regions, respectively), a second
analysis investigated task-induced modulations of IFC within
spatially selective DAN regions that survived the contrast used
for defining the VIS network (i.e., cue LxT) and between these
regions and the original shift-related DAN regions (i.e., selected
from the contrast cue type by time). As shown in Fig. S2A, the
cue LxT ANOVA interaction indicated a significant contralat-
eral bias in lateral DAN regions of the left but not the right
hemisphere (L-dFEF and pIPS; regions labeled as DAN LxT)
(signal time courses in Fig. S2 B and C). This asymmetry is
consistent with previous studies showing that contralateral bias
for spatial attention is stronger in left dorsal visual areas (30, 31).
To examine the behavior of these spatially selective DAN re-
gions (DAN LxT) vis à vis previously examined DAN and VIS
regions, we measured task-induced IFC and DFC modulations
(DAN LxT ROIs are displayed in the last two rows of Fig. S2 D
and E). These spatially selective regions in the DAN show a task-
induced increase of IFC (P < 5 × 10−5) as well as stronger IFC
with the original DAN regions (P < 5 × 10−4). No significant IFC
modulations were observed with VIS regions (P = n.s.). These
comparisons were carried out with two-sample t tests between
rest and task conditions (Fig. S2D). This pattern contrasts with
that shown by the original shift-related DAN ROIs, which
showed an increased task-induced IFC with VIS regions and no
significant within-network modulations. In addition, L-FEF-LxT
and L-IPS-LxT showed an increase of DFC both toward our
original DAN regions and toward VIS regions.
The observed IFCmodulations are consistent with the idea that

spatially selective regions of the DAN show a connectivity profile
that is intermediate between that of the shift-relatedDAN regions
and that of the spatially selective VIS regions.

SI Discussion
DAN Interaction with Sensory Areas. This study examines for the
first time, to our knowledge, the simultaneous modulations of IFC
and DFC induced by a visuospatial attention task, with several
implications for our understanding of the relationship between
the DAN and sensory regions. A key result is that the control of
the locus of attention triggers a consistent increase of both
measures (IFC and DFC) of DAN–VIS interaction compared
with the divergent pattern observed in within-network connec-
tivity. Importantly, the variation of between-network IFC is
correlated with target discrimination accuracy.
A relevant question that it is still highly debated in current

literature on visuospatial attention is whether the deployment of
top-down attention is initiated and controlled by frontal (32, 33)
or parietal regions (34, 35). Here, we found that dFEFs played a
leading role in the simultaneous IFC/DFC modulation. First,
bilateral dFEFs exhibited a strong increase of task-induced IFC
with most of the VIS regions (Fig. 2C). Second, the association
between cross-network IFC and task performance almost in-
evitably involved left dFEF (Fig. 3). dFEF showed strong di-
rectional influence on not only visual but also, parietal cortex
(Fig. 4C). Therefore, albeit that visual regions received top-
down signals from both frontal and parietal cortex, frontal re-
gions also exerted control over multiple parietal sites, supporting
a central role of frontal regions in both a serial (frontal > pari-
etal > sensory) and parallel machinery for top-down attention.
During the task and especially, during attentional shifting, the

leading receiver counterparts of directed influence from the DAN
were the V3a–V7 regions. These regions have been shown to
contain a retinotopic map of the space (36), and a study adopting
a similar, although widely spaced, paradigm has shown that at-
tention-related signals in V3a–V7 correlate trial by trial with
discrimination accuracy (37). In addition, transient inactivation

of V3a–V7 regions by transcranial magnetic stimulation has been
shown to produce a pattern of contralateral visual impairment
(28), consistent with a role in spatial coding and discrimination.
Importantly, our findings also inform the current debate on

hemispheric asymmetries of mechanisms for the control of spatial
attention (38–40). In particular, a hemispheric asymmetry is
suggested by the pattern of between-network DFC shown in Fig.
4C (i.e., from the DAN to left visual regions). However, when
these hemispheric asymmetries were directly tested through a
four-way ANOVA on task-induced DFC from dFEF and SPL to
visual regions with visual (MT, V3a–V7, and V4–V8), DAN
region (dFEF and SPL), hemispheric relationship (ipsilateral
and contralateral), and hemisphere (left and right) as factors, no
significant main effect of DAN region (F1,20 = 0.3; P = n.s.),
hemispheric relationship (F1,20 = 0.2; P = n.s.), and hemisphere
(F1,20 = 0.05; P = n.s.) was found, and no significant interactions
were found. Interestingly, the ANOVA only revealed a signifi-
cant main effect of visual region (F2,40 = 5.28; P < 0.01), ex-
plained by a greater directionality from bilateral dFEF and SPL
to regions located at the intermediate level of the visual hier-
archy (V3a–V7). Although a significant increase of DFC was
only detectable toward the left hemisphere VIS regions, the lack
of a main effect of hemispheric relationship and any interaction
in the ANOVA indicated the absence of any hemispheric
asymmetry or contralateral bias. Therefore, these results do not
provide support for lateralization of the DAN–VIS interaction.
These findings also provide crucial insights on the role of the

