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Materials and Methods

S1 Early termination on large datasets

Many alignment methods failed to complete analyses on the larger datasets, but reasons varied.

Some failed due to insufficient memory, or due to a bug in the software, or were simply unable

to produce an alignment within the 24 hour time limit (i.e., they might have been able to produce

an alignment if given more time). This section documents each case.

MAFFT-default. MAFFT-default terminated early on the CRW 16S.B.ALL and three of the

Indelible 10000M3 datasets. The error messages produced by MAFFT-default have the follow-

ing template:

Cannot allocate <X> character vector.

where X is a large number. MAFFT-default also failed to produce an alignment on the RNASim

100K dataset within the 24 hour time limit on TACC. According to MAFFT’s output log,

MAFFT was still running when the job was evicted.

MAFFT-PartTree. MAFFT-PartTree terminated with the following error message on the

RNASim 200K dataset:

mafft: line 2028: 28963 Segmentation fault

"$prefix/splittbfast" $legacygapopt -Z

$algopt $splitopt $partorderopt $parttreeoutopt

$memopt $seqtype $model -f "-"$gop -Q

$spfactor -h $aof -p $partsize -s

$groupsize $treealg -i infile > pre 2>> "$progressfile"
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MUSCLE. MUSCLE terminated early on the RNASim datasets with 50,000 or more se-

quences with the following error message:

*** OUT OF MEMORY ***

Memory allocated so far 23718.4 MB

No alignment generated

On the HomFam zf-CCHH and rvp datasets, MUSCLE terminated with the following error

message: Segmentation fault.

Clustal-Omega. Clustal-Omega failed to terminate within 24 hours on the RNASim datasets

with 50,000 or more sequences. The log file showed that Clustal-Omega was still running, so

given enough time, it may be possible for Clustal-Omega to produce an alignment on the larger

RNASim datasets.

On the Indelible 10000M2 dataset, Clustal-Omega terminated early with the following error

message:

HHalignWrapper:hhalign_wrapper.c:945: problem in

alignment (profile sizes: 892 + 1540) (S1870 + S7661),

forcing Viterbi

hh-error-code=3 (mac-ram=2048)

+------------------------------+

| both sequences truncated right |

+------------------------------+

i2 = 2 != 6699 = qa->L, j2 = 10788 != 10846 = ta->L

PrintAlignments:hhhitlist-C.h:199: qt_ali.Build failed

hhalign:hhalign.cpp:1216: Could not print alignments
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HHalignWrapper:hhalign_wrapper.c:984: 2nd attempt

worked HHalignWrapper:hhalign_wrapper.c:945:

problem in alignment

(profile sizes: 833 + 2432) (S3589 + S1870), forcing Viterbi

hh-error-code=3 (mac-ram=2048)

S2 UPP pipeline exploration

We explored the impact of changes to the UPP pipeline on alignment SP-error and tree estima-

tion error.

S2.1 Comparison of a nested ensemble of HMMs, a disjoint ensemble of
HMMs, and a single HMM

We compared UPP to two different techniques for representing the backbone alignment (Ta-

ble S2.2 and Figs. S2.1-S2.2). The first technique used a single HMM to represent the backbone

alignment (UPP with no decomposition); this is equivalent to using HMMER to align the query

sequences. The second technique used disjoint subsets of at most 10 sequences generated by

using a centroid decomposition to represent the backbone alignment.

We report the average alignment SP-error, ∆FN error (the difference between the error of the

ML tree estimated on the true alignment and the ML tree estimated on the estimated alignment),

and wall clock running time (in hours). Methods run on the datasets containing 10K to 200K

sequences were run on a dedicated node with 12 processors with 24Gb of memory. Methods

run on the 1,000,000 sequence dataset were run on a dedicated machine with 12 processors and

256 Gb of memory. Thus, the running times of the methods run on the 10K to 200K datasets

cannot be directly compared to the methods run on the 1M dataset. We mark the running

times of the methods that were run on the 1M dataset with “∗”. The default setting for UPP is
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denoted UPP(Default); it uses a backbone of size 1000, uses PASTA to compute the backbone

alignment, and the ensemble of HMMs technique; UPP(Fast) is obtained by using backbones

of size 100 and keeping all other settings constant. The “NoDecomp” versions of these two

methods replace the ensemble of HMMs technique with a single HMM. The “Disjoint” versions

of these methods use HMMs computed on disjoint subset alignments of at most ten sequences.

