Supporting Information

SI FIGURE 1: (A) Thermal denaturation curve of apo α_3 DIV at pH 7.0 fitted to a twopeak model. (B) Thermal denaturation curve of apo α_3 DIV at pH 8.2 fitted to a threepeak model. (C) Thermal denaturation curve of α_3 D at pH 8.2 fitted to a one-peak model. (D) Thermal denaturation curve of Hg- α_3 DIV at pH 8.2 fitted to a one-peak model. (E) Thermal denaturation curve of Cd- α_3 DIV at pH 8.2 fitted to a one-peak model. (F) Thermal denaturation curve of Pb- α_3 DIV at pH 8.2 fitted to a two-peak model.

SI FIGURE 2: Procheck-NMR Ramachandran plot of the 20 lowest structures exhibits that 90.1% of the backbone stereochemistry is located in the most favored, 7.8% in additionally allowed regions, 2.0% in generously allowed and 0.1% in disallowed regions.

SI FIGURE 3: Enlargement of the ¹⁵N-HSQC spectra of apo α_3 DIV (blue) and Hg(II)- α_3 DIV (red), both at pH 8.6. Spectra were collected on a 500 MHz Varian VNMRS NMR system at 9 °C. The peaks that were assigned in the apo spectrum are labeled. At this high pH condition, a reduction in the chemical shift peaks for both spectra were

expected as the backbone proton kinetic exchange rate increases with pH. Thereby, these experiments were collected at 9 °C in order to decrease the exchange rate and regain missing resonance peaks. In this view, the apo spectrum displayed 54 peaks of 55 that were identified, whereas the Hg- α_3 DIV spectrum contained 47 peaks.

SI FIGURE 4: (A) CD spectrum of $\alpha_3 D$ (pink), $\alpha_3 DIV$ (orange), Hg(II)- $\alpha_3 DIV$ (green), Pb(II)- $\alpha_3 DIV$ (blue) and Cd(II)- $\alpha_3 DIV$ (purple). Each spectrum contains a double minima at 208 and 222 nm and [θ] molar ellipticity values typical for a well-folded α helical structure. (B) Thermograms of $\alpha_3 D$ (pink), $\alpha_3 DIV$ at pH 7.0 (orange), $\alpha_3 DIV$ at pH 8.2 (dashed orange), Hg(II)- $\alpha_3 DIV$ (green), Pb(II)- $\alpha_3 DIV$ (blue), and Cd(II)- $\alpha_3 DIV$ (purple). The metallated species had melting temperatures ~20 °C higher than the apo.

SI FIGURE 5: EXAFS and Fourier Transform for Hg- α_3 DIV. (Left) Raw unfiltered EXAFS data (black) and simulations (green) for Hg- α_3 DIV. (Right) Fourier transforms of the raw EXAFS (black) and best fit simulation (green) for Hg- α_3 DIV.

SI FIGURE 6: (A) First layer of apolar groups (α_3 DIV red: helix1, green: helix2, and blue: helix3; α_3 D: cyan) above positions 18, 28, and 67, which involves Ile14, Phe31, and Ile63. (B) Second layer of apolar groups, Leu11, Ile35, and Ala60. (C) Third layer of apolar groups, Phe7, Phe38, and Leu56.

SI FIGURE 7: (A) "a" site Cys in apo CSL9C⁶⁰ (PDB 3LJM), in which the S γ atoms position inside the core. The alternate conformation of the S γ atoms was removed in order to illustrate the orientation of "a" site Cys residues. (B) "d" site Cys in apo CSL19C⁶⁰ (PDB 2X6P), which contain S γ atoms that point at the interhelical interface.

SI FIGURE 8: Enlargements of ¹⁵N-HSQC spectra of apo α_3 DIV pH 5.8 (blue) and pH 8.6 (red). Spectra were collected on a 500 MHz Varian VNMRS NMR instrument at 25 °C. The pH 5.8 spectrum contains 64 of the 68 total peaks and the assignments are adjacent to its peak, whereas the pH 8.6 spectrum has 54 of the 55 identified peaks (not

assigned). The peaks at pH 8.6 shift upfield of pH 5.8 and also contain 15 less identifiable peaks, demonstrating a pH effect on the hydrogen exchange rates.