DAN and the ventral attention network in the reorienting of
spatial attention. In particular, although both networks are
thought to participate in reorienting (41), it is still largely unclear
which of the two is responsible for the initiation of the reorienting
response (41). In particular, despite our task requiring frequent
reorienting responses, we did not find any significant evidence of a
directional influence of right vTPJ on regions of the DAN or VIS
network, and although the study design did not allow to directly
examine selective increases of DFC from vTPJ to DAN regions
during shifts of attention, the results do not support the idea that
the reorienting response is initiated in the temporoparietal
junction.

From Rest to Attention: Changes in Connectivity in DAN and VIS
Network. Our findings are consistent with a handful of other
studies showing a dynamic alteration of resting connectivity
during task execution in different domains (42–45). Jointly, these
papers provide strong evidence for a qualitatively different
functional organization between rest and task states. These
findings also suggest that attention selection operates at multiple
temporal scales: not only through transient changes in task-
evoked modulation (46, 47) or directional influence on visual
responses (15, 48, 49) but also, through longer time scales ad-
justments of functional connectivity. The time scales of BOLD
fluctuations and of the related functional connectivity modula-
tions are in the order of tens of seconds. Therefore, in addition
to trial to trial modulations, with which the field has been mainly
concerned, attention selection sets up preferential connections/
interactions over prolonged periods of time across multiple trials.
Notably, works using dynamic causal modeling or psycho-

physiological interaction (50) typically focus on task-evoked
modulations of effective connectivity by using a model of coupling
that allows inferences on how directed effective connectivity is
affected by experimental factors. Therefore, it would be in-
teresting to revisit our data using these approaches. In addition,
because we were explicitly interested in task-induced modulations
of patterns of internal segregation/external integration charac-
terizing two RSNs, it would be also interesting to investigate
whether a third region (e.g., the thalamus) (51) may control the
task-dependent interaction between the two networks.
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Fig. S1. (A) Discrimination accuracy as a function of target location and target validity shows the behavioral advantage of covert spatial attention. (B and C)
For one representative region of each map of ANOVA interaction, time courses of the evoked responses to cue stimuli are shown.

Fig. S2. DAN ROIs from LxT map. (A) One slice of the cue location by time map showing regions of the dorsal parietal cortex exhibiting a significant pref-
erence for cues presented in the contralateral hemifield. For the selected ROIs (L-IPS LxT and L-FEF LxT in B and C, respectively), we show time courses of the
BOLD response to cue stimuli. Task-induced modulations of IFC and DFC for each ROI pair belonging to DAN, VIS, and DAN LxT are shown in D and E. The
significant differences between rest and task conditions are evaluated by paired two-sample t tests; the pairs that do not significantly change their IFC are
represented in white, whereas those that significantly change their DFC are indicated with an asterisk (P = 0.05, FDR corrected).
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Fig. S3. Flowchart of the analysis method.

Fig. S4. Visuotopic ROIs selection and IFC results. Visuotopic regions represented on the inflated (A) medial and (B) posterior views of the left hemisphere.
(C and D) Borders of visuotopic regions are overlaid on the voxels, showing a main effect of time in the voxelwise ANOVA with cue type, cue location, and time
as factors, and from the intersection, the visuotopic ROIs were extracted. (E) Task-induced modulation of IFC within all of the extracted visuotopic ROIs
and (F) bar plot of IFC during rest and task execution of early visual regions (V1–V2–V3/VP) averaged across correspondent/noncorrespondent ipsilateral/
contralateral ROIs.

Fig. S5. Correlation between discrimination accuracy and IFC changes between task and rest. pIPS, posterior IPS.

Spadone et al. www.pnas.org/cgi/content/short/1415439112 7 of 8

www.pnas.org/cgi/content/short/1415439112


Fig. S6. Eye movements along the horizontal axis for one representative subject and the average across subjects.
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