UPP(Default,Clade) uses clade-based decompositions to generate the sequence subsets.

We begin with a discussion of the impact of using a single HMM instead of an ensemble

of HMMs. On the RNASim datasets, using a single HMM instead of an ensemble of HMMs

clearly increased alignment SP-error and tree error (Table S2.2). Using a single HMM instead of

an ensemble did not change alignment SP-error on the CRW datasets but did increase tree error

substantially, and using a single HMM instead of an ensemble also increased alignment SP-

error on the HomFam datasets (Fig. S2.1). Finally, using a single HMM instead of an ensemble

of HMMs had no impact in either alignment or tree error on the Indelible 10K or ROSE AA

datasets (Fig. S2.2).

Using disjoint HMMs instead of an ensemble of HMMs increased alignment SP-error and

tree error on the Indelible datasets with 10K sequences and higher evolutionary rates (10000M2

and 10000M3) and had no impact on the lowest evolutionary rate (10000M4) (Fig. S2.2). Using

disjoint HMMs increased alignment SP-error but not tree error on the RNASim 10K datasets,

and had no impact on the RNASim 50K datasets (Table S2.2). Using disjoint HMMs did not

impact alignment SP-error or tree error on the ROSE AA datasets (Fig. S2.2). Using disjoint

HMMs had no impact on the alignment SP-error or tree error for the CRW datasets, and slightly

reduced average alignment SP-error on the HomFam datasets (Fig. S2.1).
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Figure S2.1: Alignment SP-error and tree error for UPP(Default), UPP(Default,Disjoint),
and UPP with no decomposition on the HomFam and CRW 16S datasets. All methods
used a backbone size of 1000. UPP(Default,NoDecomp) uses a single HMM to align the query
sequences. UPP(Default,Disjoint) uses disjoint HMMs of at most 10 sequences. Note that we
do not have reference trees for the HomFam datasets, and thus, do not report tree error on the
HomFam datasets. ML trees were estimated using FastTree under GTR.
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Figure S2.2: Alignment SP-error and tree error for UPP(Default), UPP(Default,Disjoint),
and UPP(Default,NoDecomp) on the Indelible and ROSE AA datasets. All methods use
a backbone size of 1000. UPP(Default,NoDecomp) uses a single HMM to align the query
sequences. UPP(Default,Disjoint) uses disjoint HMMs of at most 10 sequences. ML trees are
estimated using FastTree under GTR for nucleotide datasets and JTT for amino acid datasets.
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Table S2.1: Comparison of UPP variants on representative full-length datasets with re-
spect to alignment SP-error, tree error, and TC scores. All criteria (errors and scores) given
as percentages. The default setting for UPP is denoted UPP(Default); it uses a backbone of size
1000, uses PASTA to compute the backbone alignment, and the ensemble of HMMs technique.
UPP(Fast) is obtained by using backbones of size 100 and keeping all other settings constant.
The “NoDecomp” versions of these two methods replace the ensemble of HMMs technique
with a single HMM. The “Disjoint” versions of these methods use HMMs computed on disjoint
subset alignments of at most ten sequences. UPP(Default,Clade) uses clade-based decomposi-
tions to generate the sequence subsets. Maximum likelihood trees are estimated using RAxML
(on the 10 AA datasets) or FastTree (all other datasets) except for HomFam, where we do not
compute trees as the reference trees are too poorly supported for these to be meaningful.