	no. of acquired data points (nucleus)			spectral width (Hz)				
experiment	t ₁	t ₂	t ₃	F_1	F_2	F_3	nt	Ref ^b
2D ¹ H ⁻¹⁵ N TROSY	400 (¹⁵ N)	4102 (¹ H)		3000	12019		2	27-29
3D HNCO TROSY	150 (¹³ C)	40 (¹⁵ N)	2396 (¹ H)	2750	2500	12019	2	30
3D HN(CA)CO	150 (¹³ C)	80 (¹⁵ N)	2368 (¹ H)	2750	2500	12019	4	30
3D HNCA	150 (¹³ C)	80 (¹⁵ N)	2396 (¹ H)	5500	2500	12019	4	31
3D HN(CO)CA	150 (¹³ C)	80 (¹⁵ N)	2396 (¹ H)	5500	2500	12019	2	31
3D HNCACB	300 (¹³ C)	80 (¹⁵ N)	2396 (¹ H)	15001	2500	12019	8	32, 33
3D HN(CO)CACB	300 (¹³ C)	80 (¹⁵ N)	2396 (¹ H)	15001	2500	12019	8	32, 33
3D HN(CA)HA ^a	200 (¹ H)	60 (¹⁵ N)	4102 (¹ H)	2500	2500	12019	4	34
3D HC(C)H–COSY ^a	128 (¹ H)	200 (¹³ C)	2048 (¹ H)	5500	16000	15060	4	36
3D HC(C)H-TOCSY	200 (¹³ C)	100 (¹³ C)	2048 (¹ H)	16000	16000	15060	4	37,38
3D ¹⁵ N NOESY TROSY	200 (¹ H)	80 (¹⁵ N)	4102 (¹ H)	8000	2500	12019	8	39
3D HMQC NOESY TROSY	200 (¹³ C)	80 (¹⁵ N)	4102 (¹ H)	14000	2500	12019	12	40
3D ¹⁵ N NOESY TROSY ^a	200 (¹ H)	100 (¹³ C)	2048 (¹ H)	9000	16000	15060	4	39
3D NOESY ¹³ CHSQC ^a	150 (¹ H)	200 (¹³ C)	2048 (¹ H)	7500	16000	15060	4	39
3D NOESY ¹³ C TROSY	72 (¹³ C)	80 (¹⁵ N)	4102 (¹ H)	7000	2500	12019	4	39
3D NOESY (¹³ C) TROSY	72 (¹ H)	80 (¹⁵ N)	4102 (¹ H)	2000	2500	12019	4	39

SI Table 1: Acquisition Parameters for NMR Experiments Performed on α_3 DIV.

^aIn-phase and anti-phase experiment. ^bReferences from the main document.

SI Table 2: Summary of Hg EXAFS fitting analysis for Hg- α_3 DIV.

Nearest Neighbor Ligand Environment ^a							
Complex	Atom ^b	\mathbf{R} (Å) ^b	C. N. ^d	$\sigma^{2 e}$	\mathbf{F}^{f}		
	S	2.36	2.0	3.54	2.24		
Hg- α_3 D IV	S	2.36	2.5	4.97	2.21		
	S	2.36	3.0	6.20	2.21		

Data fit over a k range of 1 to 12 Å-1. Best fit simulation parameters are in bold. ^{*a*}Independent metal-ligand scattering environment at R < 3.0 Å. ^{*b*}Scattering atoms: S (Sulfur). ^{*c*}Average metal-ligand bond length for 2 independent samples. ^{*d*}Average metal-ligand coordination number for 2 independent samples. ^{*e*}Average Debye-Waller factor in Å² x 10³ for 2 independent samples. ^{*f*}Number of degrees of freedom weighted mean square deviation between data and fit.

	Procheck		Richardson Lab's Molprobit	
	$\alpha_3 DIV$	$\alpha_3 D$	$\alpha_3 DIV$	$\alpha_3 D$
Most favored regions	89.2%	86.2%	93%	81.7%
Allowed regions	9.2%	10.8%	4.2%	15.5%
Generously allowed regions	1.5%	1.5%		
Disallowed regions	0.0%	1.5%	2.8%	2.8%

SI Table 3. Ramachandran Plot Summary for residues 1-73 from PSVS analysis.

SI Table 4. PSVS global quality scores for 20 structures of $\alpha_3 DIV$, structure 1 of $\alpha_3 DIV$ and structure 1 of $\alpha_3 D$.

20 structures $\alpha_3 DIV$							
Program	Verify3D	ProsaII (-ve)	Procheck (phi-psi) ^a	Procheck (all) ^a	Molprobity Clashscore		
Raw Score	0.47	1.35	0.09	-0.40	15.39		
Z-Score ^b	0.16	2.89	0.67	-2.37	-1.12		
			Structure 1 a	3DIV			
Raw Score	0.47	1.45	0.02	-0.37	17.95		
Z-Score ^b	0.16	3.31	0.39	-2.19	-1.55		
Close Conta Number of cl	cts and Devia	ations from	A Ideal Geome	etry (PDB vali	dation software)	0	
RMS deviation RMS deviation	on for bond and an for bond le	ngles engths				0.2° 0.001 Å	
			Structure 1	α ₃ D			
Raw Score	0.55	1.29	-0.64	-0.98	68.48		
Z-Score ^b	1.44	2.65	-2.20	-5.80	-10.23		
Close Conta	cts and Devia	ations from	Ideal Geom	etry (PDB vali	dation software)		
Number of cl	ose contacts ((within 1.6	Å for H atoms	& 2.2 Å for he	eavy atoms	0	
RMS deviation for bond angles						2.6°	
RMS deviation	on for bond le	engths				0.020 Å	

"For all residues. ^bWith respect to mean and standard deviation for a set of 252 X-ray structures <500 residues of resolution of 1.80 Å, R-factor of 0.25 and R-free of 0.28; a positive value indicates a "better" score."

