The type I error rate estimations for different competing models (including OLS and Logistic regression).

	ZIP distributed data						ZINB distributed data			
ϕ_c	20%		50%		80%		20%		50%	
α	.05	.10	.05	.10	.05	.10	.05	.10	.05	.10
OLS	.049	.104	.05	.103	.051	.104	.049	.101	.051	.102
LOLS	.052	.101	.051	.105	.054	.104	.052	.101	.050	.099
Poisson	.117	.193	.205	.287	.273	.361	.345	.422	.394	.471
NB	.045	.090	.027	.060	.028	.059	.040	.085	.031	.069
WRS	.050	.102	.052	.105	.054	.106	.053	.103	.050	.099
logistic	.047	.089	.059	.092	.046	.099	.054	.011	.049	.098
2P-TN	.051	.104	.053	.106	.058	.113	.039	.083	.034	.075
2P-LOLS	.050	.103	.053	.110	.060	.113	.054	.104	.051	.100
PH/ZIP	.053	.104	.053	.104	.054	.104	.219	.306	.224	.309
NBH/ZINB	.051	.103	.049	.098	.051	.100	.051	.098	.057	.112
2P-WRS	.047	.099	.047	.101	.044	0.094	.053	.103	.049	.098