Model condition Method Alignment SP-error ∆FN TC score
10 AA UPP(Default) 24.2 3.4 11.4
10 AA UPP(Default,Clade) 24.2 X 11.9
10 AA UPP(Default,No Decomp) 24.5 5.2 11.0
10 AA UPP(Default,Disjoint) 24.3 X 11.6
ROSE AA UPP(Default) 2.9 1.8 2.6
ROSE AA UPP(Default,Clade) 2.9 1.5 2.6
ROSE AA UPP(Default,No Decomp) 2.8 1.4 2.5
ROSE AA UPP(Default,Disjoint) 3.2 1.9 2.2
CRW UPP(Default) 12.5 7.8 1.4
CRW UPP(Default,Clade) 12.5 8.0 1.2
CRW UPP(Default,No Decomp) 13.3 16.5 0.9
CRW UPP(Default,Disjoint) 12.5 7.1 1.3
HomFam(19) UPP(Default) 23.0 NA 46.6
HomFam(19) UPP(Default,No Decomp) 25.4 NA 44.5
HomFam(19) UPP(Default,Disjoint) 21.2 NA 49.4
Indel. 10000M2 UPP(Default) 3.5 0.6 1.2
Indel. 10000M2 UPP(Default,Clade) 3.5 0.5 1.2
Indel. 10000M2 UPP(Default,No Decomp) 3.3 0.5 1.4
Indel. 10000M2 UPP(Default,Disjoint) 28.2 19.9 0.3
Indel. 10000M3 UPP(Default) 1.3 0.2 4.6
Indel. 10000M3 UPP(Default,Clade) 1.3 0.2 4.9
Indel. 10000M3 UPP(Default,No Decomp) 1.3 0.1 4.8
Indel. 10000M3 UPP(Default,Disjoint) 6.5 1.5 1.5
Indel. 10000M4 UPP(Default) 0.3 <0.0 27.4
Indel. 10000M4 UPP(Default,Clade) 0.3 <0.0 27.4
Indel. 10000M4 UPP(Default,No Decomp) 0.5 <0.0 30.5
Indel. 10000M4 UPP(Default,Disjoint) 0.6 0.1 11.9
RNASim 10K UPP(Default) 9.5 0.8 0.5
RNASim 10K UPP(Fast) 13.3 1.2 0.2
RNASim 10K UPP(Default,Clade) 9.5 0.7 0.4
RNASim 10K UPP(Default,No Decomp) 11.2 3.0 0.3
RNASim 10K UPP(Default,Disjoint) 10.5 0.4 0.9

11



Table S2.2: Results for UPP variants on the RNASim datasets. We show results for different
variants of UPP on the RNASim datasets with 10,000 to 1,000,000 sequences. See text for
explanation of names of methods and computational platforms used.

Number seq. Method Align. SP-error FN ∆FN Time (hrs)
10,000 UPP(Fast,NoDecomp) 13.1% 14.2% 3.6% 0.1
10,000 UPP(Default,NoDecomp) 11.2% 13.6% 3.0% 0.2
10,000 UPP(Fast) 13.3% 11.8% 1.2% 0.9
10,000 UPP(Default) 9.5% 11.3% 0.8% 6.7
10,000 UPP(Default,Disjoint) 10.5% 11.0% 0.4% 3.2
10,000 UPP(Default,Clade) 9.5% 11.3% 0.7% 10.9
10,000 UPP(Default,NoEntropy) 9.5% 11.1% 0.6% 6.3
10,000 UPP(Default,NoReweight) 9.5% 11.3% 0.8% 6.6
10,000 UPP(Fast, Mafft-Profile(add)) 26.2% 18.0% 7.4% 0.2
10,000 UPP(Default,Mafft-Profile(add)) 14.0% 14.8% 4.2% 0.3
10,000 UPP(Fast, Mafft-Profile(addfragments)) 17.8% 15.5% 4.9% 1.0
10,000 UPP(Default, Mafft-Profile(addfragments)) 12.7% 12.3% 1.7% 6.5
50,000 UPP(Fast,NoDecomp) 12.2% 10.7% 2.6% 0.4
50,000 UPP(Default,NoDecomp) 12.0% 10.5% 2.5% 0.9
50,000 UPP(Fast) 12.7% 9.4% 1.3% 4.2
50,000 UPP(Default) 11.2% 8.6% 0.5% 44.0
50,000 UPP(Default,Disjoint) 11.4% 8.5% 0.4% 18.0
50,000 UPP(Fast, Mafft-Profile(add)) 33.6% 13.8% 5.7% 2.1
50,000 UPP(Default, Mafft-Profile(add)) 16.0% 10.1% 2.2% 3.5
100,000 UPP(Fast,NoDecomp) 13.5% 9.9% 3.3% 0.8
100,000 UPP(Default,NoDecomp) 11.2% 9.4% 2.8% 1.9
100,000 UPP(Fast) 13.0% 8.3% 1.4% 8.5
100,000 UPP(Default) 11.1% 7.6% 0.7% 82.3
100,000 UPP(Fast,Mafft-Profile(add)) 40.2% 10.2% 3.3% 10.7
200,000 UPP(Fast,NoDecomp) 12.4% 8.5% 2.4% 1.9
200,000 UPP(Default,NoDecomp) 11.3% 8.6% 2.4% 6.1
200,000 UPP(Fast) 12.5% 7.6% 1.4% 17.9
200,000 UPP(Default) 10.6% 6.8% 0.7% 151.1
1,000,000 UPP(Fast,NoDecomp) 13.0% 8.4% 2.8% ∗51.6
1,000,000 UPP(Default,NoDecomp) 11.1% 7.7% 2.1% ∗64.7
1,000,000 UPP(Fast) 12.8% 7.5% 2.0% ∗286.4
1,000,000 UPP(Fast,Disjoint) 13.1% 7.2% 1.6% ∗177.7
1,000,000 True alignment 0.0% 5.6% 0.0% 0.0
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S2.2 Backbone size