Protein	$\alpha_3 D^a$	$\alpha_3 DIV^b$	$\alpha_3 DIV^a$	Hg- α_3 DIV ^a	Pb- $\alpha_3 DIV^a$	$Cd-\alpha_3 DIV^a$
T _m (°C)	89.6 (0.3)	64.4 (0.6) 76.1 (1.9)	60.2 (0.1) 82.2 (0.8) 89.9 (2.1)	84.0 (1.7)	83.4 (3.3) 92.0 (7.7)	78.1 (0.7)
ΔH _{calc} (kcal mol ⁻¹)	49.9 (4.6)	50.0 (0.2) 46.1 (1.4)	44.9 (1.2) 60.0 (0.5)	65.1 (3.5)	59.2 (6.9) 104.2 (35.1)	52.7 (4.3)
$\Delta H_{van't Hoff}$ (kcal mol ⁻¹)	41.2 (4.8)	20.8 (3.1) 15.8 (2.7)	23.5 (2.1) 8.5 (2.1)	10.3 (3.1)	14.6 (6.0) 5.9 (1.5)	12.6 (0.6)

SI Table 4: Thermal denaturation parameters.

All the averaged values were determined from triplicate or duplicate experiments. Bolded values indicate primary denaturation species. ^{*a*}pH 8.2. ^{*b*}pH 7.0.

Compound	Hg-S R (Å)	Hg-S R (Å)	Hg-S R (Å)	ref
Trigonal T-shaped HgS ₃				
catena-(bis(O- methyldithiocarbonato-S)- mercury(ii))	2.365	2.383	2.924	1
tetra-n-butylammonium (3- ethoxycarbonylthiolato-4,5- diphenylthiophene-2-thiolato)- (4,5-diphenylthiophene-2,3- dithiolato)-mercury(ii)	2.373	2.388	2.495	2
(thiocyanato)-bis(4- trimethylammoniobenzenethiolato) -mercury(ii) hexafluorophosphate	2.353	2.369	2.823	3
Average 3 M-L		2.497 (0.071)		
Trigonal HgS ₃				
tetra-n-butylammonium tris(phenylthiolato-S)-mercury(ii)	2.407	2.432	2.507	4
catena-(ethylenediammonium tris(m2-sulfido)-sulfido-mercury- tin)	2.396	2.435	2.653	5
Tetraethylammonium tris(t- butylthiolato-S)-mercury(ii)	2.436	2.438	2.451	6

SI Table 5 Metrical parameters of Hg-S bonds in model compounds.

tetrakis(n-Propylammonium) tris((2,4,6-tri- isopropyl)benzenethiolato)- mercury methanol solvate	2.398	2.46	2.47	7
Tetraphenylphosphonium tris(2,3,5,6- tetramethylbenzenethiolato-S)- mercury acetonitrile solvate	2.397	2.404	2.493	8
Tetramethylammonium bis(tris(m2-thiobenzoato-O,S)- mercury(ii))-sodium	2.443	2.468	2.485	9
bis(Tetraethylammonium) (m2- benzene-1,2-dithiolato-S,S')- bis(benzene-1,2-dithiolato)-di- mercury(ii)	2.382	2.429	2.437	10
Tetraethylammonium tris(cyclohexylthiolato-S)-mercury	2.403	2.455	2.487	11
Average 3 M-L		2.449 (0.023)		
HgS ₂ model references				
bis(carboxymethylthiolato)- mercury(ii)	2.339	2.339		12
bis(n-Pentanethiolato)-mercury(ii)	2.304	2.304		13
catena-(bis(m2-Bromo)-bis(m2- N,N-diethyldithiocarbamato-S,S')- di-mercury)	2.364	2.385		14
bis(2-Mercaptobenzoato-S)- mercury(ii) dioxane solvate	2.363	2.363		15
bis(4-t-Butylbenzenethiolato-S)- mercury(ii)	2.358	2.363		16
Average 2 M-L		2.348 (0.028)		

The Hg(II)-S bond lengths represent one complex within a network.

1. Tiekink, E. R. T. (1987) Bis(O-methyldithiocarbonato)mercury(II). Acta Crystallogr., Sect. C: Cryst. Struct. Commun. 43, 448 – 450.