We examined the impact of the backbone size on alignment and tree accuracy on the RNASim

dataset (Table S2.2). UPP run in default mode uses a backbone of size 1000, and run in fast

mode uses a backbone of size 100. The comparison between UPP(Default) and UPP(Fast)

shows that using the larger backbone generally resulted in lower alignment SP-error and tree

error than using a smaller backbone. However, the larger backbone increased the running time,

often substantially.

S2.3 Backbone alignment method

We ran UPP(Fast) on the backbone alignments estimated using Clustal-Omega, MAFFT-L-INS-

i, MUSCLE, and PASTA on backbone sets of size 100 on the RNASim 10K dataset (Fig. S2.3).

We found that UPP using PASTA and MUSCLE backbones resulted in the most accurate UPP

alignments, followed very closely by UPP on the MAFFT-L-INS-i backbone. UPP on using the

Clustal-Omega backbone, on the other hand, resulted in a distinctively worse alignment. While

UPP on PASTA and MUSCLE backbones resulted in the best alignments, UPP on PASTA and

MAFFT-L-INS alignments resulted in the best trees. UPP on MUSCLE was close behind, and

as before, UPP on Clustal-Omega was distinctly worse. Thus, using PASTA backbones gave

the best overall results compared to the other alignment methods.

S2.4 Backbone and final alignment SP-error

We examined the alignment SP-error of the initial backbone alignment and the resulting align-

ment SP-error of the final UPP alignment (Fig. S2.4). We found that the backbone alignment

SP-error was statistically significantly correlated to the final UPP alignment SP-error (Pearson’s

correlation coefficient 0.951; p-value of 5.968e-07).

With the exception of the CRW 16S.T dataset, the final alignment SP-error very closely
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Figure S2.3: Average alignment SP-error and ∆FN tree error rates of UPP using different
alignment methods to estimate the backbone alignment on the RNASim 10K dataset. All
backbones are of size 100.
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matches the initial error in the backbone alignment. The explanation is that several clades are

omitted from the backbone set due to UPP’s restriction of the backbone to sequences considered

full-length, so that UPP has difficulty aligning sequences from those clades.

S2.5 Query sequence alignment method

We compared three different techniques for aligning the query sequences to the backbone align-

ment within the UPP pipeline: using the ensemble of HMMs technique, using MAFFT-Profile

“--add”, and using MAFFT-Profile “--addfragments”. Table S2.2 and Figure S2.5 showed that

the ensemble of HMMs technique resulted in lower alignment SP-error and tree error than

MAFFT-Profile, whether using --add or --addfragments. In addition, UPP using the ensemble

of HMMs technique made it possible to align 200,000 sequences within 24 hours, but UPP using

MAFFT-Profile “--add” was unable to align the 200K dataset in that timeframe, and UPP using

MAFFT-Profile “--addfragments” could only align up to 10,000 sequences (Table S2.2). Com-

paring MAFFT-Profile “--add” and MAFFT-Profile “--addfragments”, we found that MAFFT-

Profile “--addfragments” resulted in lower alignment SP-error and tree error than MAFFT-add

(Fig. S2.5), at a large increase in running time (Table S2.2).

S2.6 Comparison of clade-based versus centroid edge decomposition.

The centroid edge decomposition does not guarantee that the resulting sequence subsets form

monophyletic clades in the backbone tree. Thus, the subset alignments can be polyphyletic or

paraphyletic, especially if the backbone tree is unbalanced.

In this section, we compared a centroid edge decomposition to a clade-based decomposition.

The clade-based decomposition partitions the backbone tree into two subtrees by breaking the

tree on the root node. This process recursively repeats on any subtree that is larger than the

maximum alignment subset size (set to 10 for this example).
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Figure S2.4: Comparison of initial backbone alignment SP-error and final UPP(Default)
alignment SP-error, using PASTA backbones of size 1000. Each point represents the align-
ment SP-error for a specific method on a specific dataset. Points below the line represent align-
ment methods that have a lower alignment SP-error relative to the backbone alignment. Points
above the line represent alignment methods that have a higher alignment SP-error relative to
the backbone alignment. The majority of the final alignment SP-errors closely tracks the initial
backbone alignment SP-errors. The lone exception is on the CRW 16S.T dataset. The Pearson’s
correlation coefficient for the backbone alignment SP-error versus the final alignment SP-error
for the entire collection of points is 0.951 and is statistically significantly correlated (p-value of
5.968e-07; Pearson’s product-moment correlation test).
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Figure S2.5: Impact of backbone size and query sequence alignment method on alignment
SP-error, tree error, and running time. Methods labeled with “Default” use a backbone
size of 1000. Methods labeled with “Fast” use a backbone size of 100. Methods labeled as
“MAFFT” used MAFFT as a profile alignment method (either under the “addfrag” or “add”
setting) to insert the query sequences into the backbone alignment. ML trees were estimated
using FastTree under GTR.
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The results on the centroid-edge versus clade-based decomposition for the CRW datasets

showed that neither method was consistently better than the other (Fig. S2.6). However, the

clade-based decomposition resulted in a larger number of alignment subsets (438 versus 280

for 16S.T), and thus required more time to run (6.1 hours versus 3.9 hours for 16S.T).
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Figure S2.6: Alignment SP-error and tree error for UPP using a centroid-edge decompo-
sition (UPP(Default)) and UPP using clade-based decomposition (UPP(Default,Clade)) on
the CRW datasets. All methods used a backbone size of 1000. ML trees were estimated using
FastTree under GTR.

S2.7 hmmbuild options

We explored two different ways of running hmmbuild. The first way was to disable the relative

sequence weight option. By default, hmmbuild downweights similar sequences and upweights
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divergent sequences for computing the character frequencies in the profile during the HMM

generation. The motivation is to minimize the impact of biased and uneven sampling caused by

too many similar sequences being found in the same model. However, this works against the

purpose of using an ensemble of HMMs, as the idea is to form profile HMMs from sequence

sets have been intentionally partitioned into subsets containing similar sequences. We ran UPP

with this flag turned off (labeled “UPP(Default,NoReweight)”).

The second way was related to hmmbuild’s computation of the number of effective se-

quences used to generate the HMM (called “entropy-weighting”). HMMER, by default, at-

tempts to reach a per site entropy setting of 0.6 bits per consensus position. By default, HMM

computes an effective number of sequence that is typically smaller than N , the number of se-

quences in the subset used to generate the HMM model, which has the effect of reducing the

HMM score per match. This causes longer alignments to require more hits to receive good

scores, but as a side effect this causes short sequences to receive lower scores than expected.