2. Kim, Y.-Y., Lee, H.-H., Nam, H.-J, and Noh, D.-Y. (2001) Mononuclear three-coordinate mercury(II)-thiolate complex: synthesis and X-ray crystal structure. *Bull. Korean Chem. Soc.* 22, 17 – 18.

3. Chen, J.-X., Zhang, W.-H., Tang, X.-Y., Ren, Z-G., Zhang, Y., and Lang, J. P. (2006) Assembly of a New Family of Mercury(II) Zwitterionic Thiolate Complexes from a Preformed Compound [Hg(Tab)₂](PF₆)₂ [Tab) 4-(Trimethylammonio)benzenethiolate]. *Inorg. Chem.* 45, 2568 – 2580.

4. Christou, G., Folting, K., and Huffman, J. C. (1984) Mononuclear, three-coordinate metal thiolates: Preparation and crystal structures of $[NBu_4^n][Hg(SPh)_3]$ and $[NPr_4^n][Pb(SPh)_3]$. *Polyhedron 3*, 1247 – 1253.

5. Wang, Y.-Y., Baiyin, M.-H., Ji, S.-H., Liu, X.-Y., An, Y-.L., and Ning, G.-L. (2006) Solvothermal Synthesis and Characterization of $(NH_3CH_2CH_2NH_3)HgSnS_4$ with a Column Structure. *Chem. Res. Chin. Univ.* 22, 411 – 414.

6. Watton, S. P., Wright, J. G., MacDonnell, F. M., Bryson, J. W., Sabat, M. and O'Halloran, T. V. (1990) Trigonal mercuric complex of an aliphatic thiolate: a spectroscopic and structural model for the receptor site in the mercury(II) biosensor MerR. *J. Am. Chem. Soc.* 112, 2824 – 2826.

7. Gruff, E. S. and Koch, S. A. (1990) Trigonal-planar $[M(SR)_3]^{1-}$ complexes of cadmium and mercury. Structural similarities between mercury-cysteine and cadmium-cysteine coordination centers. *J. Am. Chem. Soc.* 112, 1245 – 1247.

8. Santos, R. A., Gruff, E. S., Koch, S. A. and Harbison, G. S. (1991) Solid-state mercury-199 and cadmium-113 NMR studies of mercury- and cadmium-thiolate complexes. Spectroscopic models for $[Hg(SCys)_n]$ centers in the bacterial mercury resistance proteins. *J. Am. Chem. Soc.* 113, 469 – 475.

9. Deivaraj, T. C., Dean, P. A. W., and Vittal, J. J. (2000) Synthesis, Structure, and Multi-NMR Studies of (Me N)[A{M(SC{O}Ph)}] (A = Na, M = Hg; A = K, M = Cd or Hg). *Inorg. Chem.* 39, 3071 – 3074.

10. Baba, K., Okamura, T., Yamamoto, H., Yamamoto, T., and Ueyama, N. (2008) Zinc, Cadmium, and Mercury 1,2-Benzenedithiolates with Intramolecular NH^{...}S Hydrogen Bonds. *Inorg. Chem.* 47, 2837 – 2848.

11. Alsina, T., Clegg, W., Fraser, K. A. and Sola, J. (1992) [Homoleptic cyclohexanethiolato complexes of mercury(II). J. *Chem. Soc. Dalton Trans.* 8, 1393 – 1399.

12. Bramlett, J. M., Im, H.-J., Yu, X.-H., Chen, T., Cai, H., Roecker, L. E., Barnes, C. E., Dai, S., and Xue, Z.-L (2004) Reactions of thioether carboxylic acids with mercury(II). Formation and X-ray crystal structure of mercury(II) mercaptoacetate. *Inorg. Chim. Acta 357*, 243 – 249.

13. Hoffmann, G. G., Steinfatt, I., Brockner, W., Kaiser, V., and Naturforsch, Z. (1999) Bis(n-pentanethiolato)mercury(II), $Hg(SC_5H_{11})_2$. Preparation, characterization, crystal and molecular structure; reactivity towards organic thiols. *B: Chem.Sci.* 54, 887 – 894.

14. Chieh, C. (1978) Crystal structure of mercury(II) bromide dithiocarbamate, $[HgBr_2(S_2CNEt_2)Hg(S_2CNEt_2)]_n$, an inorganic polymer. *Can. J. Chem.* 56, 564 – 566.

15. Alsaadi, B. M., and Sandstrom, M. (1982) Crystal and molecular structure of bis(2-mercaptobenzoato-S)mercury(II) monodioxane. *Acta Chem. Scand. A 36*, 509 – 512.

16. Melnick, J. G., Yurkerwich, K., and Parkin, G. (2009) Synthesis, Structure, and Reactivity of Two-Coordinate Mercury Alkyl Compounds with Sulfur Ligands: Relevance to Mercury Detoxification. *Inorg. Chem.* 48, 6763 – 6772.