We ran UPP with this flag turned off (labeled “UPP(Default,NoEntropy)”).

Figure S2.7 shows the results of the hmmbuild variants on the CRW datasets, and Table S2.2

shows results on the RNASim 10K datasets. There were no differences between methods on

the RNASim 10K datasets or the CRW 16S.B.ALL dataset. On the 16S.3 and 16S.T datasets,

using the UPP default setting for hmmbuild produced the most accurate trees. Using the no

entropy or no reweight setting increased alignment SP-error on the 16S.T dataset and slightly

decreased alignment SP-error on the 16S.3 dataset. Thus, changing how hmmbuild was used

did not reliably improve the performance of UPP with respect to alignment SP-error or tree

error.
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Figure S2.7: Alignment SP-error and tree error for different options of hmmbuild within
UPP on the CRW datasets. UPP(Default,NoReweight) is UPP run with the sequence reweight-
ing flag turned off. UPP(Default,NoEntropy) is UPP run with the entropy-weighting turned off.
All methods used a backbone size of 1000. ML trees were estimated using FastTree under GTR.
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S3 PASTA on the 10 AA datasets

UPP’s alignment accuracy depends on the accuracy of the backbone alignment. PASTA is an

improvement on SATé-II, and both have been studied extensively on nucleotide datasets (1);

however, there has been less exploration of PASTA on AA datasets, and no studies of SATé-I

or SATé-II on AA datasets.

We explored PASTA variants, varying the technique used to estimate alignments on subsets

and then to merge alignments together, using the 10 AA datasets with full reference align-

ments. Initial analyses revealed that MAFFT-L-INS-i gave the best results for producing the

subset alignments. We then evaluated techniques for merging alignments, including Opal (2),

MUSCLE (3), or COBALT (4).

We ran PASTA under default settings (no starting tree, subset size 200, MAFFT-L-INS-i

to align subsets, FastTree to compute trees in each iteration, and running for three iterations),

varying only the alignment merger technique. The software version numbers and commands

used within PASTA to align the sequences and merge the subsets are given in Section S3.

ML trees were estimated on the alignments using RAxML under JTT, LG, or WAG models of

protein evolution (using ProtEST (5) to select the amino acid substitution model).

We found that while all PASTA variants resulted in alignments with comparable accuracy,

RAxML maximum likelihood trees on PASTA using MUSCLE to merge subalignments resulted

in the most accurate trees (Fig. S3.1). We refer to this version as “PASTA-MUSCLE.”

We then compared PASTA-MUSCLE to alignments and trees computed using standard

MSA methods followed by RAxML for maximum likelihood. PASTA-MUSCLE and MAFFT-

L-INS-i gave the most accurate alignments, but PASTA-MUSCLE resulted in the most accurate

trees (Fig. S3.2). Thus, we used PASTA-MUSCLE for amino acid sequence datasets.
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(b) Tree FN error of PASTA variants

Figure S3.1: Alignment SP-error and tree error for PASTA variants on the 10 AA datasets
with full reference alignments. We show the results for PASTA using MAFFT to align the
alignment subsets, and then using either Muscle (labeled as “MAFFT-Muscle”), Cobalt (la-
beled as “MAFFT-Cobalt”), or Opal (labeled as “MAFFT-Opal”) to merge the subalignments.
ML trees were estimated using RAxML under amino acid substitution models selected using
ProtEST.
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Figure S3.2: Alignment SP-error and tree error of different methods on the 10 AA datasets
with full reference alignments. PASTA used MAFFT-L-INS-i to align subalignments, and
MUSCLE to merge subalignments. ML Trees were estimated using RAxML under amino acid
substitution models selected using ProtEST.
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PASTA commands. We present information on the external software we used in running

PASTA. Each dataset was aligned (when possible) using Opal (2) version 2.0.0, Clustal-Omega

(6) version 1.0.2, MAFFT (7–9) version 6.857b, Cobalt (4) version 2.0.1, MUSCLE (3, 10)

version 3.8.31, PRANK (11) version 100802 and PASTA version 1.0 (1). Due to a bug in ear-

lier versions of MAFFT 6.956b, MAFFT-Profile and MAFFT-default were run using MAFFT

version 7.143.

The commands used for the experiments in this section are given below.

• Clustal-Omega: clustalo -align -i<input sequence> -o <output alignment>

• MAFFT: mafft --localpair --maxiterate 1000 --ep 0.123 <input sequence> >

<output alignment>

• Opal: java -Xmx20g -jar opal.jar --in <input sequences> --out <output alignment>

• MUSCLE: muscle -in <input sequence> -out <output alignment>

• Cobalt: cobalt -i <input sequence> -rpsdb <cdd clique 0.75> > output alignment>

• Prank: prank -once -noxml -notree -nopost +F -quiet -matinitsize=5 -protein -

d=<input sequence> -o=<output alignement>

• RaxML: raxml -m PROTGAMMA<model> -n ml -s <output phylip> -T2 -w

<working directory>

• PASTA: python run pasta.py -o <output directory> -i <input sequences> -t

<starting tree> --auto --num-cpus=12 --datatype=<molecule type>
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S4 Supplemental Tables

Table S4.1: The FN tree error rates (as a percentage) for the 10AA and CRW biological
datasets. The reference trees for these datasets were obtained from previous studies, and were
computed using RAxML with bootstrapping on the reference alignments and then restricted to
the branches with at least 75% bootstrap support.

Model Dataset UPP(Default) PASTA MAFFT Muscle Clustal-Omega
10 AA 1GADBL 100 0.0 0.9 0.9 1.7 0.9
10 AA coli epi 100 1.1 1.1 0.0 0.0 0.0
10 AA RV100 BBA0039 4.7 2.9 1.1 12.3 2.2
10 AA RV100 BBA0067 1.7 1.3 3.5 7.0 3.5
10 AA RV100 BBA0081 7.9 9.2 4.4 28.1 6.6
10 AA RV100 BBA0101 6.3 3.3 3.0 19.6 5.5
10 AA RV100 BBA0117 2.2 1.1 2.2 14.1 3.3
10 AA RV100 BBA0134 6.6 9.7 3.9 32.6 9.5
10 AA RV100 BBA0154 2.2 1.1 2.2 6.5 1.6
10 AA RV100 BBA0190 1.4 2.0 2.4 4.4 2.4
CRW 16S.3 7.6 7.7 8.1 8.2 32.0
CRW 16S.B.ALL 11.3 9.9 24.1 10.2 49.7
CRW 16S.T 14.2 7.5 7.8 8.0 30.2
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Table S4.2: The alignment SP-error for the full-length biological datasets. We report
the alignment error on the full-length biological datasets. Muscle failed to align two of the
HomFam datasets; we denote this with an “X”.

Model Dataset UPP(Default) PASTA MAFFT Muscle Clustal-Omega
10 AA 1GADBL 100 4.6 2.9 3.1 4.1 4.7
10 AA coli epi 100 4.0 4.1 3.1 4.3 5.0
10 AA RV100 BBA0039 8.6 7.7 7.2 12.8 8.4
10 AA RV100 BBA0067 27.3 26.5 29.3 38.4 29.4
10 AA RV100 BBA0081 71.5 73.8 69.6 77.6 68.9
10 AA RV100 BBA0101 32.0 29.7 33.3 43.6 33.0
10 AA RV100 BBA0117 16.4 18.7 17.0 28.9 19.4
10 AA RV100 BBA0134 30.4 27.4 26.4 38.9 30.2
10 AA RV100 BBA0154 23.6 23.7 22.9 26.9 20.5
10 AA RV100 BBA0190 23.8 25.7 23.5 26.7 23.9
CRW 16S.3 14.2 13.2 25.2 25.8 43.2
CRW 16S.B.ALL 4.9 5.3 29.4 33.7 39.9
CRW 16S.T 18.3 19.9 30.4 32.8 46.9
HomFam aat 22.8 25.7 20.4 71.2 24.3
HomFam Acetyltransf 46.4 37.3 62.8 71.9 38.8
HomFam adh 35.6 9.1 1.2 19.0 1.4
HomFam aldosered 9.8 11.2 11.0 39.1 16.1
HomFam biotin lipoyl 7.9 8.0 8.1 8.6 6.8
HomFam blmb 33.1 37.4 36.4 70.8 48.9
HomFam ghf13 41.7 35.2 35.8 69.6 36.0
HomFam gluts 8.8 18.3 15.0 48.5 6.8
HomFam hla 0.0 0.0 0.0 5.0 0.0
HomFam hom 5.3 3.3 3.6 8.0 10.7
HomFam myb DNA-binding 5.4 8.5 13.1 17.4 17.4
HomFam p450 25.6 42.9 44.1 92.5 44.9
HomFam PDZ 16.7 21.4 23.2 49.7 25.0
HomFam Rhodanese 36.2 31.5 34.6 58.8 42.8
HomFam rrm 21.0 23.0 24.4 59.3 47.5
HomFam rvp 27.7 20.4 28.8 X 26.8
HomFam sdr 27.8 27.1 45.7 76.8 49.3
HomFam tRNA-synt 2b 51.9 42.1 50.2 51.1 53.9
HomFam zf-CCHH 13.8 14.2 12.6 X 32.0
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Table S4.3: The TC score for the full-length biological datasets. We report the TC score
(the percentage of the sites in the reference alignment that appear in the estimated alignment)
on the full-length biological datasets. Muscle failed to align two of the HomFam datasets; we
denote this with an “X”.

Model Dataset UPP(Default) PASTA MAFFT Muscle Clustal-Omega
10 AA 1GADBL 100 27.8 29.0 30.6 32.2 31.6
10 AA coli epi 100 46.0 47.3 46.7 48.0 44.0
10 AA RV100 BBA0039 0.0 1.7 2.8 0.0 0.7
10 AA RV100 BBA0067 5.9 7.0 4.2 0.7 6.0
10 AA RV100 BBA0081 0.5 1.1 1.9 0.5 0.8
10 AA RV100 BBA0101 1.7 0.1 0.1 0.0 1.5
10 AA RV100 BBA0117 0.0 0.0 0.0 0.0 0.0
10 AA RV100 BBA0134 0.1 1.0 0.1 0.0 1.0
10 AA RV100 BBA0154 12.1 12.7 12.9 10.6 11.9
10 AA RV100 BBA0190 7.9 9.6 10.3 3.7 8.3
CRW 16S.3 1.0 3.4 0.9 0.4 0.1
CRW 16S.B.ALL 1.4 1.4 0.2 1.2 0.0
CRW 16S.T 1.0 1.0 0.7 0.2 0.0
HomFam aat 39.9 34.0 38.9 1.1 26.3
HomFam Acetyltransf 18.3 21.8 8.7 2.6 14.8
HomFam adh 34.7 84.0 97.3 66.7 96.5
HomFam aldosered 58.5 47.9 51.0 13.5 26.9
HomFam biotin lipoyl 51.8 52.7 53.6 52.7 57.1
HomFam blmb 27.3 22.1 23.8 5.2 9.0
HomFam ghf13 16.0 31.3 24.9 7.5 20.6
HomFam gluts 72.8 42.6 56.2 13.6 75.3
HomFam hla 100.0 100.0 100.0 86.0 100.0
HomFam hom 48.0 53.1 53.1 50.0 40.8
HomFam myb DNA-binding 72.1 65.6 57.4 52.5 41.0
HomFam p450 35.7 0.4 10.9 0.0 10.4
HomFam PDZ 53.6 45.5 46.4 14.5 27.3
HomFam Rhodanese 36.6 41.2 30.6 22.7 22.7
HomFam rrm 11.5 10.8 9.6 1.3 3.2
HomFam rvp 31.8 40.9 33.3 X 40.2
HomFam sdr 19.7 26.0 11.1 0.6 5.5
HomFam tRNA-synt 2b 15.2 13.7 14.3 21.0 13.3
HomFam zf-CCHH 38.5 46.2 48.7 X 12.8
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